CN112736199B - C8-BTBT (British Bittery-based) single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film - Google Patents

C8-BTBT (British Bittery-based) single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film Download PDF

Info

Publication number
CN112736199B
CN112736199B CN201911032433.4A CN201911032433A CN112736199B CN 112736199 B CN112736199 B CN 112736199B CN 201911032433 A CN201911032433 A CN 201911032433A CN 112736199 B CN112736199 B CN 112736199B
Authority
CN
China
Prior art keywords
single crystal
btbt
crystal film
aluminum
scraper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911032433.4A
Other languages
Chinese (zh)
Other versions
CN112736199A (en
Inventor
汪涛
胡文平
张小涛
任晓辰
牟麒
席悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201911032433.4A priority Critical patent/CN112736199B/en
Publication of CN112736199A publication Critical patent/CN112736199A/en
Application granted granted Critical
Publication of CN112736199B publication Critical patent/CN112736199B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

The invention discloses a C8-BTBT (British Bittersweet) single crystal film and a preparation method thereof, and an organic field effect transistor based on the C8-BTBT single crystal film, wherein the preparation method comprises the following steps: thermally evaporating aluminum on the glass slide to form an aluminum layer, and carrying out an anodic oxidation method on the aluminum layer to form an aluminum oxide layer on the aluminum layer; heating the alumina layer to 40-60 ℃, arranging a scraper on the upper surface of the alumina layer, wherein the distance between the cutting edge at the bottom end of the scraper and the upper surface of the alumina layer is 5-20 micrometers, dropwise adding an organic semiconductor solution between the scraper and the alumina layer, and moving the scraper or a glass slide at the speed of 0.01-0.4 mm/s to enable the alumina layer and the scraper to relatively move, so that the C8-BTBT single crystal film is obtained on the alumina layer through which the cutting edge passes. The C8-BTBT single crystal film obtained by the invention further improves the mobility of the organic field effect transistor and reduces the subthreshold swing of the device.

Description

C8-BTBT single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film
Technical Field
The invention belongs to the technical field of organic field effect transistors, and particularly relates to a C8-BTBT single crystal film, a preparation method thereof and an organic field effect transistor based on the C8-BTBT single crystal film.
Background
Organic Field Effect Transistors (OFETs) play an important role in many new generation organic electronic devices, such as memories, biosensors, displays, drivers and Radio Frequency Identification (RFID). One of the major challenges in producing these devices is to reduce the operating power of portable or wearable electronic applications and make them compatible with battery power. In OFET applications, low operating power means that sufficient charge can accumulate at the semiconductor-dielectric interface to create a conducting channel under a small voltage bias at the gate. The subthreshold swing characterizes the speed at which the device switches from the off-state to the on-state, so the smaller the value, the better. The large sub-threshold swing also prevents the simultaneous reduction of threshold voltage when scaling down device dimensions. The theoretical limit of the subthreshold swing at room temperature is 60mV/dec, while the subthreshold swing of the field effect transistor is commonly 200-1000mV/dec at present, and almost rarely is reduced to be below 100 mV/dec.
Disclosure of Invention
In view of the defects of the prior art, the invention aims to provide a preparation method of a C8-BTBT single crystal film.
The invention also aims to provide the C8-BTBT single crystal film obtained by the preparation method, and an organic field effect transistor prepared from the C8-BTBT single crystal film has high performance and low subthreshold swing.
The invention also aims to provide an organic field effect transistor prepared from the C8-BTBT single crystal film.
The purpose of the invention is realized by the following technical scheme.
A preparation method of a C8-BTBT single crystal film comprises the following steps:
1) Thermally evaporating aluminum on the glass slide to form an aluminum layer, and carrying out an anodic oxidation method on the aluminum layer to form an aluminum oxide layer on the aluminum layer;
in the step 1), the thickness of the aluminum layer is 100 to 150nm.
In the step 1), a cathode in the anodic oxidation method is graphite, an anode is aluminum, and an electrolyte is a mixture of citric acid, sodium citrate and ultrapure water, wherein the ratio of the mass parts of citric acid to the mass parts of sodium citrate to the volume parts of ultrapure water is 150:1500:200.
in the step 1), the current of the anodic oxidation method is 5-10 mA, the voltage is 10-20V, and the time is 5-10 min.
2) Heating the aluminum oxide layer to 40-60 ℃, arranging a scraper on the upper surface of the aluminum oxide layer, enabling the distance between the cutting edge at the bottom end of the scraper and the upper surface of the aluminum oxide layer to be 5-20 microns, dropwise adding an organic semiconductor solution between the scraper and the aluminum oxide layer, moving the scraper or a glass slide at the speed of 0.01-0.4 mm/s to enable the aluminum oxide layer and the scraper to move relatively, and obtaining a C8-BTBT single crystal film on the aluminum oxide layer through which the cutting edge passes, wherein the organic semiconductor solution is a mixture of C8-BTBT, polystyrene and chlorobenzene, and the ratio of the mass fraction of C8-BTBT, the mass fraction of polystyrene and the volume fraction of chlorobenzene is 10:10:1.
in the step 2), the volume of the organic semiconductor solution is 5-10 microliter.
In the above technical solution, the unit of the mass portion is mg, and the unit of the volume portion is mL.
The C8-BTBT single crystal film obtained by the preparation method.
In the technical scheme, the thickness of the C8-BTBT single crystal film is 27-60 nm.
The organic field effect transistor is prepared from the C8-BTBT single crystal film.
The application of the C8-BTBT single crystal film in reducing the subthreshold swing.
In the technical scheme, the subthreshold swing of the organic field effect transistor prepared by the C8-BTBT single crystal film is averagely 63mV/dec, and the minimum value is 61mV/dec.
In the above technical solution, the average mobility of the organic field effect transistor is 6.7cm 2 V -1 s -1 Maximum 8cm 2 V -1 s -1
The invention has the following beneficial effects:
1. the vertical phase separation of the organic semiconductor solution further reduces the subthreshold swing of the organic field effect transistor, wherein in the shearing process of the organic semiconductor solution, the polystyrene and the C8-BTBT are vertically separated, and the polystyrene can fill the defects on the alumina layer, so that the defect state density of the organic field effect transistor is greatly reduced, the mobility of the organic field effect transistor is further improved, and the subthreshold swing of the device is reduced.
2. The preparation of the C8-BTBT single crystal film is carried out at room temperature, so that the influence of high temperature on the performance of an organic semiconductor is avoided.
3. The distance between the knife edge and the upper surface of the alumina layer is reduced, so that the shearing stress of molecules is greatly increased, and a large-area single crystal film is finally formed.
Drawings
FIG. 1 is a structural formula of C8-BTBT;
FIG. 2 is a photograph of a C8-BTBT single crystal film taken at 0 ℃ in a polarizing microscope;
FIG. 3 is a photograph of a C8-BTBT single crystal film taken by a polarizing microscope at 45 °;
FIG. 4 is a transfer characteristic curve of a field effect transistor constructed from a C8-BTBT single crystal film;
FIG. 5 is a graph showing the output characteristics of a field effect transistor constructed from a C8-BTBT single crystal film;
FIG. 6 is a plot of capacitance per unit area for alumina;
fig. 7 is a graph of the calculated subthreshold swing of the field effect transistor.
Detailed Description
The technical scheme of the invention is further explained by combining specific examples.
In the following examples, parts by mass are in mg and parts by volume are in mL.
The purity and purchase of the drug products in the following examples are as follows: C8-BTBT (purity is more than or equal to 99%), polystyrene, chlorobenzene (purity is more than or equal to 99%), citric acid and sodium citrate are purchased from Sigma-Aldrich company, and high-purity aluminum is purchased from Sino Corp.
The following examples refer to the following instruments and models: evaporation of aluminum and metal electrodes using the Angstrom Engineering Covap thermal evaporation System, transmission and output I-V curves of field effect transistors were measured in air using a Keithley 4200SCS semiconductor parameter analyzer, and the digital source table 2400 is a photomicrograph taken with a Nikon Eclipse Ci-POL polarization microscope used during anodization
Example 1
A preparation method of a C8-BTBT single crystal film comprises the following steps:
1) Thermally evaporating aluminum on the glass slide to form an aluminum layer with the thickness of 100nm, and carrying out an anodic oxidation method on the aluminum layer to form an aluminum oxide layer on the aluminum layer, wherein the current of the anodic oxidation method is 8mA, the voltage is 15V, and the time is 5min. In the anodic oxidation method, the cathode is graphite, the anode is aluminum, the electrolyte is a mixture of citric acid, sodium citrate and ultrapure water, and the ratio of the mass parts of the citric acid to the mass parts of the sodium citrate to the volume parts of the ultrapure water is 150:1500:200.
2) Heating an aluminum oxide layer to 40 ℃, arranging a scraper on the upper surface of the aluminum oxide layer, enabling the distance between the cutting edge at the bottom end of the scraper and the upper surface of the aluminum oxide layer to be 5 micrometers, dropwise adding 5ul of organic semiconductor solution between the scraper and the aluminum oxide layer, moving the scraper or a glass slide at the speed of 0.3mm/s to enable the aluminum oxide layer and the scraper to move relatively, and obtaining a C8-BTBT single crystal film on the aluminum oxide layer through which the cutting edge passes, wherein the organic semiconductor solution is a mixture of C8-BTBT, polystyrene and chlorobenzene, and the ratio of the mass fraction of C8-BTBT, the mass fraction of polystyrene and the volume fraction of chlorobenzene is 10:10:1.
the thickness of the C8-BTBT single crystal film obtained by the preparation method of the embodiment is 27nm. The thickness of the crystal can be controlled by different temperatures and speeds, the higher the temperature and the lower the speed, the thicker the film, and the thickness can be controlled in detail in examples 2 and 3.
FIG. 1 is a C8-BTBT molecular formula picture.
FIG. 2 is a photograph of a C8-BTBT single crystal film taken by a polarizing microscope at 0 ℃. FIG. 3 is a photograph of a C8-BTBT single crystal film taken by a polarizing microscope at 45 ℃. As can be seen from the polarization photographs in FIGS. 2 and 3, the total length of the film is about 10cm 2 In the range of (1), after the C8-BTBT single crystal film rotates by 45 degrees, the sample has overall brightness change, which indicates that the single crystal exists in the whole area, most of the existing organic semiconductor single crystals exist in a micron level, but the invention can increase the crystal area to a centimeter level, which indicates that the preparation method of the invention finally realizes the formation of the large-area single crystal film and lays a foundation for large-scale integrated circuits in the future.
The method for preparing the organic field effect transistor from the C8-BTBT single crystal film obtained in the embodiment comprises the following steps: pasting a mask plate on the C8-BTBT single crystal film, and thermally evaporating a gold electrode with the thickness of 50nm as a source electrode and a drain electrode, wherein the length-width ratio of the source electrode to the drain electrode is 5:1, obtaining the organic field effect transistor.
Fig. 4 is a transfer characteristic curve of the field effect transistor constructed. Fig. 5 is an output characteristic curve of the field effect transistor constructed. FIG. 4,5 is a performance test after fabrication into an organic field effect transistor, transferring the characteristic curve from FIG. 4, very low leakage current density (10) -12 ) The method shows that the quality of the aluminum oxide is very good, the steep subthreshold slope and zero hysteresis indicate that the interface defect state density of the device is very low, and the mobility reaches 8cm through calculation 2 V -1 s -1 This is almost one of the highest values in organic field effect transistors.
FIG. 6 is a plot of capacitance per unit area for alumina, with a final measurement of 180nF/cm 2 And calculating the mobility.
Fig. 7 is a calculated sub-threshold swing of a field effect transistor. Where the gray portion is the theoretical limit for the subthreshold swing, at room temperature, of about 60mV/dec, it can be seen from fig. 7 that the subthreshold swing calculations for each point in the subthreshold region with a gate voltage of 1.45V-1.6V have been found to have approached the theoretical limit indefinitely, indicating that the quality of the single crystal and the interface after vertical phase separation is nearly perfect, which is one of the lowest values of the subthreshold swing so far.
After a plurality of tests, the average mobility of the field effect transistor obtained by the invention is 6.7cm 2 V -1 s -1 Maximum mobility of 8cm 2 V -1 s -1 The subthreshold swing averages 63mV/dec, with a minimum of 61mV/dec.
Example 2
A preparation method of a C8-BTBT single crystal film comprises the following steps:
1) And thermally evaporating aluminum on the glass slide to form an aluminum layer with the thickness of 100nm, and carrying out an anodic oxidation method on the aluminum layer to form an aluminum oxide layer on the aluminum layer, wherein the current of the anodic oxidation method is 8mA, the voltage is 15V, and the time is 5min. In the anodic oxidation method, the cathode is graphite, the anode is aluminum, the electrolyte is a mixture of citric acid, sodium citrate and ultrapure water, and the ratio of the mass parts of the citric acid to the mass parts of the sodium citrate to the volume parts of the ultrapure water is 150:1500:200.
2) Heating an aluminum oxide layer to 50 ℃, arranging a scraper on the upper surface of the aluminum oxide layer, enabling the distance between the cutting edge at the bottom end of the scraper and the upper surface of the aluminum oxide layer to be 5 micrometers, dropwise adding 5ul of organic semiconductor solution between the scraper and the aluminum oxide layer, moving the scraper or a glass slide at the speed of 0.3mm/s to enable the aluminum oxide layer and the scraper to move relatively, and obtaining a C8-BTBT single crystal film on the aluminum oxide layer through which the cutting edge passes, wherein the organic semiconductor solution is a mixture of C8-BTBT, polystyrene and chlorobenzene, and the ratio of the mass fraction of C8-BTBT, the mass fraction of polystyrene and the volume fraction of chlorobenzene is 10:10:1.
the thickness of the C8-BTBT single crystal film obtained by the preparation method of the embodiment is 38nm.
Example 3
A preparation method of a C8-BTBT single crystal film comprises the following steps:
1) And thermally evaporating aluminum on the glass slide to form an aluminum layer with the thickness of 100nm, and carrying out an anodic oxidation method on the aluminum layer to form an aluminum oxide layer on the aluminum layer, wherein the current of the anodic oxidation method is 8mA, the voltage is 15V, and the time is 5min. In the anodic oxidation method, the cathode is graphite, the anode is aluminum, the electrolyte is a mixture of citric acid, sodium citrate and ultrapure water, and the ratio of the mass parts of the citric acid to the mass parts of the sodium citrate to the volume parts of the ultrapure water is 150:1500:200.
2) Heating an aluminum oxide layer to 60 ℃, arranging a scraper on the upper surface of the aluminum oxide layer, enabling the distance between the cutting edge at the bottom end of the scraper and the upper surface of the aluminum oxide layer to be 5 micrometers, dropwise adding 5ul of organic semiconductor solution between the scraper and the aluminum oxide layer, moving the scraper or a glass slide at the speed of 0.3mm/s to enable the aluminum oxide layer and the scraper to move relatively, and obtaining a C8-BTBT single crystal film on the aluminum oxide layer through which the cutting edge passes, wherein the organic semiconductor solution is a mixture of C8-BTBT, polystyrene and chlorobenzene, and the ratio of the mass fraction of C8-BTBT, the mass fraction of polystyrene and the volume fraction of chlorobenzene is 10:10:1.
the thickness of the C8-BTBT single crystal film obtained by the preparation method of the embodiment is 60nm.
The C8-BTBT single crystal films obtained in examples 2 and 3 were prepared into organic field effect transistors, which both achieved mobility and sub-threshold swing consistent with example 1.
The invention being thus described by way of example, it should be understood that any simple alterations, modifications or other equivalent alterations as would be within the skill of the art without the exercise of inventive faculty, are within the scope of the invention.

Claims (7)

1. A preparation method of a C8-BTBT single crystal film is characterized by comprising the following steps:
1) Thermally evaporating aluminum on the glass slide to form an aluminum layer, and carrying out an anodic oxidation method on the aluminum layer to form an aluminum oxide layer on the aluminum layer;
wherein, in the step 1), the thickness of the aluminum layer is 100-150 nm;
in the step 1), a cathode in the anodic oxidation method is graphite, an anode is aluminum, and an electrolyte is a mixture of citric acid, sodium citrate and ultrapure water, wherein the ratio of the mass parts of the citric acid to the mass parts of the sodium citrate to the volume parts of the ultrapure water is 150:1500:200 of a carrier; the current of the anodic oxidation method is 5-10 mA, the voltage is 10-20V, and the time is 5-10 min;
2) Heating the aluminum oxide layer to 40-60 ℃, arranging a scraper on the upper surface of the aluminum oxide layer, enabling the distance between the cutting edge at the bottom end of the scraper and the upper surface of the aluminum oxide layer to be 5-20 microns, dropwise adding an organic semiconductor solution between the scraper and the aluminum oxide layer, moving the scraper or a glass slide at the speed of 0.01-0.4 mm/s to enable the aluminum oxide layer and the scraper to move relatively, and obtaining a C8-BTBT single crystal film on the aluminum oxide layer through which the cutting edge passes, wherein the organic semiconductor solution is a mixture of C8-BTBT, polystyrene and chlorobenzene, and the ratio of the mass fraction of C8-BTBT, the mass fraction of polystyrene and the volume fraction of chlorobenzene is 10:10:1;
in the step 2), the volume of the organic semiconductor solution is 5-10 microliter;
in the step 1) and the step 2), the unit of the mass part is mg, and the unit of the volume part is mL.
2. A C8-BTBT single crystal film, characterized in that the C8-BTBT single crystal film is prepared by the preparation method of claim 1.
3. The C8-BTBT single crystal film according to claim 2, wherein the thickness of the C8-BTBT single crystal film is 27-60 nm.
4. An organic field-effect transistor produced from the C8-BTBT single crystal film according to claim 2 or 3.
5. The use of the C8-BTBT single crystal film of claim 2 for reducing sub-threshold swing.
6. The use according to claim 5, wherein the C8-BTBT single crystal film is prepared into an organic field effect transistor with an average subthreshold swing of 63mV/dec and a minimum subthreshold swing of 61mV/dec.
7. Use according to claim 6, wherein the average mobility of the organic field effect transistor is 6.7cm 2 V -1 s -1 Maximum 8cm 2 V -1 s -1
CN201911032433.4A 2019-10-28 2019-10-28 C8-BTBT (British Bittery-based) single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film Active CN112736199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911032433.4A CN112736199B (en) 2019-10-28 2019-10-28 C8-BTBT (British Bittery-based) single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911032433.4A CN112736199B (en) 2019-10-28 2019-10-28 C8-BTBT (British Bittery-based) single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film

Publications (2)

Publication Number Publication Date
CN112736199A CN112736199A (en) 2021-04-30
CN112736199B true CN112736199B (en) 2023-03-24

Family

ID=75588806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911032433.4A Active CN112736199B (en) 2019-10-28 2019-10-28 C8-BTBT (British Bittery-based) single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film

Country Status (1)

Country Link
CN (1) CN112736199B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116546824A (en) * 2022-05-07 2023-08-04 浙江大学 Organic field effect transistor and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514472A (en) * 2009-02-23 2009-08-26 桂林工学院 A method for preparing electrochromic nickel oxide film
CN103151461A (en) * 2013-02-27 2013-06-12 京东方科技集团股份有限公司 Organic thin film transistor, preparation method and preparation device thereof
CN103630577A (en) * 2013-12-09 2014-03-12 电子科技大学 Preparation method of OTFT(organic thin-film transistor)-based sulfur dioxide gas sensor
CN105144417A (en) * 2013-04-25 2015-12-09 国立大学法人大阪大学 Organic semiconductor thin film production method
CN106876585A (en) * 2017-01-19 2017-06-20 南京邮电大学 A kind of method that organic field effect tube mobility is improved by short annealing
CN108346702A (en) * 2017-09-30 2018-07-31 广东聚华印刷显示技术有限公司 Thin film transistor (TFT) and its active layer and application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101514472A (en) * 2009-02-23 2009-08-26 桂林工学院 A method for preparing electrochromic nickel oxide film
CN103151461A (en) * 2013-02-27 2013-06-12 京东方科技集团股份有限公司 Organic thin film transistor, preparation method and preparation device thereof
CN105144417A (en) * 2013-04-25 2015-12-09 国立大学法人大阪大学 Organic semiconductor thin film production method
CN103630577A (en) * 2013-12-09 2014-03-12 电子科技大学 Preparation method of OTFT(organic thin-film transistor)-based sulfur dioxide gas sensor
CN106876585A (en) * 2017-01-19 2017-06-20 南京邮电大学 A kind of method that organic field effect tube mobility is improved by short annealing
CN108346702A (en) * 2017-09-30 2018-07-31 广东聚华印刷显示技术有限公司 Thin film transistor (TFT) and its active layer and application

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
面向大面积有机太阳电池的高效厚膜材料及器件研究;董升;《中国博士学位论文全文数据库 工程科技II辑》;20180515;C042-33 *

Also Published As

Publication number Publication date
CN112736199A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
Si et al. Indium–tin-oxide transistors with one nanometer thick channel and ferroelectric gating
CN106024901B (en) Method, field effect transistor and the manufacturing method of controlled material carrier concentration
CN106910776B (en) Large area molybdenum disulfide field effect transistor and its preparation based on high-k gate dielectric
CN107611033B (en) Negative capacitance molybdenum disulfide transistor based on ferroelectric gate dielectric and preparation method thereof
Chung et al. Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks
Choi et al. Proton-conductor-gated MoS2 transistors with room temperature electron mobility of> 100 cm2 V–1 s–1
Liu et al. Solution-processed lithium-doped zinc oxide thin-film transistors at low temperatures between 100 and 300° C
CN112736199B (en) C8-BTBT (British Bittery-based) single crystal film, preparation method thereof and organic field effect transistor based on C8-BTBT single crystal film
CN109585567A (en) High-performance indium gallium zinc oxygroup double-layer structure thin film transistor (TFT) and preparation method thereof
Chen et al. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS2 and Fabrication of Relevant Back-Gated Transistor*.
CN109950321B (en) P-type field effect transistor based on tungsten oxide and preparation method thereof
CN113401880B (en) Method for reducing thickness of tellurium nanosheet
CN110010710A (en) A kind of a-IGZO thin film sensor and preparation method thereof for light detection application
Gu et al. Preparing highly ordered copper phthalocyanine thin-film by controlling the thickness of the modified layer and its application in organic transistors
WO2018185257A1 (en) A multi-layer device and method of making same
CN102593008B (en) A kind of preparation method of bottom gate self alignment zino oxide film transistor
Dominguez et al. Incorporation of ZnO nanoparticles on solution processed zinc oxide thin-film transistors
CN108376711A (en) The method for preparing the two-dimensional semiconductor transistor with top gate structure and polymer dielectric dielectric layer
Wang et al. Vertically aligned CdTe nanorods array for novel three-dimensional heterojunction solar cells on Ni substrates
CN102969364A (en) Top gate structure metallic oxide thin film transistor for improving device uniformity and manufacture method thereof
CN110120349A (en) The source-drain electrode and crystal tube preparation method of InGaZnO thin film transistor (TFT)
CN107919400B (en) InSe transistor and preparation method thereof
CN105355663A (en) Hydrogen passivation zinc oxide-based double-channel film transistor and preparation method for the same
CN114038756B (en) Preparation method of field effect transistor based on narrow graphene nanoribbon
JP4429145B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant