CN112750904A - 具有应力松弛层的半导体元件 - Google Patents

具有应力松弛层的半导体元件 Download PDF

Info

Publication number
CN112750904A
CN112750904A CN201911042514.2A CN201911042514A CN112750904A CN 112750904 A CN112750904 A CN 112750904A CN 201911042514 A CN201911042514 A CN 201911042514A CN 112750904 A CN112750904 A CN 112750904A
Authority
CN
China
Prior art keywords
layer
stress relaxation
semiconductor device
gallium nitride
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911042514.2A
Other languages
English (en)
Other versions
CN112750904B (zh
Inventor
许祐铭
王裕齐
陈彦兴
杨宗穆
王俞仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United Microelectronics Corp
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to CN201911042514.2A priority Critical patent/CN112750904B/zh
Priority to US16/708,448 priority patent/US11563088B2/en
Publication of CN112750904A publication Critical patent/CN112750904A/zh
Priority to US17/506,685 priority patent/US11508818B2/en
Priority to US17/683,288 priority patent/US20220320292A1/en
Priority to US17/685,400 priority patent/US11664426B2/en
Priority to US18/135,206 priority patent/US11955519B2/en
Priority to US18/135,203 priority patent/US20230253457A1/en
Application granted granted Critical
Publication of CN112750904B publication Critical patent/CN112750904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/151Compositional structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明公开一种具有应力松弛层的半导体元件,该半导体元件包含一外延基板,外延基板包含一基底,一应力松弛层覆盖并接触基底,一III‑V族堆叠层覆盖并接触应力松弛层,其中III‑V族堆叠层包含氮化铝或氮化铝镓,或包含氮化铝和氮化铝镓两者,III‑V族堆叠层为多层外延结构。

Description

具有应力松弛层的半导体元件
技术领域
本发明涉及一种半导体元件,特别是涉及一种利用应力松弛层(strain relaxedlayer)避免基底应力影响高电子移动率晶体管的半导体元件。
背景技术
III-V族半导体化合物由于其半导体特性而可应用于形成许多种类的集成电路装置,例如高功率场效晶体管、高频晶体管或高电子迁移率晶体管(high electron mobilitytransistor,HEMT)。在高电子迁移率晶体管中,两种不同带隙(band gap)的半导体材料结合而于结(junction)形成异质结(heterojunction)而为载流子提供通道。近年来,氮化镓系列的材料由于拥有较宽带隙与饱和速率高的特点而适合应用于高功率与高频率产品。氮化镓系列的高电子迁移率晶体管由材料本身的压电效应产生二维电子气(two-dimensional electron gas,2DEG),相较于传统晶体管,高电子迁移率晶体管的电子速度及密度均较高,故可用以增加切换速度。
然而由于承载III-V族半导体化合物的基底的晶格大小和III-V族半导体化合物的晶格大小相差太大,因此在III-V族半导体化合物中会形成不当的应力,降低高电子迁移率晶体管的操作效能。
发明内容
有鉴于此,本发明将应力松弛层设置于基底和III-V族半导体化合物之间,防止基底的应力影响III-V族半导体化合物。
根据本发明的一优选实施例,一种半导体元件包含一外延基板,外延基板包含一基底,一应力松弛层覆盖并接触基底以及一III-V族堆叠层覆盖并接触应力松弛层,其中III-V族堆叠层包含氮化铝或氮化铝镓,或包含氮化铝和氮化铝镓两者,III-V族堆叠层为多层外延结构。
根据本发明的另一优选实施例,一种半导体元件包含一外延基板,外延基板包含一基底,一成核层覆盖并接触基底,成核层包含氮化铝,一过渡层覆盖并接触成核层,过渡层包含氮化铝镓,一超晶格覆盖并接触过渡层,超晶格为氮化铝和氮化铝镓所组成的重复堆叠结构以及一应力松弛层设置于超晶格中,应力松弛层包含氧化硅、氮化硅或碳化硅。
为让本发明的上述目的、特征及优点能更明显易懂,下文特举优选实施方式,并配合所附的附图,作详细说明如下。然而如下的优选实施方式与附图仅供参考与说明用,并非用来对本发明加以限制者。
附图说明
图1为本发明的第一优选实施例所绘示的半导体基板的示意图;
图2为本发明的第二优选实施例所绘示的半导体基板的示意图;
图3为本发明的第三优选实施例所绘示的半导体基板的示意图;
图4为本发明所使用的应力松弛层的示意图;
图5为利用第一优选实施例中的半导体基板所制作的电子移动率晶体管的示意图;
图6为利用第一优选实施例中的半导体基板所制作的另一种电子移动率晶体管的示意图;
图7为利用第二优选实施例中的半导体基板所制作的电子移动率晶体管的示意图;
图8为利用第二优选实施例中的半导体基板所制作的另一种电子移动率晶体管的示意图;
图9为利用第三优选实施例中的半导体基板所制作的电子移动率晶体管的示意图;
图10为利用第三优选实施例中的半导体基板所制作的另一种电子移动率晶体管的示意图。
主要元件符号说明
10a 半导体基板 10b 半导体基板
10c 半导体基板 12 外延基板
14 元件层 16 基底
18 应力松弛层 20 III-V族堆叠层
22 成核层 24 过渡层
26 超晶格 28 氮化镓层
30 氮化铝镓层 32 氮化铝层
34 P型氮化镓层 36 源极电极
38 漏极电极 40 栅极电极
42 保护层 100a 高电子移动率晶体管
100b 高电子移动率晶体管 118 第一应力松弛层
126 渐近层 200a 高电子移动率晶体管
200b 高电子移动率晶体管 218 第二应力松弛层
300a 高电子移动率晶体管 300b 高电子移动率晶体管
具体实施方式
图1为根据本发明的第一优选实施例所绘示的半导体基板。
如图1所示,一半导体基板10a包含一外延基板12和一元件层14,元件层14接触并覆盖外延基板12。外延基板12包含一基底16、一应力松弛层18和一III-V族堆叠层20。基底16包含硅基底、蓝宝石(sapphire)基底或是硅覆绝缘基底。应力松弛层18覆盖并接触基底16,其中应力松弛层18包含氧化硅、氮化硅或碳化硅。III-V族堆叠层20覆盖并接触应力松弛层18,其中III-V族堆叠层20包含氮化铝、氮化铝镓或氮化镓,或包含氮化铝和氮化铝镓两者或包含氮化铝和氮化镓二者或是包含氮化铝、氮化铝镓和氮化镓三者,并且III-V族堆叠层20为多层外延结构,也就是说III-V族堆叠层20可以单独包含氮化铝、氮化铝镓或氮化镓,或者III-V族堆叠层20也可以同时包含氮化铝、氮化铝镓和氮化镓的组合。应力松弛层18本身较佳不含有应力,此外应力松弛层18的厚度较佳为1纳米以上。
详细来说,在第一优选实施例中,III-V族堆叠层20包含一成核层22、一过渡层24和一超晶格26,成核层22覆盖并接触应力松弛层18,成核层22较佳为氮化铝,过渡层24覆盖并接触成核层22,过渡层24较佳为氮化铝镓,超晶格26覆盖并接触过渡层,超晶格26为氮化铝和氮化铝镓所组成的重复堆叠结构。此外,过渡层24的氮化铝镓具有化学式AlxGa1-xN,0.7≤X≤0.8,过渡层24可以为单层为多层,若是为多层则可以利用改变X值形成多层不同铝镓比例的氮化铝镓。超晶格26中的氮化铝镓具有化学式AlYGa1-YN,0.2≤Y≤0.3,如前文所述,超晶格26为氮化铝和氮化铝镓所组成的重复堆叠结构,并且氮化铝镓可利用Y值的变化形成多层不同铝镓比例的氮化铝镓。举例而言,超晶格26可以为AlN/Al0.2Ga0.8N所组成的重复堆叠结构,也可以是AlN/Al0.2Ga0.8N/Al0.3Ga0.7N所组成的重复堆叠结构。
元件层14包含一氮化镓层28和一氮化铝镓层30,设置于氮化镓层28上,在氮化镓层28和氮化铝镓层30之间可以选择性地设置一氮化铝层32。
图2为根据本发明的第二优选实施例所绘示的半导体基板,其中和第一优选实施例中具有相同功能和位置的元件,将使用和第一优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
如图2所示,一半导体基板10b包含外延基板12和元件层14,和第一优选实施例不同之处在于第二优选实施中以一渐近层126取代第一优选实施例中的超晶格26,第二优选实施例中其它元件位置都和第一实施例相同。请继续参阅图2,渐进层126覆盖并接触过渡层24,渐进层126具有化学式AlZGa1-ZN,其中0≤Z≤1,其中Z值随着远离过渡层24变小,详细来说渐进层126具有多层结构,其中每一层的氮化铝镓中的Z值都不同,例如渐进层126可以为AlN/Al0.8Ga0.2N/Al0.2Ga0.8N由下至上堆叠,也就是说AlN接触过渡层24,Al0.2Ga0.8N接触氮化镓层28,但渐进层126不限于此组合,依据不同需求渐进层126的层数和Z值变化都可以调整。
此外,除了一层渐进层126之外,也可以设置多个渐进层126,以渐进层126为AlN/Al0.8Ga0.2N/Al0.2Ga0.8N为例,若是有两个渐进层126就会组成AlN/Al0.8Ga0.2N/Al0.2Ga0.8N叠上AlN/Al0.8Ga0.2N/Al0.2Ga0.8N的结构。
图3为根据本发明的第三优选实施例所绘示的半导体基板,其中和第一优选实施例中具有相同功能和位置的元件,将使用和第一优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
第一优选实施例和第三优选实施例的不同之处之在于第三优选实施例中的半导体基板10c的应力松弛层18安插在超晶格26中,详细来说第三优选实施例中的外延基板12包含基底16、成核层22、过渡层24和超晶格26。超晶格26覆盖并接触过渡层24,过渡层24覆盖并接触成核层22,成核层22覆盖并接触基底16,一应力松弛层18设置于超晶格26的重复堆叠结构之间。举例而言,若是超晶格26是AlN/Al0.2Ga0.8N所组成的重复堆叠结构,应力松弛层18可以设置在不论第几次重复堆叠的AlN和Al0.2Ga0.8N之间。
图4为本发明所使用的应力松弛层的示意图。图4中所绘示的是在第一优选实施例、第二优选实施例和第三优选实施例中的应力松弛层18,根据本发明的优选实施例,应力松弛层18可以有数种不同的形态。如图4中最上方的应力松弛层18包含单一层第一应力松弛层118,第一应力松弛层118为单层材料,应力松弛层118包含氧化硅、氮化硅或碳化硅,举例而言,第一应力松弛层118为氮化硅。此外第一应力松弛层118,也可以为多层不同材料堆叠而成,例如第一应力松弛层118可以为碳化硅/氮化硅。
再者,如图4中的左下方的应力松弛层18,应力松弛层18可包含多层第一应力松弛层118,举例而言,若是第一应力松弛层118是碳化硅/氮化硅,两层第一应力松弛层118则为碳化硅/氮化硅/碳化硅/氮化硅。
图4中的右下方的应力松弛层18,除了第一应力松弛层118之外,应力松弛层18可另包含一第二应力松弛层218设置在第一应力松弛层118上,第二应力松弛层218可以为氧化硅、氮化硅或碳化硅,同样地,第二应力松弛层218可以为单层材料或多层不同材料堆叠。举例而言第二应力松弛层218可以为单层的氧化硅,或是堆叠的氮化硅/氧化硅。
本发明的第一优选实施例、第二优选实施例和第三优选实施例中的半导体基板,可以视不同需求,采用图4中不同形态的应力松弛层18。
由于基底16的晶格大小和氮化镓层28的晶格大小相差很大,因此当氮化镓层28直接接触堆叠在基底16上时,基底16和氮化镓层28中会因为晶格不匹配产生应力,这些应力会影响后续形成在元件层上的半导体元件的品质进而影响效能。在基底16和氮化镓层28之间的成核层22、过渡层24、超晶格26或渐近层126都有缓和基底16和氮化镓层28之间晶格差异的功能,然而单纯靠成核层22、过渡层24、超晶格26或渐近层126,无法达到令人满意的结果。
因此本发明特意在基底16和氮化镓层28之间设置一层应力松弛层18,由于应力松弛层18所使用材料其晶格结构具有松弛应力的效果,因此即使将应力松弛层18置放在晶格大小和应力松弛层18差距大的材料层上,应力松弛层18因为上下层晶格差异所产生的应力非常的小,甚至小到可以视为0。所以将应力松弛层18设置在基底16和氮化镓层28之间,如此一来基底16的晶格差异和应力松弛层18之间的晶格差异就只会让应力松弛层18产生非常小的应力甚至应力松弛层18不会产生任何应力,而在应力松弛层18上方的氮化镓层28也就不会被基底16晶格差异影响。简而言之,应力松弛层18可避免或是减少在应力松弛层18下方的材料层中的应力传送到应力松弛层18上方的材料层的情况,同样地也可以避免或是减少在应力松弛层18上方的材料层中的应力传送到应力松弛层18下方的材料层的情况。
此外应力松弛层18特意选择氧化硅、氮化硅或碳化硅的原因除了缓和应力之外,III-V族的化合物20对于氧化硅、氮化硅或碳化硅都有良好的贴附性,因此在应力松弛层18上的成核层22或是超晶格26都可以良好的贴附在应力松弛层18上。再者氧化硅、氮化硅或碳化硅的带隙(band gap)大于氮化镓,因此使用应力松弛层18可以增加后续形成的半导体元件的击穿电压。
图5为利用第一优选实施例中的半导体基板所制作的电子移动率晶体管,其中和第一优选实施例中具有相同功能和位置的元件,将使用和第一优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
如图5所示,一高电子移动率晶体管100a包含半导体基板10a,一P型氮化镓层34设置在氮化铝镓层30上,一源极电极36以及一漏极电极38设置氮化铝镓层30上,源极电极36和漏极电极38分别位于P型氮化镓层34的两侧,一栅极电极40设置于源极电极36与漏极电极38之间并且位于氮化铝镓层30上,而栅极电极40覆盖P型氮化镓层34,一保护层42顺应的覆盖栅极电极40、源极电极36、漏极电极38和氮化铝镓层30。保护层42包含氮化镓或氮化铝。高电子移动率晶体管100a为一常闭型(normally-off)晶体管。
图6为利用第一优选实施例中的半导体基板所制作的另一种电子移动率晶体管,其中和第一优选实施例中具有相同功能和位置的元件,将使用和第一优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
如图6所示,一高电子移动率晶体管100b包含半导体基板10b,一源极电极36以及一漏极电极38埋入于氮化铝镓层30,一栅极电极40设置于源极电极36与漏极电极38之间并且埋入于氮化铝镓层30,一保护层42覆盖源极电极36、漏极电极38和氮化铝镓层30,并且保护层42位于栅极电极40和氮化铝镓层30之间。高电子移动率晶体管100b为一常闭型(normally-off)晶体管。
图7为利用第二优选实施例中的半导体基板所制作的电子移动率晶体管,其中和第二优选实施例中具有相同功能和位置的元件,将使用和第二优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
图7中的高电子移动率晶体管200a和图5的高电子移动率晶体管100a的不同之处在于:图7中的半导体基板10b使用渐近层126取代图5中的超晶格26。其它元件例如P型氮化镓层34、保护层42、源极电极36、漏极电极38或栅极电极40等的位置都和图5的高电子移动率晶体管100a相同。同样地高电子移动率晶体管200a也是常闭型(normally-off)晶体管。
图8为利用第二优选实施例中的半导体基板所制作的另一种电子移动率晶体管,其中和第二优选实施例中具有相同功能和位置的元件,将使用和第二优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
图8中的高电子移动率晶体管200b和图6的高电子移动率晶体管100b的不同之处在于:图8中的半导体基板10b使用渐近层126取代图6中的超晶格26。其它元件例如保护层42、源极电极36、漏极电极38或栅极电极40等的位置都和图6的高电子移动率晶体管100b相同。同样地高电子移动率晶体管200b也是常闭型(normally-off)晶体管。
图9为利用第三优选实施例中的半导体基板所制作的电子移动率晶体管,其中和第三优选实施例中具有相同功能和位置的元件,将使用和第三优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
图9中的高电子移动率晶体管300a和图5的高电子移动率晶体管100a的不同之处在于:图9中的应力松弛层18位于超晶格26中。其它元件例如P型氮化镓层34、保护层42、源极电极36、漏极电极38或栅极电极40等的位置都和图5的高电子移动率晶体管100a相同。同样地高电子移动率晶体管300a也是常闭型(normally-off)晶体管。
图10为利用第三优选实施例中的半导体基板所制作的另一种电子移动率晶体管,其中和第三优选实施例中具有相同功能和位置的元件,将使用和第三优选实施例相同的元件标号,并且该些元件的相关介绍将不再赘述。
图10中的高电子移动率晶体管300b和图6的高电子移动率晶体管100b的不同之处在于:图10中的应力松弛层18位于超晶格26中。其它元件例如保护层42、源极电极36、漏极电极38或栅极电极40等的位置都和图6的高电子移动率晶体管100b相同。同样地高电子移动率晶体管300b也是常闭型(normally-off)晶体管。
以上所述仅为本发明的优选实施例,凡依本发明权利要求所做的均等变化与修饰,都应属本发明的涵盖范围。

Claims (20)

1.一种半导体元件,其特征在于,包含:
外延基板,包含:
基底;
应力松弛层,覆盖并接触该基底;以及
III-V族堆叠层,覆盖并接触该应力松弛层,其中该III-V族堆叠层包含氮化铝或氮化铝镓,或包含氮化铝和氮化铝镓两者,该III-V族堆叠层为多层外延结构。
2.如权利要求1所述的半导体元件,其中该III-V族堆叠层包含:
成核层,覆盖并接触该应力松弛层,该成核层包含氮化铝;
过渡层,覆盖并接触该成核层,该过渡层包含氮化铝镓;以及
超晶格,覆盖并接触该过渡层,该超晶格为氮化铝和氮化铝镓所组成的重复堆叠结构。
3.如权利要求2所述的半导体元件,其中该超晶格中的氮化铝镓具有化学式AlYGa1-YN,0.2≤Y≤0.3。
4.如权利要求2所述的半导体元件,其中该过渡层中的氮化铝镓具有化学式AlxGa1-xN,0.7≤X≤0.8。
5.如权利要求1所述的半导体元件,其中该III-V族堆叠层包含:
成核层,覆盖并接触该应力松弛层,该成核层包含氮化铝;
过渡层,覆盖并接触该成核层,该过渡层包含氮化铝镓;以及
渐进层,覆盖并接触该过渡层,该渐进层具有化学式AlZGa1-ZN,其中0≤Z≤1,其中Z值随着远离该过渡层变小。
6.如权利要求1所述的半导体元件,其中该基底包含硅基底、蓝宝石基底或硅覆绝缘基底。
7.如权利要求5所述的半导体元件,其中该过渡层中的氮化铝镓具有化学式AlxGa1-xN,0.7≤X≤0.8。
8.如权利要求1所述的半导体元件,另包含:
元件层,接触并覆盖该外延基板,其中该元件层包含:
氮化镓层;以及
氮化铝镓层,设置于该氮化镓层上。
9.如权利要求8所述的半导体元件,另包含:
高电子移动率晶体管,设置于该外延基板上,该高电子移动率晶体管包含:
该外延基板;
该元件层;
源极电极以及漏极电极,设置于该氮化铝镓层之上;以及
栅极电极,设置于该源极电极与该漏极电极之间,并且位于该氮化铝镓层上。
10.如权利要求1所述的半导体元件,其中该应力松弛层包含第一应力松弛层,该第一应力松弛层包含氧化硅、氮化硅或碳化硅。
11.如权利要求10所述的半导体元件,其中该第一应力松弛层为多层不同材料堆叠。
12.如权利要求10所述的半导体元件,另包含多个该第一应力松弛层相互接触并堆叠。
13.如权利要求10所述的半导体元件,其中该应力松弛层另包含第二应力松弛层接触该第一应力松弛层,该第二应力松弛层包含氧化硅、氮化硅或碳化硅。
14.如权利要求1所述的半导体元件,其中该应力松弛层的厚度大于1纳米。
15.一种半导体元件,其特征在于,包含:
外延基板,包含:
基底;
成核层,覆盖并接触该基底,该成核层包含氮化铝;
过渡层,覆盖并接触该成核层,该过渡层包含氮化铝镓;
超晶格,覆盖并接触该过渡层,该超晶格为氮化铝和氮化铝镓所组成的重复堆叠结构;以及
应力松弛层,设置于该超晶格中,该应力松弛层包含氧化硅、氮化硅或碳化硅。
16.如权利要求15所述的半导体元件,其中该过渡层中的氮化铝镓具有化学式AlxGa1- xN,0.7≤X≤0.8。
17.如权利要求15所述的半导体元件,其中该超晶格中的氮化铝镓具有化学式AlYGa1- YN,0.2≤Y≤0.3。
18.如权利要求15所述的半导体元件,另包含:
元件层,接触并覆盖该外延基板,其中该元件层包含:
氮化镓层;以及
氮化铝镓层,设置于该氮化镓层上。
19.如权利要求18所述的半导体元件,另包含:
高电子移动率晶体管,设置于该外延基板上,该高电子移动率晶体管包含:
该外延基板;
该元件层;
源极电极以及漏极电极,设置于该氮化铝镓层之上;以及
栅极电极,设置于该源极电极与该漏极电极之间,并且位于该氮化铝镓层上。
20.如权利要求15所述的半导体元件,其中该应力松弛层的厚度大于1纳米。
CN201911042514.2A 2019-10-30 2019-10-30 具有应力松弛层的半导体元件 Active CN112750904B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201911042514.2A CN112750904B (zh) 2019-10-30 2019-10-30 具有应力松弛层的半导体元件
US16/708,448 US11563088B2 (en) 2019-10-30 2019-12-10 Semiconductor device with strain relaxed layer
US17/506,685 US11508818B2 (en) 2019-10-30 2021-10-21 Semiconductor device with strain relaxed layer
US17/683,288 US20220320292A1 (en) 2019-10-30 2022-02-28 Semiconductor device with strain relaxed layer
US17/685,400 US11664426B2 (en) 2019-10-30 2022-03-03 Semiconductor device with strain relaxed layer
US18/135,206 US11955519B2 (en) 2019-10-30 2023-04-17 Semiconductor device with strain relaxed layer
US18/135,203 US20230253457A1 (en) 2019-10-30 2023-04-17 Semiconductor device with strain relaxed layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911042514.2A CN112750904B (zh) 2019-10-30 2019-10-30 具有应力松弛层的半导体元件

Publications (2)

Publication Number Publication Date
CN112750904A true CN112750904A (zh) 2021-05-04
CN112750904B CN112750904B (zh) 2024-01-02

Family

ID=75640477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911042514.2A Active CN112750904B (zh) 2019-10-30 2019-10-30 具有应力松弛层的半导体元件

Country Status (2)

Country Link
US (6) US11563088B2 (zh)
CN (1) CN112750904B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115224124A (zh) * 2021-04-20 2022-10-21 联华电子股份有限公司 半导体元件及其制作方法
US20220359739A1 (en) * 2021-05-05 2022-11-10 Infineon Technologies Austria Ag Hole draining structure for suppression of hole accumulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285142A1 (en) * 2004-06-28 2005-12-29 Nitronex Corporation Gallium nitride materials and methods associated with the same
US20120223365A1 (en) * 2011-03-03 2012-09-06 International Rectifier Corporation III-Nitride Semiconductor Structures with Strain Absorbing Interlayer Transition Modules
CN103782375A (zh) * 2011-07-11 2014-05-07 同和电子科技有限公司 第iii族氮化物外延基板及其制造方法
JP2014138167A (ja) * 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd Mes構造トランジスタを作製する方法、mes構造トランジスタ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041906A1 (en) 1995-06-13 1996-12-27 Advanced Technology Materials, Inc. Bulk single crystal gallium nitride and method of making same
US5831277A (en) 1997-03-19 1998-11-03 Northwestern University III-nitride superlattice structures
US7115896B2 (en) 2002-12-04 2006-10-03 Emcore Corporation Semiconductor structures for gallium nitride-based devices
WO2004107406A2 (en) 2003-05-23 2004-12-09 Board Of Regents, The University Of Texas System Semiconductor electronic devices and methods
JPWO2005106977A1 (ja) 2004-04-27 2008-03-21 松下電器産業株式会社 窒化物半導体素子およびその製造方法
US20070018199A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
EP1842940A1 (en) 2006-04-06 2007-10-10 Interuniversitair Microelektronica Centrum ( Imec) Method for forming a group III nitride material on a silicon substrate
CN102460664B (zh) 2009-05-11 2014-08-13 同和电子科技有限公司 电子器件用外延衬底及其制造方法
JPWO2011118099A1 (ja) * 2010-03-26 2013-07-04 日本電気株式会社 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置
JPWO2011118098A1 (ja) * 2010-03-26 2013-07-04 日本電気株式会社 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置
KR20120032329A (ko) 2010-09-28 2012-04-05 삼성전자주식회사 반도체 소자
KR101762177B1 (ko) 2010-12-17 2017-07-27 삼성전자 주식회사 반도체 소자 및 반도체 소자 제조 방법
US9257547B2 (en) * 2011-09-13 2016-02-09 Transphorm Inc. III-N device structures having a non-insulating substrate
JP2013235873A (ja) * 2012-05-02 2013-11-21 Renesas Electronics Corp 半導体装置およびその製造方法
JP6013948B2 (ja) * 2013-03-13 2016-10-25 ルネサスエレクトロニクス株式会社 半導体装置
TWI546959B (zh) * 2015-01-21 2016-08-21 國立交通大學 高速電晶體
US9837522B2 (en) * 2015-11-02 2017-12-05 Infineon Technologies Austria Ag III-nitride bidirectional device
US9960262B2 (en) * 2016-02-25 2018-05-01 Raytheon Company Group III—nitride double-heterojunction field effect transistor
US9917156B1 (en) * 2016-09-02 2018-03-13 IQE, plc Nucleation layer for growth of III-nitride structures
US10580879B2 (en) * 2016-12-31 2020-03-03 South China University Of Technology Enhancement-mode GaN-based HEMT device on Si substrate and manufacturing method thereof
EP3486939B1 (en) * 2017-11-20 2020-04-01 IMEC vzw Method for forming a semiconductor structure for a gallium nitride channel device
US10886394B1 (en) * 2019-06-19 2021-01-05 Vanguard International Semiconductor Corporation Semiconductor structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050285142A1 (en) * 2004-06-28 2005-12-29 Nitronex Corporation Gallium nitride materials and methods associated with the same
US20120223365A1 (en) * 2011-03-03 2012-09-06 International Rectifier Corporation III-Nitride Semiconductor Structures with Strain Absorbing Interlayer Transition Modules
CN103782375A (zh) * 2011-07-11 2014-05-07 同和电子科技有限公司 第iii族氮化物外延基板及其制造方法
JP2014138167A (ja) * 2013-01-18 2014-07-28 Sumitomo Electric Ind Ltd Mes構造トランジスタを作製する方法、mes構造トランジスタ

Also Published As

Publication number Publication date
US11955519B2 (en) 2024-04-09
US20230268397A1 (en) 2023-08-24
US20220045173A1 (en) 2022-02-10
US11508818B2 (en) 2022-11-22
US11563088B2 (en) 2023-01-24
US20220320292A1 (en) 2022-10-06
US20220310794A1 (en) 2022-09-29
US11664426B2 (en) 2023-05-30
US20210134957A1 (en) 2021-05-06
US20230253457A1 (en) 2023-08-10
CN112750904B (zh) 2024-01-02

Similar Documents

Publication Publication Date Title
JP5348364B2 (ja) ヘテロ接合型電界効果半導体装置
EP1817798B2 (en) Cap layers and/or passivation layers for nitride-based transistors, transistor structures and methods of fabricating same
US11742418B2 (en) Semiconductor device
US9071167B2 (en) Compound semiconductor device and method for manufacturing the same
JP2011238931A (ja) エンハンスメントモード電界効果デバイスおよびそれを製造する方法
US20150340483A1 (en) Group III-V Device Including a Shield Plate
US11955519B2 (en) Semiconductor device with strain relaxed layer
JP6604036B2 (ja) 化合物半導体装置及びその製造方法
CN112436056A (zh) 高电子迁移率晶体管
TW201838178A (zh) 半導體元件
JP2016054215A (ja) 化合物半導体装置及びその製造方法
JP2008159621A (ja) 半導体電子デバイス
CN113875017B (zh) 半导体装置及其制造方法
US20180240877A1 (en) Transistor
US20220165873A1 (en) Hemt and method of fabricating the same
CN115036366A (zh) 半导体装置及其制作方法
US20220344474A1 (en) Superlattice structure
CN114097080B (zh) 氮化物基多通道开关半导体器件和其制造方法
US11942519B2 (en) Semiconductor structure and high electron mobility transistor
JP2010177416A (ja) 窒化物半導体装置
TW202416507A (zh) 電子裝置以及半導體裝置
US20200098907A1 (en) Iii-nitride epitaxial structure
CN115513276A (zh) 半导体结构及高电子迁移率晶体管
CN117895927A (zh) 电子装置以及半导体装置
CN112490278A (zh) 具有减少的缺陷的半导体外延结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant