CN112786679A - 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件 - Google Patents

碳化硅mosfet器件的元胞结构及碳化硅mosfet器件 Download PDF

Info

Publication number
CN112786679A
CN112786679A CN201911089381.4A CN201911089381A CN112786679A CN 112786679 A CN112786679 A CN 112786679A CN 201911089381 A CN201911089381 A CN 201911089381A CN 112786679 A CN112786679 A CN 112786679A
Authority
CN
China
Prior art keywords
region
well region
silicon carbide
source
mosfet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911089381.4A
Other languages
English (en)
Other versions
CN112786679B (zh
Inventor
戴小平
王亚飞
陈喜明
李诚瞻
罗海辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuzhou CRRC Times Electric Co Ltd
Original Assignee
Zhuzhou CRRC Times Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou CRRC Times Electric Co Ltd filed Critical Zhuzhou CRRC Times Electric Co Ltd
Priority to CN201911089381.4A priority Critical patent/CN112786679B/zh
Priority to US17/774,849 priority patent/US20220406896A1/en
Priority to PCT/CN2019/128387 priority patent/WO2021088231A1/zh
Publication of CN112786679A publication Critical patent/CN112786679A/zh
Application granted granted Critical
Publication of CN112786679B publication Critical patent/CN112786679B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本公开提供一种碳化硅MOSFET器件的元胞结构及碳化硅MOSFET器件。该碳化硅MOSFET器件的元胞结构包括:位于元胞结构两侧且在所述漂移层表面内设置的第二导电类型阱区、位于所述阱区表面内的第一导电类型源区和位于元胞结构中心且与所述源区、所述阱区以及所述漂移层接触的栅结构。还包括位于所述源区上方且与所述源区形成欧姆接触的源极金属层,在元胞结构两侧,所述漂移层于其未被所述阱区覆盖的区域向下设置有侧部沟槽,所述侧部沟槽中设置有与所述侧部沟槽下方的所述漂移层形成肖特基接触的肖特基金属层。本公开通过在碳化硅MOSFET器件的元胞结构级别集成了SBD,改善碳化硅双极退化现象,提高芯片可靠性,并降低模块封装成本、提高模块电气特性。

Description

碳化硅MOSFET器件的元胞结构及碳化硅MOSFET器件
技术领域
本公开涉及半导体器件技术领域,具体涉及一种碳化硅MOSFET器件的元胞结构及碳化硅MOSFET器件。
背景技术
碳化硅(SiC)是新型宽禁带半导体材料,具有出色的物理、化学和电性能,例如,碳化硅的击穿电场强度是传统硅的10倍、导热率是硅的3倍等,这使得碳化硅在功率半导体器件,特别是大功率和高温应用环境中非常具有吸引力和应用前景。
碳化硅单极器件(金属-氧化物半导体场效应晶体MOSFET、肖特基势垒二极管SBD)比双极器件(PiN二极管、绝缘栅双极型晶体管IGBT、晶闸管等)更具有优势,这不仅因为与碳化硅PN结内在2V的开启电压有关,更是由于碳化硅双极器件存在着“双极退化”现象,即在载子注入(或激发)之后进行复合,单个肖克莱型堆垛层错(Schockley Stacking Fault,SSF)的成核和扩展发生在基面位错(Basal Plane Dislocation,BPD)的位置或其他位错的基失面段,扩展的SSF导致载流子寿命的显著降低从而使碳化硅双极性器件压降增大、反向偏置漏电流增大,不利于碳化硅双极性器件的可靠性。
传统的MOSFET,如图1所示,在其元胞结构中除MOS结构外仍寄生了一个体内PiN二极管(Body Diode)。为了抑制碳化硅MOSFET中PiN二极管的开启,较为有效的办法是采用SBD与MOSFET反并联使用,作为其续流二极管;然而在芯片级别反并联MOSFET和SBD会增加功率模块封装的成本和由于额外键合线引起的杂散电感增加,导致功率模块电气性能的下降。
发明内容
针对上述问题,本申请提供了一种碳化硅MOSFET器件的元胞结构及碳化硅MOSFET器件。
第一方面,本公开提供一种碳化硅MOSFET器件的元胞结构,包括:
第一导电类型碳化硅衬底;
位于所述衬底上方的第一导电类型漂移层;
位于元胞结构两侧且在所述漂移层表面内设置的第二导电类型阱区;
位于所述阱区表面内的第一导电类型源区;
位于元胞结构中心且与所述源区、所述阱区以及所述漂移层接触的栅结构,其中,所述栅结构包括栅极和用于将所述栅极与所述源区、所述阱区以及所述漂移层隔离的栅极绝缘层;
位于所述源区上方且与所述源区形成欧姆接触的源极金属层;
在元胞结构两侧,所述漂移层于其未被所述阱区覆盖的区域向下设置有侧部沟槽;其中,所述侧部沟槽与所述阱区相邻但不与所述源区接触;
所述侧部沟槽中设置有与所述侧部沟槽下方的所述漂移层形成肖特基接触的肖特基金属层。
根据本公开的实施例,优选地,所述侧部沟槽的深度小于所述阱区的深度。
根据本公开的实施例,优选地,还包括第二导电类型增强区,所述增强区以比所述源区更加远离元胞结构中心的方式与所述源区并排设置在所述阱区内;其中,所述增强区的离子掺杂浓度大于所述阱区的离子掺杂浓度;
所述源极金属同时位于所述源区和所述增强区上。
根据本公开的实施例,优选地,所述增强区的深度大于或等于所述阱区的深度,使得所述增强区的底部能够与所述阱区下方的所述漂移层接触。
根据本公开的实施例,优选地,
所述阱区表面靠近元胞结构中心的一侧未被所述源区完全覆盖;
所述栅结构包括多晶硅平面栅结构;
所述平面栅结构的栅极绝缘层位于所述源区、阱区以及所述漂移层的上方,并与所述源区、所述阱区以及所述漂移层的表面同时接触;
所述栅极绝缘层的上方设置有所述平面栅结构的栅极。
根据本公开的实施例,优选地,
所述阱区表面靠近元胞结构中心的一侧被所述源区完全覆盖;
所述栅结构包括多晶硅沟槽栅结构;
在元胞结构中心,所述漂移层表面向下设置有与所述阱区邻接的栅极沟槽,其中,所述栅极沟槽的深度大于所述阱区的深度且所述栅极沟槽的侧壁与所述源区、所述阱区以及所述漂移层接触;
所述沟槽栅结构的栅极绝缘层设置在所述栅极沟槽的底部和壁部上,用于将设置在所述栅极沟槽中的所述沟槽栅结构的栅极与所述源区、所述阱区以及所述漂移层隔离。
据本公开的实施例,优选地,所述肖特基金属层与所述源极金属层接触,以形成电连接。
据本公开的实施例,优选地,所述肖特基金属层与所述源极金属层隔离设置,并通过上方的源压块金属层形成电连接。
据本公开的实施例,优选地,所述栅极通过层间介质层与所述源极金属层和所述源压块金属层以及所述肖特基金属层隔离。
第二方面,本公开提供一种碳化硅MOSFET器件,包括若干如第一方面任一项所述的碳化硅MOSFET器件的元胞结构。
采用上述技术方案,至少能够达到如下技术效果:
本公开通过在SiC MOSFET器件元胞内集成SBD,使SBD与MOSFET共用芯片部分区域,提高芯片面积使用效率,进一步提高芯片整体功率密度、降低功率模块封装成本。同时SBD集成于芯片上的浅槽中还可以降低SBD通态电阻,抑制体内寄生PiN管的开启,改善碳化硅器件的双极退化效应,提高芯片的可靠性,并优化SBD部分与MOSFET部分的面积比例关系。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是传统的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图2是本公开一示例性实施例示出的一种平面栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图3是本公开一示例性实施例示出的另一种平面栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图4是本公开一示例性实施例示出的另一种平面栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图5是本公开一示例性实施例示出的另一种平面栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图6是本公开一示例性实施例示出的一种沟槽栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图7是本公开一示例性实施例示出的另一种沟槽栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图8是本公开一示例性实施例示出的另一种沟槽栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
图9是本公开一示例性实施例示出的另一种沟槽栅结构的碳化硅MOSFET器件的元胞结构的剖面结构示意图;
具体实施方式
以下将结合附图及实施例来详细说明本公开的实施方式,借此对本公开如何应用技术手段来解决技术问题,并达到相应技术效果的实现过程能充分理解并据以实施。本公开实施例以及实施例中的各个特征,在不相冲突前提下可以相互结合,所形成的技术方案均在本公开的保护范围之内。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大。自始至终相同附图标记表示相同的元件。
应理解,尽管可使用术语“第一”、“第二”、“第三”等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本公开教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
应理解,空间关系术语例如“在...上方”、位于...上方”、“在...下方”、“位于...下方”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下方”的元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下方”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本公开的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
这里参考作为本公开的理想实施例(和中间结构)的示意图的横截面图来描述本公开的实施例。这样,可以预期由于例如制备技术和/或容差导致的从所示形状的变化。因此,本公开的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制备导致的形状偏差。例如,显示为矩形的注入区在其边缘通常具有圆的或弯曲特征和/或注入浓度梯度,而不是从注入区到非注入区的二元改变。同样,通过注入形成的埋藏区可导致该埋藏区和注入进行时所经过的表面之间的区中的一些注入。因此,图中显示的区实质上是示意性的,它们的形状并不意图显示器件的区的实际形状且并不意图限定本公开的范围。
为了彻底理解本公开,将在下列的描述中提出详细的结构以及步骤,以便阐释本公开提出的技术方案。本公开的较佳实施例详细描述如下,然而除了这些详细描述外,本公开还可以具有其他实施方式。
实施例一
如图2所示,本公开实施例提供一种平面栅结构的碳化硅MOSFET器件的元胞结构200,其包括:SiC衬底201、漂移层202、阱区203、源区204、源极金属层207、肖特基金属层208、栅极绝缘层209、栅极210、层间介质层211、源压块金属层212和漏极金属层213。
示例性地,SiC衬底201为第一导电类型的SiC衬底。
漂移层202为第一导电类型的漂移层,位于SiC衬底201上方。根据芯片耐压能力不同,调整漂移层202的掺杂浓度和厚度。
阱区203为第二导电类型的阱区,位于元胞结构200两侧、漂移层202内,且阱区203上表面与漂移层202的上表面相平齐。
源区204为第一导电类型的源区,位于阱区203内,且上表面与漂移层202的上表面相平齐。源区204的宽度小于阱区203的宽度,阱区203与源区204两端均有宽度差,靠近元胞结构200中心的宽度差与栅极绝缘层209之间形成沟道(图未示出),相邻两个沟道之间的区域为JFET区205。
元胞结构200两侧,漂移层202未被阱区203覆盖的区域向下设置有侧部沟槽,该侧部沟槽与阱区203相邻但不与源区204接触。该侧部沟槽的槽深小于阱区203的深度。
肖特基金属层208设置于该侧部沟槽内,并与该侧部沟槽下方的漂移层202形成肖特基接触,以形成肖特基势垒二极管(SBD)。肖特基金属层208可以为钛、镍等金属。
源极金属层207位于源区204上方,并与源区204形成欧姆接触。其中源极金属207不能与漂移层202接触。源极金属207可以为铝等具有低接触电阻率的金属。
例如图3所示,元胞结构200还可以包括第二导电类型的增强区206,增强区206以比源区204更加远离元胞结构中心的方式与源区204并排设置在阱区203内;其中,增强区206的离子掺杂浓度大于阱区203的离子掺杂浓度。增强区206的深度大于或等于阱区203的深度,使得增强区206的底部能够与阱区203下方的漂移层202接触。此时,源极金属层207同时位于源区204和增强区206上方,侧部沟槽深度小于阱区203的深度大于增强区206的深度的五分之一。这种元胞结构200既可以降低MOSFET内寄生BJT的影响,也可以在SBD反向偏置时对肖特基结起保护作用,降低SBD反偏漏电流。同时位于芯片两端的增强区206还可以用做芯片终端的限场环,因此降低了芯片的制造成本。
这种结构中,例如图3所示,侧部沟槽的侧壁可以位于增强区206的边缘;例如图4所示,该刻蚀槽的侧壁也可以位于增强区206的内部,即该侧部沟槽可延伸至增强区206内。
例如图3所示,肖特基金属层208与源极金属层207可以接触,甚至覆盖于源极金属层207上方,以形成电连接;例如图5所示,也可以选择与源极金属层隔离设置,并通过源压块金属层212连接。
平面栅结构位于元胞结构200的中心,包括栅极绝缘层209和栅极210。
其中栅极绝缘层209位于漂移层202上方,并与源区204、阱区203和漂移层202的表面同时接触,用于将栅极210与源区204、阱区203和漂移层202隔离开,其中,栅极绝缘层209与阱区203之间形成沟道(图未示出),栅极绝缘层209的厚度大于50nm。栅极210位于栅极绝缘层209上方,栅极210为多晶硅栅极。
层间介质层211位于栅极210上方,用于将栅极210与源极金属层207、源压块金属层212和肖特基金属层208隔离开。
源压块金属层212位于层间介质层211上方并同时覆盖层间介质层211、源极金属层207和肖特基金属层208,与源极金属层207和肖特基金属层208电连接。
漏极金属层213位于SiC衬底201下方的,与SiC衬底201形成欧姆接触。
对应地,第一导电类型和所述第二导电类型相反。例如,第一导电类型为N型时,第二导电类型为P型;第一导电类型为P型时,第二导电类型为N型。
在本实施例中,通过在平面栅结构的SiC MOSFET器件的元胞内集成SBD,使SBD与MOSFET共用芯片部分区域,提高芯片面积使用效率,进一步提高芯片整体功率密度、降低模块封装成本。同时SBD集成于芯片上的浅槽中还可以降低SBD通态电阻,抑制体内寄生PiN管的开启,改善碳化硅器件的双极退化效应,提高芯片的可靠性,并优化SBD部分与MOSFET部分的面积比例关系。
实施例二
如图6所示,本公开实施例提供另一种碳化硅MOSFET器件的元胞结构300,其包括:SiC衬底301、漂移层302、栅极绝缘层303、栅极304、阱区305、源区306、源极金属层308、肖特基金属层309、层间介质层310、源压块金属层311和漏极金属层312。
示例性地,SiC衬底301为第一导电类型的SiC衬底。
漂移层302为第一导电类型的漂移层,位于SiC衬底301上方。根据芯片耐压能力不同,调整漂移层302的掺杂浓度和厚度。
元胞结构300中心设有沟槽栅结构,包括栅极绝缘层303和栅极304,。在元胞结构300中心,漂移层302表面向下设置有与阱区305邻接的栅极沟槽,其中,该栅极沟槽的深度大于阱区305的深度且栅极沟槽的侧壁与源区306、阱区305以及漂移层302接触。
栅极绝缘层303设置在栅极沟槽的底部和壁部上,用于将设置在栅极沟槽中的多晶硅栅极304与源区306、阱区305以及漂移层302隔离,栅极绝缘层303的厚度大于50nm。
阱区305为第二导电类型的阱区,位于元胞结构300两侧、漂移层302内,且上表面与漂移层302的上表面相平齐。阱区305靠近元胞结构中心的一端与栅极绝缘层303接触,以在阱区305与栅极绝缘层303之间形成沟道(图未示出)。
源区306为第一导电类型的源区,位于阱区305内,且上表面与漂移层302的上表面相平齐。源区306的宽度小于阱区305的宽度,源区306靠近元胞结构中心的一端与栅极绝缘层303接触。
元胞结构300两侧,漂移层302未被阱区305覆盖的区域向下设置有侧部沟槽,该侧部沟槽与阱区305相邻但不与源区306接触。该侧部沟槽的槽深小于阱区305的深度。
肖特基金属层309设置于该侧部沟槽内,并与该侧部沟槽下方的漂移层302形成肖特基接触,以形成肖特基势垒二极管(SBD)。肖特基金属层309可以为钛、镍等金属。
源极金属层308位于源区306上方,并与源区306形成欧姆接触。其中源极金属308不能与漂移层302接触。源极金属308可以为铝等具有低接触电阻率的金属。
例如图7所示,元胞结构300还可以包括第二导电类型的增强区307,增强区307以比源区306更加远离元胞结构中心的方式与源区306并排设置在阱区305内;其中,增强区307的离子掺杂浓度大于阱区305的离子掺杂浓度。增强区307的深度大于或等于阱区305的深度,使得增强区307的底部能够与阱区305下方的漂移层302接触。此时,源极金属层311同时位于源区306和增强区307上方,侧部沟槽深度小于阱区305的深度大于增强区307的深度的五分之一。这种元胞结构300既可以降低MOSFET内寄生BJT的影响,也可以在SBD反向偏置时对肖特基结起保护作用,降低SBD反偏漏电流。同时位于芯片两端的增强区307还可以用做芯片终端的限场环,因此降低了芯片的制造成本。
这种结构中,例如图7所示,该侧部沟槽的侧壁可以位于增强区307的边缘;例如图8所示,该侧部沟槽的侧壁可以位于增强区307的内部,即该侧部沟槽可延伸至增强区307内。
例如图7所示,肖特基金属层309与源极金属层308可以接触,甚至覆盖于源极金属层308上方,以形成电连接;例如图9所示,也可以选择与源极金属层隔离设置,并通过源压块金属层311连接。
层间介质层310位于漂移层302上方,用于将栅极304与源极金属层308、源压块金属层311和肖特基金属层309隔离开。
源压块金属层311位于层间介质层310上方并同时覆盖层间介质层310、源极金属层308和肖特基金属层309,与源极金属层308和肖特基金属层309电连接。
漏极金属层312位于SiC衬底301下方的,与SiC衬底301形成欧姆接触。
对应地,第一导电类型和所述第二导电类型相反。例如,第一导电类型为N型时,第二导电类型为P型;第一导电类型为P型时,第二导电类型为N型。
在本实施例中,通过在沟槽栅结构的SiC MOSFET器件的元胞内集成SBD,使SBD与MOSFET共用芯片部分区域,提高芯片面积使用效率,进一步提高芯片整体功率密度、降低模块封装成本。同时SBD集成于芯片上的浅槽中还可以降低SBD通态电阻,抑制体内寄生PiN管的开启,改善碳化硅器件的双极退化效应,提高芯片的可靠性,并优化SBD部分与MOSFET部分的面积比例关系。
实施例三
在实施例一的基础上,本实施例提供一种平面栅结构的N型碳化硅MOSFET器件的元胞结构200,如图2所示,其包括:N型衬底201、N型漂移层202、P阱区203、N+源区204、源极金属层207、肖特基金属层208、栅极绝缘层209、栅极210、层间介质层211、源压块金属层212和漏极金属层213。
如图3所示,还可以包括P+增强区206。
上述各部分的位置关系与实施例一相同,本实施例中不再赘述。
具体地,N型衬底201的离子掺杂浓度为1E18cm-3至1E19cm-3
N型漂移层202的离子掺杂浓度范围为1E14cm-3至5E16cm-3,具体需要根据芯片耐压来优化。
P阱区203的离子掺杂浓度范围为1E16cm-3至5E18cm-3,P阱区203的深度为1um。
N+源区204的离子掺杂浓度为1E19cm-3
P+增强区206的离子掺杂浓度大于P阱区203的离子掺杂浓度,且大于1E18cm-3,P+增强区206的深度大于1um。
具体地,N型SiC衬底201的离子掺杂浓度范围为1E18至1E19cm-3
栅极210为N型的多晶硅栅极,离子掺杂浓度大于1E18cm-3
在本实施例中,通过在平面栅结构的N型SiC MOSFET器件的元胞内集成SBD,使SBD与MOSFET共用芯片部分区域,提高芯片面积使用效率,进一步提高芯片整体功率密度、降低模块封装成本。同时SBD集成于芯片上的浅槽中还可以降低SBD通态电阻,抑制体内寄生PiN管的开启,改善碳化硅器件的双极退化效应,提高芯片的可靠性,并优化SBD部分与MOSFET部分的面积比例关系。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。虽然本公开所公开的实施方式如上,但的内容只是为了便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属技术领域内的技术人员,在不脱离本公开所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本公开的保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

1.一种碳化硅MOSFET器件的元胞结构,其特征在于,包括:
第一导电类型碳化硅衬底;
位于所述衬底上方的第一导电类型漂移层;
位于元胞结构两侧且在所述漂移层表面内设置的第二导电类型阱区;
位于所述阱区表面内的第一导电类型源区;
位于元胞结构中心且与所述源区、所述阱区以及所述漂移层接触的栅结构,其中,所述栅结构包括栅极和用于将所述栅极与所述源区、所述阱区以及所述漂移层隔离的栅极绝缘层;
位于所述源区上方且与所述源区形成欧姆接触的源极金属层;
在元胞结构两侧,所述漂移层于其未被所述阱区覆盖的区域向下设置有侧部沟槽;其中,所述侧部沟槽与所述阱区相邻但不与所述源区接触;
所述侧部沟槽中设置有与所述侧部沟槽下方的所述漂移层形成肖特基接触的肖特基金属层。
2.据权利要求1所述的碳化硅MOSFET器件的元胞结构,其特征在于,所述侧部沟槽的深度小于所述阱区的深度。
3.根据权利要求1所述的碳化硅MOSFET器件的元胞结构,其特征在于,还包括第二导电类型增强区,所述增强区以比所述源区更加远离元胞结构中心的方式与所述源区并排设置在所述阱区内;其中,所述增强区的离子掺杂浓度大于所述阱区的离子掺杂浓度;
所述源极金属层同时位于所述源区和所述增强区上方。
4.根据权利要求3所述的碳化硅MOSFET器件的元胞结构,其特征在于,
所述增强区的深度大于或等于所述阱区的深度,使得所述增强区的底部能够与所述阱区下方的所述漂移层接触。
5.根据权利要求1所述的碳化硅MOSFET器件的元胞结构,其特征在于:
所述阱区表面靠近元胞结构中心的一侧未被所述源区完全覆盖;
所述栅结构包括多晶硅平面栅结构;
所述平面栅结构的栅极绝缘层位于所述源区、阱区以及所述漂移层的上方,并与所述源区、所述阱区以及所述漂移层的表面同时接触;
所述栅极绝缘层的上方设置有所述平面栅结构的栅极。
6.根据权利要求1所述的碳化硅MOSFET器件的元胞结构,其特征在于:
所述阱区表面靠近元胞结构中心的一侧被所述源区完全覆盖;
所述栅结构包括多晶硅沟槽栅结构;
在元胞结构中心,所述漂移层表面向下设置有与所述阱区邻接的栅极沟槽,其中,所述栅极沟槽的深度大于所述阱区的深度且所述栅极沟槽的侧壁与所述源区、所述阱区以及所述漂移层接触;
所述沟槽栅结构的栅极绝缘层设置在所述栅极沟槽的底部和壁部上,用于将设置在所述栅极沟槽中的所述沟槽栅结构的栅极与所述源区、所述阱区以及所述漂移层隔离。
7.根据权利要求1所述的碳化硅MOSFET器件的元胞结构,其特征在于,所述肖特基金属层与所述源极金属层接触,以形成电连接。
8.根据权利要求1所述的碳化硅MOSFET器件的元胞结构,其特征在于,所述肖特基金属层与所述源极金属层隔离设置,并通过上方的源压块金属层形成电连接。
9.根据权利要求7或8所述的碳化硅MOSFET器件的元胞结构,其特征在于:
所述栅极通过层间介质层与所述源极金属层和所述源压块金属层以及所述肖特基金属层隔离。
10.一种碳化硅MOSFET器件,其特征在于,包括若干如权利要求1至9任一项所述的碳化硅MOSFET器件的元胞结构。
CN201911089381.4A 2019-11-08 2019-11-08 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件 Active CN112786679B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201911089381.4A CN112786679B (zh) 2019-11-08 2019-11-08 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件
US17/774,849 US20220406896A1 (en) 2019-11-08 2019-12-25 Cellular structure of silicon carbide mosfet device, and silicon carbide mosfet device
PCT/CN2019/128387 WO2021088231A1 (zh) 2019-11-08 2019-12-25 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911089381.4A CN112786679B (zh) 2019-11-08 2019-11-08 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件

Publications (2)

Publication Number Publication Date
CN112786679A true CN112786679A (zh) 2021-05-11
CN112786679B CN112786679B (zh) 2023-04-14

Family

ID=75748510

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911089381.4A Active CN112786679B (zh) 2019-11-08 2019-11-08 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件

Country Status (3)

Country Link
US (1) US20220406896A1 (zh)
CN (1) CN112786679B (zh)
WO (1) WO2021088231A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148826A (zh) * 2022-09-06 2022-10-04 深圳平创半导体有限公司 一种深沟槽碳化硅jfet结构的制作方法
WO2023151690A1 (zh) * 2022-02-14 2023-08-17 湖南三安半导体有限责任公司 一种场效应管及其制备方法
CN117393438A (zh) * 2023-12-11 2024-01-12 深圳市森国科科技股份有限公司 一种碳化硅半导体器件及制作方法
CN117766572A (zh) * 2024-01-17 2024-03-26 无锡芯动半导体科技有限公司 一种复合型碳化硅mosfet元胞结构及器件
CN117766572B (zh) * 2024-01-17 2024-07-16 无锡芯动半导体科技有限公司 一种复合型碳化硅mosfet元胞结构及器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117747667A (zh) * 2023-12-28 2024-03-22 南京第三代半导体技术创新中心有限公司 集成场板结构的平面栅型碳化硅mosfet功率器件及其制造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204179A (ja) * 1995-01-26 1996-08-09 Fuji Electric Co Ltd 炭化ケイ素トレンチmosfet
JP2005353964A (ja) * 2004-06-14 2005-12-22 Mitsubishi Electric Corp 半導体素子
US20150279983A1 (en) * 2014-03-25 2015-10-01 Sanken Electric Co., Ltd. Semiconductor device
CN105074921A (zh) * 2013-04-03 2015-11-18 三菱电机株式会社 半导体装置
WO2016110953A1 (ja) * 2015-01-07 2016-07-14 三菱電機株式会社 炭化珪素半導体装置及びその製造方法
CN105810722A (zh) * 2016-03-16 2016-07-27 中国科学院半导体研究所 一种碳化硅mosfet器件及其制备方法
CN106876485A (zh) * 2017-03-06 2017-06-20 北京世纪金光半导体有限公司 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
CN107580725A (zh) * 2015-02-11 2018-01-12 莫诺利斯半导体有限公司 高压半导体器件及其制造方法
CN108615767A (zh) * 2016-12-13 2018-10-02 现代自动车株式会社 半导体器件及其制造方法
CN109119419A (zh) * 2018-08-14 2019-01-01 电子科技大学 一种集成肖特基续流二极管碳化硅槽栅mosfet
US20190305126A1 (en) * 2018-03-28 2019-10-03 Toyoda Gosei Co., Ltd. Semiconductor device
CN110350035A (zh) * 2019-05-30 2019-10-18 上海功成半导体科技有限公司 SiC MOSFET功率器件及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9530880B2 (en) * 2015-03-03 2016-12-27 Micrel, Inc. DMOS transistor with trench schottky diode
TWI576920B (zh) * 2015-11-20 2017-04-01 敦南科技股份有限公司 二極體元件及其製造方法
CN109904155B (zh) * 2019-01-31 2021-02-02 电子科技大学 一种集成高速反向续流二极管的碳化硅mosfet器件

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204179A (ja) * 1995-01-26 1996-08-09 Fuji Electric Co Ltd 炭化ケイ素トレンチmosfet
JP2005353964A (ja) * 2004-06-14 2005-12-22 Mitsubishi Electric Corp 半導体素子
CN105074921A (zh) * 2013-04-03 2015-11-18 三菱电机株式会社 半导体装置
US20150279983A1 (en) * 2014-03-25 2015-10-01 Sanken Electric Co., Ltd. Semiconductor device
WO2016110953A1 (ja) * 2015-01-07 2016-07-14 三菱電機株式会社 炭化珪素半導体装置及びその製造方法
CN107580725A (zh) * 2015-02-11 2018-01-12 莫诺利斯半导体有限公司 高压半导体器件及其制造方法
CN105810722A (zh) * 2016-03-16 2016-07-27 中国科学院半导体研究所 一种碳化硅mosfet器件及其制备方法
CN108615767A (zh) * 2016-12-13 2018-10-02 现代自动车株式会社 半导体器件及其制造方法
CN106876485A (zh) * 2017-03-06 2017-06-20 北京世纪金光半导体有限公司 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
US20190305126A1 (en) * 2018-03-28 2019-10-03 Toyoda Gosei Co., Ltd. Semiconductor device
CN109119419A (zh) * 2018-08-14 2019-01-01 电子科技大学 一种集成肖特基续流二极管碳化硅槽栅mosfet
CN110350035A (zh) * 2019-05-30 2019-10-18 上海功成半导体科技有限公司 SiC MOSFET功率器件及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151690A1 (zh) * 2022-02-14 2023-08-17 湖南三安半导体有限责任公司 一种场效应管及其制备方法
CN115148826A (zh) * 2022-09-06 2022-10-04 深圳平创半导体有限公司 一种深沟槽碳化硅jfet结构的制作方法
CN117393438A (zh) * 2023-12-11 2024-01-12 深圳市森国科科技股份有限公司 一种碳化硅半导体器件及制作方法
CN117766572A (zh) * 2024-01-17 2024-03-26 无锡芯动半导体科技有限公司 一种复合型碳化硅mosfet元胞结构及器件
CN117766572B (zh) * 2024-01-17 2024-07-16 无锡芯动半导体科技有限公司 一种复合型碳化硅mosfet元胞结构及器件

Also Published As

Publication number Publication date
CN112786679B (zh) 2023-04-14
US20220406896A1 (en) 2022-12-22
WO2021088231A1 (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
US10461077B2 (en) Method of manufacturing a semiconductor device
CN112786679B (zh) 碳化硅mosfet器件的元胞结构及碳化硅mosfet器件
CN112786587B (zh) 一种碳化硅mosfet器件及其元胞结构
JP3751463B2 (ja) 高耐圧半導体素子
CN105280711B (zh) 电荷补偿结构及用于其的制造
US20210305422A1 (en) Sillicon carbide power mosfet with enhanced body diode
US7939887B2 (en) Active semiconductor component with a reduced surface area
CN112786680B (zh) 一种碳化硅mosfet器件的元胞结构及功率半导体器件
US20120126317A1 (en) Accufet with integrated clamping circuit
CN112271218A (zh) 功率半导体器件及其制备方法
CN113394278A (zh) 逆导型igbt及其制备方法
CN113054015B (zh) 碳化硅mosfet芯片
CN111668212A (zh) 半导体装置
KR102399239B1 (ko) 실리콘 카바이드 전력 반도체 장치
CN105957901B (zh) 具有沟槽-肖特基-势垒-肖特基-二极管的半导体装置
US20220173227A1 (en) Finfet power semiconductor devices
CN113054016B (zh) 一种碳化硅mosfet器件的元胞结构及功率半导体器件
KR20230146068A (ko) 센서 소자를 갖는 넓은 밴드갭 반도체 디바이스
US11404535B2 (en) Semiconductor device and method for producing a semiconductor device
CN113053991A (zh) 逆导型igbt的元胞结构及逆导型igbt
CN112002751A (zh) 碳化硅vdmosfet器件的元胞结构、其制备方法及碳化硅vdmosfet器件
CN111326566A (zh) 功率半导体器件
CN113921588A (zh) 半导体器件及其制备方法
KR20240109844A (ko) 전력 반도체 소자
CN118335793A (zh) 沟槽型mosfet器件及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant