CN112760090B - 一种钯离子探针及其制备方法和应用 - Google Patents

一种钯离子探针及其制备方法和应用 Download PDF

Info

Publication number
CN112760090B
CN112760090B CN201911000013.8A CN201911000013A CN112760090B CN 112760090 B CN112760090 B CN 112760090B CN 201911000013 A CN201911000013 A CN 201911000013A CN 112760090 B CN112760090 B CN 112760090B
Authority
CN
China
Prior art keywords
palladium
ion probe
palladium ion
compound
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911000013.8A
Other languages
English (en)
Other versions
CN112760090A (zh
Inventor
蔡林涛
刘闯军
向晶晶
周理华
龚萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201911000013.8A priority Critical patent/CN112760090B/zh
Publication of CN112760090A publication Critical patent/CN112760090A/zh
Application granted granted Critical
Publication of CN112760090B publication Critical patent/CN112760090B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/22Echographic preparations; Ultrasound imaging preparations ; Optoacoustic imaging preparations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/79Photometric titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种钯离子探针及其制备方法和应用,具体是将Cy7‑Cl、二(2‑甲基吡啶)胺和三乙胺在有机溶剂中充分反应,反应期间溶液颜色从绿色变为蓝色;反应完毕后产物用二氯甲烷和水萃取,将二氯甲烷层干燥后旋蒸后得到蓝色产物即为钯离子探针。本发明制备的钯离子探针属于比率型钯离子探针,其具备抗干扰性,检测精度高。能够用于对环境、生物体内微量甚至痕量钯离子的检测。

Description

一种钯离子探针及其制备方法和应用
技术领域
本发明属于分子探针技术领域,涉及一种钯离子探针及其制备和应用,更具体是涉及一种比率型钯离子荧光探针及其制备方法和应用。
背景技术
重金属在物理、化学和环境等科学中发挥着重要的作用,其中,钯金属由于其特殊的物理化学性质已被广泛应用在各个行业。然而,钯的大量使用不可避免会造成其在环境中的残留,引起环境重金属污染问题和人们的健康问题。因此,钯离子的检测尤为重要。研究人员发现健康人群每天机体的最大摄取量应该小于15μg。在制药行业中,药品中钯的残留量规定值为5~10mg/kg。大量负载钯及其化合物的排放会迅速提高土壤、植被、河流和海洋等不同环境中钯的含量,机体通过食物链富集效应对钯的过量摄入,吸收后的钯很快被运至肝脏、肾脏和脾等器官,会对身体造成非常严重的危害。经研究证实,在体内钯离子与氨基酸、蛋白质、DNA和维生素B6等生物大分子结合后发生作用,扰乱细胞正常的信号传导与生理活动等过程。宏观症状表现患哮喘、脱发、流产、恶心和其它严重的身体疾病的机率随着增大。除此之外,对于易受感染的人群,即使在受到很低的钯离子入侵下也会引起严重的过敏反应。
钯离子在水、土壤和沉积物等环境的样品中含量非常低,所以很难对它精确地检测。尽管传统的检测方法(电感耦合等离子体、原子吸收光谱、原子发射光谱和高效液相色谱法等)能得到较高的测量精度,但是需要昂贵的仪器与运行成本以及专业的操作技术人员。另外,在传统的检测方法中,为了避免污染或者损坏仪器,仍需要对样品进行繁杂的前处理。综上所述,这些因素将大大限制传统仪器在日常检测中的广泛应用。因此构建高效、高选择性、高灵敏性和短时间响应定量检测钯的方法是人们目前亟待解决的问题。
相比较而言,钯离子的荧光探针法不仅能够克服传统方法的不足,而且还能快速、准确对客体响应。因此,该检测方法近年来备受研究人员的关注。然而,荧光探针法仍然有穿透力差,分辨率低等缺点,使其在生物体内的应用受限。光声成像(Photoacousticimaging,PA)是近年来发展起来的一种新型光学成像技术,它融合了光学成像和超声成像的优势,表现出对深部组织的高分辨率、高对比度的成像能力,展现出了广阔的临床应用前景。目前所报道的钯离子探针大部分都是“turn-on”型荧光探针。“turn-on”型荧光探针检测钯离子时依赖于单一发射峰的变化,易受仪器效率、光散射、以及微环境的影响。相较而言,比率型荧光探针通过测定两个发射峰比值的变化对待测物进行检测,在一定程度上可避免上述干扰,从而可对生物样品中的钯离子进行更准确的追踪和定量。为了解决目前所遇到的问题和基于以上的分析,本提案设计和开发了高灵敏和高选择性光声比率型钯离子探针。
发明内容
针对目前钯离子检测方法存在的操作复杂、准确率低等问题,本发明设计和开发了高灵敏和高选择性光声比率型钯离子探针。以实现对钯离子定性和定量的准确、便捷的测量。
本发明公开了一种钯离子探针,具有如下式1所示的结构式:
Figure BDA0002241008750000021
式1中的I-离子可以被替代F-、Cl-、Br-
进一步地,所述的钯离子探针为比率型荧光探针。
本发明还涉及一种钯离子探针化合物1的制备方法,具体采用以下路线制备:
Figure BDA0002241008750000022
进一步地,具体为:将Cy7-Cl、二(2-甲基吡啶)胺和三乙胺在有机溶剂中充分反应,反应期间溶液颜色从绿色变为蓝色;反应完毕后待反应体系冷却后,用二氯甲烷和水萃取,将二氯甲烷层干燥后旋蒸除去溶剂,过柱子后得到蓝色产物即为化合物1。其中,加入三乙胺是作为促进反应的一种碱,作用是让DPA去质子化,同时中和反应过程中产生的HCl,促进反应正向进行。
进一步地,所述的有机溶剂选自N,N-二甲基甲酰胺(DMF)。
进一步地,所述的反应温度为35-50℃,优选40℃,反应时间3-8个小时,优选5-6小时。
进一步地,所述的Cy7-Cl、二(2-甲基吡啶)胺和三乙胺的摩尔比为(1-2):(1-2):1,优选1:1:1。
进一步地,所述的有机溶剂的用量为10ml/1mmol Cy7-Cl。
进一步地,所述的萃取时二氯甲烷和水的体积比为(1-2):10,优选1:10。
进一步地,所述的萃取后二氯甲烷层采用无水硫酸镁干燥。
另外,本发明还涉及一种钯离子探针的的应用,具体是将所述钯离子探针用于环境或生物体内钯离子的定性或定量检测。
进一步地,所述的将钯离子探针用于检测金属钯离子的方法包括将含Pd2+的待测样品加入到钯离子探针溶液中,然后目测该体系颜色的变化和/或测试该体系的紫外吸收变化。
进一步地,所述的钯离子探针溶液采用水和有机溶剂的混合溶剂。
进一步地,所述的有机溶剂选自二甲基亚砜(DMSO)。
进一步地,所述的水和有机溶剂的体积比为997:3至980:20,优选为995:5至990:10。
本发明的有益效果是:
1、本发明的钯离子探针,是以花菁为荧光基团,二(2-甲基吡啶)胺(DPA)为识别基团的化合物1。化合物1可以选择性地识别钯离子,不受其他金属离子的干扰。
2、随着钯离子的加入,化合物1溶液由蓝色变为绿色,溶液在770nm处的荧光逐渐减弱,在800nm处的荧光逐渐增强,在710nm处的吸收不断减小,在770nm处的吸收不断增大。同时在770nm处的光声信号也逐渐减弱,在860nm处的光声信号逐渐增强。化合物1和钯离子的配位比为1:1。
3、本发明的钯离子探针对钯离子表现出优越的高选择性,可以选择性识别钯离子,并与之结合改变溶液荧光吸收波长的变化。
4、本发明的钯离子探针对钯离子表现出优越的高灵敏性,通过化合物1对Pd2+的紫外-可见滴定实验能够发现化合物1的溶液,在λ=710nm处和λ=770nm处的紫外-可见吸收强度都与Pd2+的浓度在0-0.28当量的范围内有良好的线性关系。通过拟合的线性方程,根据国际纯粹与应用化学协会(IUPAC)的规定,检测限的计算公式DL=3s/k,计算出探针对Pd2+的检测限为39.29nM。说明探针化合物1的灵敏度很高,可以用于Pd2+的痕量检测。
附图说明:
下面结合附图和具体实施方式来详细说明本发明;
图1为25μM探针化合物1溶液分别加入1.0当量的不同金属离子后溶液的紫外吸收图。
图2为为25μM探针化合物1溶液分别加入1.0当量的不同金属离子后溶液在770nm处的荧光比值F/F0(F是化合物1的荧光值,F0是加入不同金属离子后的荧光值)。
图3为不同浓度的Pd2+对25μM探针化合物1溶液的紫外-可见吸收强度曲线。
图4包括图4(a)、图4(b)和图4(c),分别是为Pd2+对25μM探针化合物1溶液在700nm、770nm和860nm波长下的紫外-可见滴定曲线。
图5不同浓度的d2+对25μM探针化合物1溶液在770nm处的荧光强度曲线。
图6不同浓度的d2+对25μM探针化合物1溶液在800nm处的荧光强度曲线。
图7在老鼠体内加入化合物1溶液和Pd2+的光声信号变化图。
图8Pd2+对25μM探针化合物1溶液在860nm处的光声信号滴定曲线。
具体实施方式
以下结合实施例对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。下面举例对本发明的内容进行详细的说明。
本发明实施方式涉及的钯离子探针为具有如下式1所示的结构式:
Figure BDA0002241008750000041
实施例1:化合物1的制备
本实施例也是采用一步法制备,按照如下路线进行制备:
Figure BDA0002241008750000042
具体工艺为:将Cy7-Cl、二(2-甲基吡啶)胺和三乙胺按照摩尔比1:1:1各取1mmol加入到10ml在有机溶剂DMF中充分反应4h,反应温度40℃,反应期间溶液颜色从绿色变为蓝色,反应完毕后待反应体系冷却至室温后,用二氯甲烷和水的体积比1:10进行萃取,使用二氯甲烷20ml和水200ml进行萃取,萃取分层后,将二氯甲烷层用1g无水硫酸镁干燥,干燥后旋蒸除去溶剂,得到约0.4g蓝色产物即为化合物1。
实施例2:化合物1的鉴定
对实施例1制备得到的蓝色化合物1进行核磁分析,核磁型号为Bruker AVANCE400,测试条件为室温,核磁共振数据为:
1H NMR(400MHz,CDCl3)δ8.72(d,J=4.5Hz,2H),7.85(t,J=6.5Hz,2H),7.67(d,J=13.5Hz,2H),7.40(dd,J=7.1,5.2Hz,2H),7.32(m,J=7.5Hz,6H),7.15(t,J=7.4Hz,2H),7.00(d,J=7.9Hz,2H),5.90(d,J=13.6Hz,2H),4.74(s,4H),4.01(q,J=7.1Hz,4H),2.60(t,J=6.4Hz,4H),1.94(dd,J=12.7,6.5Hz,2H),1.45(s,12H),1.38(t,J=7.2Hz,6H).13C NMR(101MHz,CDCl3)δ173.41,169.06,156.29,149.72,143.67,142.14,140.47,138.19,128.56,124.66,124.28,123.66,123.43,122.19,109.39,96.90,59.97,48.26,38.78,29.69,28.62,25.07,21.95,11.90.
对实施例1制备得到的蓝色化合物1进行质朴分析,质谱分析仪的设备型号为Orbitrap Fusion Tribrid mass spectrometer、测试条件为室温,蓝色化合物1的高分辨质谱分析结果为:HRMS m/z calculated for C46H52N5+:[(M+H)+]674.4217,found674.4223。
实施例3:化合物1对Pd2+的选择性。
在0.5%的二甲基亚砜(DMSO)纯水中,向化合物1的25μM溶液中分别加入1.0当量不同的金属阳离子(Pd2+,Ca2+,Cd2+,Co2+,Cr2+,Cs+,Cu2+,Fe2+,Fe3+,Ir3+,Mg2+,Mn2+,Ni2+,Pb2+,Pt2+,Re+,Rh3+,Zn2+)。由图1可以看出,当向化合物1溶液中加入1.0当量的Pd2+后,化合物1在710nm处的吸收完全消失,同时在770nm处出现一个新的吸收峰,而其他的金属离子对化合物1的吸收几乎没有影响。
同时,溶液颜色视觉上的变化为:当加入Pd2+后,溶液由蓝色变为绿色,当加入其他金属离子,溶液颜色几乎不变。
其次,试验了金属离子对溶液荧光的影响。向化合物1溶液(25μM)中加入1.0当量的Pd2+,溶液在770nm处的荧光减弱,同时在800nm处的荧光增强。当加入其他金属离子后,溶液的荧光基本上没有变化。从770nm处的F/F0(图2),其中F是化合物1的荧光值,F0是加入不同金属离子后的荧光值,可以看出化合物1可以选择性识别Pd2+
实施例4:化合物1对Pd2+的紫外-可见滴定实验
在0.5%的二甲基亚砜(DMSO)纯水中,向化合物1的25μM溶液中加入不同浓度的Pd2+,如图3所示,随着Pd2+浓度的增加(0-8μM),溶液在λ=710nm处的紫外-可见吸收逐渐减小,吸收峰逐渐红移,在λ=770nm处的紫外-可见吸收逐渐增强。并且λ=710nm处和λ=770nm处的紫外-可见吸收强度都与Pd2+的浓度在0-0.28当量的范围内有良好的线性关系(图4)。通过拟合的线性方程,根据国际纯粹与应用化学协会(IUPAC)的规定,检测限DL(Detection Limit)的计算公式DL=3s/k(s为空白样品的标准偏差,k为斜率),计算出探针对Pd2+的检测限为39.29nM。说明探针化合物1的灵敏度很高,可以用于Pd2+的痕量检测。
实施例5:化合物1对Pd2+的荧光滴定实验
在0.5%的DMSO纯水中,向化合物1的25μM溶液中加入不同浓度的Pd2+,如图5和图6所示,随着Pd2+浓度的增加(0-60μM),溶液在λ=770nm处的荧光强度逐渐降低,在λ=800nm处的荧光强度逐渐增加。说明化合物1可以识别钯离子,并与之结合改变溶液荧光吸收波长的变化。
实施例6:在老鼠体内化合物1对Pd2+的光声成像实验
向老鼠体内注射化合物1溶液前后,对其进行紫外声光成像比较试验,发现注射化合物1之后,在770nm处观察到很强的光声信号,在860nm处几乎无光声信号。当加入Pd2+后,770nm处的光声信号消失,在860nm处出现很强的光声信号(图6)。同时860nm处的光声信号与Pd2+的浓度有良好的线性关系(图7)。说明化合物1溶液对Pd2+的选择性和紫外光相应的变化特性能够用在生物体内Pd2+的定性和定量检测中。
通过上述实施例,能够具体的说明本发明所制备得到的化合物1的具体结构,并且该化合物1能够对Pd2+具有高的选择性和灵敏性,可以选择性地识别钯离子,不受其他金属离子的干扰。随着钯离子的加入,化合物1溶液由蓝色变为绿色,溶液在770nm处的荧光逐渐减弱,在800nm处的荧光逐渐增强,在710nm处的吸收不断减小,在770nm处的吸收不断增大。同时在770nm处的光声信号也逐渐减弱,在860nm处的光声信号逐渐增强。因此,化合物1能够用作一种新的光声比率型钯离子探针,用于定性和定量测定溶液样品或生物体内Pd2+的含量情况。
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (5)

1.一种钯离子探针的应用,其特征在于:将所述钯离子探针用于环境钯离子的定性或定量检测;所述钯离子探针具有如下式1所示的结构式:
Figure FDA0003631485090000011
2.根据权利要求1所述的应用,其特征在于:将钯离子探针用于检测金属钯离子的方法包括将含Pd2+的待测样品加入到钯离子探针溶液中,然后目测该体系颜色的变化和/或测试该体系的紫外吸收变化。
3.根据权利要求2所述的应用,其特征在于:所述钯离子探针溶液采用水和有机溶剂的混合溶剂。
4.根据权利要求3所述的应用,其特征在于:所述有机溶剂选自二甲基亚砜。
5.根据权利要求3或4所述的应用,其特征在于:所述水和有机溶剂的体积比为995:5至990:10。
CN201911000013.8A 2019-10-21 2019-10-21 一种钯离子探针及其制备方法和应用 Active CN112760090B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911000013.8A CN112760090B (zh) 2019-10-21 2019-10-21 一种钯离子探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911000013.8A CN112760090B (zh) 2019-10-21 2019-10-21 一种钯离子探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112760090A CN112760090A (zh) 2021-05-07
CN112760090B true CN112760090B (zh) 2022-07-29

Family

ID=75691671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911000013.8A Active CN112760090B (zh) 2019-10-21 2019-10-21 一种钯离子探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112760090B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844119A (zh) * 2006-04-26 2006-10-11 山东师范大学 检测细胞内锌离子的近红外荧光探针及合成方法和用途
CN103342697A (zh) * 2013-07-05 2013-10-09 中国科学院合肥物质科学研究院 一种用于检测次氯酸的双功能近红外荧光分子探针及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1844119A (zh) * 2006-04-26 2006-10-11 山东师范大学 检测细胞内锌离子的近红外荧光探针及合成方法和用途
CN103342697A (zh) * 2013-07-05 2013-10-09 中国科学院合肥物质科学研究院 一种用于检测次氯酸的双功能近红外荧光分子探针及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ratiometric photoacoustic chemical sensor for Pd2+ Ion;Jingjing Xiang et al.;《analytical chemistry》;20200310;第92卷;第4721-4725页 *

Also Published As

Publication number Publication date
CN112760090A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN111205280B (zh) 一种检测次氯酸的比率型荧光探针及其制备方法和应用
CN108003869B (zh) 一种高灵敏检测次氯酸根的荧光探针及其合成方法与应用
Wei et al. A two-step responsive colorimetric probe for fast detection of formaldehyde in weakly acidic environment
Li Rapidly responsive and highly selective fluorescent probe for sulfite detection in real samples and living cells
CN110590753B (zh) 一种靶向线粒体的近红外so2衍生物比率荧光探针及其应用
CN109053802B (zh) 一种比率型近红外荧光探针及其合成方法与应用
Asaithambi et al. Ratiometric sensing of sulfite/bisulfite ions and its applications in food samples and living cells
Li et al. A rhodamine-benzimidazole based chemosensor for Fe 3+ and its application in living cells
CN109535147A (zh) 一种快速响应的甲醛荧光探针及其制备方法和应用
CN105712964A (zh) 一种基于香豆酰肼的硫醇荧光探针的制备方法及应用
CN110204564A (zh) 一种检测氰根离子的荧光探针及其制备方法和应用
Liang et al. A camphor-based fluorescent probe with high selectivity and sensitivity for formaldehyde detection in real food samples and living zebrafish
CN113666896B (zh) α-萘酚酞衍生物类多功能荧光探针及其制备方法和应用
CN114516836A (zh) 一种荧光探针材料及其制备方法和检测硫化物的方法
CN104830312A (zh) 一种荧光增强型探针化合物的制备以及三价铬离子检测
CN113234071B (zh) 三苯胺基甲基吡啶盐及合成方法以及对cn-的识别和生物成像应用
Wang et al. A novel colorimetric and red-emitting fluorescent probe based on benzopyrylium derivatives for selective detection and imaging of SO2 derivatives in cells and zebrafish
CN113004256A (zh) 一种检测汞离子的比率型探针及其制备方法和应用
CN108997401A (zh) 一种用于检测铅离子的荧光探针及其制备方法
CN107033078A (zh) 含有羟基萘甲醛结构的铁离子传感器分子及其合成和应用
CN112760090B (zh) 一种钯离子探针及其制备方法和应用
CN108794369B (zh) 含醛基的手性胺识别探针及其制备方法和应用
Song et al. Highly specific monitoring and imaging of endogenous and exogenous cysteine in living cells
CN110563609B (zh) 一种检测亚硒酸根的近红外荧光探针的制备方法及应用
CN111635354B (zh) 一种咔唑Schiff碱为识别受体的多离子差异性检测荧光探针

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant