CN112708155A - 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法 - Google Patents
一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法 Download PDFInfo
- Publication number
- CN112708155A CN112708155A CN202011440311.1A CN202011440311A CN112708155A CN 112708155 A CN112708155 A CN 112708155A CN 202011440311 A CN202011440311 A CN 202011440311A CN 112708155 A CN112708155 A CN 112708155A
- Authority
- CN
- China
- Prior art keywords
- side chain
- cyano
- sulfonated polyarylether
- ion exchange
- exchange membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
- C08J5/2262—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
- C08G65/40—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
- C08G65/4012—Other compound (II) containing a ketone group, e.g. X-Ar-C(=O)-Ar-X for polyetherketones
- C08G65/4056—(I) or (II) containing sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2371/00—Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
- C08J2371/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08J2371/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08J2371/12—Polyphenylene oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Sustainable Energy (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
本发明属于阳离子交换膜技术领域,提供了一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法。首先用五氟苯甲腈与4‑羟基苯磺酸钠合成4‑苯氧基‑4‑磺酸基‑2,3,5,6‑四氟苄腈,然后与双酚聚合得到基于氰基结构侧链磺化聚芳醚,并制膜。本发明的有益效果:氰基可以使聚合物主链更加稳定,支链型磺酸基团可以形成良好的微相分离。该基于氰基结构侧链磺化聚芳醚离子交换膜具有较高的质子传导率,较低的钒离子渗透率和较好的化学稳定性,在全钒液流电池中具有较好的应用前景。
Description
技术领域
本发明属于阳离子交换膜技术领域,涉及到一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法。
背景技术
随着对使用可再生能源的需求不断增长,大规模储能技术因其吸引人的特性而受到越来越多的关注。钒液流电池(VFB)是最有前途的大型储能技术之一,它具有安全性高,循环寿命长,功率和容量可分别调节,效率高和对环境友好等特点。对于VFB单电池,其主要组件由电极,电解质和膜组成。其中,膜是最重要的成分之一,它阻碍钒离子在阳极电解液和阴极电解液中传输,同时传输质子以形成内部回路。全氟化膜(如Nafion)是VFB应用中最常用的商业膜,尽管它具有高电导率,但仍受到高成本、低选择性和化学稳定性的限制。因此,迫切需要开发具有高电导率,高选择性,高稳定性以及低成本的商用VFB 应用的高性能膜。
发明内容
本发明提供了一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法。首先用五氟苯甲腈与4-羟基苯磺酸钠合成4-苯氧基-4-磺酸基-2,3,5,6- 四氟苄腈,然后与双酚聚合得到基于氰基结构侧链磺化聚芳醚,并制膜。本发明的有益效果:氰基可以使聚合物主链更加稳定,支链型磺酸基团可以形成良好的微相分离。该基于氰基结构侧链磺化聚芳醚离子交换膜具有较高的质子传导率,较低的钒离子渗透率和较好的化学稳定性,在全钒液流电池中具有较好的应用前景。
本发明的技术方案:
一种基于氰基结构侧链磺化聚芳醚离子交换膜,基于氰基结构侧链磺化聚芳醚的结构如下:
其中:n为正整数;
Ar为双酚,为4,4-二羟基联苯、双酚A、双酚AF或对苯二酚。
一种基于氰基结构侧链磺化聚芳醚离子交换膜的制备方法,步骤如下:
(1)4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈的合成:在惰性气体保护下,将五氟苯甲腈、4-羟基苯磺酸钠和碳酸钾溶解于溶剂N,N-二甲基甲酰胺中,在 0℃保持温度恒定反应24h;将反应溶液离心、萃取、旋蒸、干燥得到4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈;
所述的4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈结构式如下:
所述的五氟苯甲腈:4-羟基苯磺酸钠:碳酸钾的摩尔比为1.2:1:1.5;
所述的五氟苯甲腈、4-羟基苯磺酸钠和碳酸钾在溶剂N,N-二甲基甲酰胺中的w/v为10.9%~13.4%;
(2)基于氰基结构侧链磺化聚芳醚的合成:在惰性气体保护下,将4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈、双酚和碳酸钾溶解于溶剂二甲基亚砜中,在 30℃保持温度恒定反应40h;将反应溶液倒入沉淀剂A中,过滤、洗涤、干燥得到基于氰基结构侧链磺化聚芳醚;
所述的双酚为4,4-二羟基联苯、双酚A、双酚AF或对苯二酚;
所述的4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈:4,4-二羟基联苯:碳酸钾的摩尔比为1.:1:1.5;
所述的五氟苯甲腈、4-羟基苯磺酸钠和碳酸钾在溶剂A中的w/v为 10.9%~13.4%
所述的沉淀剂A为乙醇、水中的一种;
(3)基于氰基结构侧链磺化聚芳醚离子交换膜:取步骤(2)合成的基于氰基结构侧链磺化聚芳醚溶于溶剂B中,制成浓度为32g/L-37g/L的铸膜液;铸膜液滴加在铸膜玻璃板上,并在烘箱中充分烘干,制成厚度为30μm~40μm的基于氰基结构侧链磺化聚芳醚离子交换膜;
所述的溶剂B为N,N-二甲基乙酰胺、二甲基亚砜中的一种;
所述的铸膜液w/v为3.2~3.7%;
成膜的烘干温度为40~60℃,时间为24~48小时。
上述的w/v的单位均为g/ml。
本发明的效果和益处是通过缩合反应设计并制备了一种在全钒液流电池中应用的基于氰基结构侧链磺化聚芳醚离子交换膜。氰基的存在可以提高聚合物膜的稳定性,支链型磺酸基团可以增强膜的微相分离,从而具有高的离子电导率。此方法制备的基于氰基结构侧链磺化聚芳醚离子交换膜具备优良的电池性能,且具有良好的稳定性。
具体实施方式
以下结合实施案例对本发明做进一步详细的描述,但是本发明的实施方式并不仅限于此。
实施例1
4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈的合成:在250ml三口烧瓶中,将 6ml(46.8mmol)五氟苯甲腈、7.6498g(39mmol)4-羟基苯磺酸钠、和8.0853g (58.85mmol)碳酸钾溶解于溶剂70ml N,N-二甲基甲酰胺中,在在惰性气体保护下0℃保持温度恒定反应24h;将反应溶液离心、萃取、旋蒸、干燥得到白色固体;
得到的4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈如下:
基于氰基结构侧链磺化聚芳醚的合成:在25ml三口烧瓶中,将0.4578g(1.24mmol)4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈、0.2309g(1.24mmol)4, 4-二羟基联苯和0.3428g(2.48mmol)碳酸钾溶解于溶剂5ml二甲基亚砜中在惰性气体保护下30℃保持温度恒定反应40h;将反应溶液倒入沉淀剂乙醇中,过滤、洗涤、干燥得到基于氰基结构侧链磺化聚芳醚;
得到的基于氰基结构侧链磺化聚芳醚如下:
基于氰基结构侧链磺化聚芳醚离子交换膜:取步骤(2)合成的基于氰基结构侧链磺化聚芳醚溶于二甲基亚砜中,制成浓度为32g/L的铸膜液;铸膜液滴加在铸膜玻璃板上,并在烘箱60℃中干燥24h,制成厚度为30μm的基于氰基结构侧链磺化聚芳醚离子交换膜;
经测试表明,基于氰基结构侧链磺化聚芳醚离子交换膜25℃时离子传导率为87.5mS cm-1,吸水率为50.35%,溶胀度为19.6%。在全钒液流电池中,60mA cm-2电密时,CE为94.6%,EE为86.0%;
实施例2
4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈的合成:同实施例1
基于氰基结构侧链磺化聚芳醚的合成:在25ml三口烧瓶中,将0.4578g(1.24mmol)4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈、0.2271g(1.24mmol) 双酚A和0.3428g(2.48mmol)碳酸钾溶解于溶剂5ml二甲基亚砜中在惰性气体保护下30℃保持温度恒定反应40h;将反应溶液倒入沉淀剂乙醇中,过滤、洗涤、干燥得到基于氰基结构侧链磺化聚芳醚;
得到的基于氰基结构侧链磺化聚芳醚如下:
基于氰基结构侧链磺化聚芳醚离子交换膜:取步骤(2)合成的基于氰基结构侧链磺化聚芳醚溶于二甲基亚砜中,制成浓度为32g/L的铸膜液;铸膜液滴加在铸膜玻璃板上,并在烘箱60℃中干燥24h,制成厚度为30μm的基于氰基结构侧链磺化聚芳醚离子交换膜;
经测试表明,基于氰基结构侧链磺化聚芳醚离子交换膜25℃时离子传导率为90.3mS cm-1,吸水率为49.5%,溶胀度为19.4%。在全钒液流电池中,60mA cm-2电密时,CE为95.1%,EE为86.3%;
实施例3
4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈的合成:同实施例1
基于氰基结构侧链磺化聚芳醚的合成:在25ml三口烧瓶中,将0.4578g(1.24mmol)4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈、0.4169g(1.24mmol) 双酚AF和0.3428g(2.48mmol)碳酸钾溶解于溶剂5ml二甲基亚砜中在惰性气体保护下30℃保持温度恒定反应40h;将反应溶液倒入沉淀剂乙醇中,过滤、洗涤、干燥得到基于氰基结构侧链磺化聚芳醚;
得到的基于氰基结构侧链磺化聚芳醚如下:
基于氰基结构侧链磺化聚芳醚离子交换膜:取步骤(2)合成的基于氰基结构侧链磺化聚芳醚溶于二甲基亚砜中,制成浓度为32g/L的铸膜液;铸膜液滴加在铸膜玻璃板上,并在烘箱60℃中干燥24h,制成厚度为30μm的基于氰基结构侧链磺化聚芳醚离子交换膜;
经测试表明,基于氰基结构侧链磺化聚芳醚离子交换膜25℃时离子传导率为88.5mS cm-1,吸水率为48.4%,溶胀度为18.5%。在全钒液流电池中,60mA cm-2电密时,CE为93.9%,EE为84.8%。
Claims (3)
2.权利要求1所述的基于氰基结构侧链磺化聚芳醚离子交换膜的制备方法,其特征在于,步骤如下:
(1)4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈的合成:在惰性气体保护下,将五氟苯甲腈、4-羟基苯磺酸钠和碳酸钾溶解于溶剂N,N-二甲基甲酰胺中,在0℃保持温度恒定反应24h;将反应溶液离心、萃取、旋蒸、干燥得到4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈;
所述的4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈结构式如下:
所述的五氟苯甲腈:4-羟基苯磺酸钠:碳酸钾的摩尔比为1.2:1:1.5;
所述的五氟苯甲腈、4-羟基苯磺酸钠和碳酸钾在溶剂N,N-二甲基甲酰胺中的w/v为10.9%~13.4%;
(2)基于氰基结构侧链磺化聚芳醚的合成:在惰性气体保护下,将4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈、双酚和碳酸钾溶解于溶剂二甲基亚砜中,在30℃保持温度恒定反应40h;将反应溶液倒入沉淀剂A中,过滤、洗涤、干燥得到基于氰基结构侧链磺化聚芳醚;
所述的双酚为4,4-二羟基联苯、双酚A、双酚AF或对苯二酚;
所述的4-苯氧基-4-磺酸基-2,3,5,6-四氟苄腈:4,4-二羟基联苯:碳酸钾的摩尔比为1.:1:1.5;
所述的五氟苯甲腈、4-羟基苯磺酸钠和碳酸钾在溶剂A中的w/v为10.9%~13.4%
所述的沉淀剂A为乙醇、水中的一种;
(3)基于氰基结构侧链磺化聚芳醚离子交换膜:取步骤(2)合成的基于氰基结构侧链磺化聚芳醚溶于溶剂B中,制成浓度为32g/L-37g/L的铸膜液;铸膜液滴加在铸膜玻璃板上,并在烘箱中充分烘干,制成厚度为30μm~40μm的基于氰基结构侧链磺化聚芳醚离子交换膜;
所述的溶剂B为N,N-二甲基乙酰胺、二甲基亚砜中的一种;
所述的铸膜液w/v为3.2~3.7%;
上述的w/v的单位均为g/ml。
3.根据权利要求2所述的制备方法,其特征在于,步骤(3)成膜的烘干温度为40~60℃,时间为24~48小时。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011440311.1A CN112708155B (zh) | 2020-12-11 | 2020-12-11 | 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011440311.1A CN112708155B (zh) | 2020-12-11 | 2020-12-11 | 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112708155A true CN112708155A (zh) | 2021-04-27 |
CN112708155B CN112708155B (zh) | 2021-11-05 |
Family
ID=75542950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011440311.1A Active CN112708155B (zh) | 2020-12-11 | 2020-12-11 | 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112708155B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393854A (zh) * | 2023-11-20 | 2024-01-12 | 广东技术师范大学 | 一种提高富锂电极材料高温和高电压循环稳定性的电解液添加剂及电解液 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060258836A1 (en) * | 2003-03-19 | 2006-11-16 | Mcgrath James | Aromatic nitrile containing ion-conducting sulfonated polymeric material |
CN101388466A (zh) * | 2008-10-21 | 2009-03-18 | 中山大学 | 一种用于高温燃料电池的质子交换膜及其制备方法 |
CN107722260A (zh) * | 2017-11-07 | 2018-02-23 | 福州大学 | 一种基于双酚a的长侧链型含氟磺化聚芳醚化合物及其制备方法 |
CN110041519A (zh) * | 2019-05-05 | 2019-07-23 | 大连理工大学 | 一种长支链聚芳醚腈阴离子交换膜及其制备方法 |
CN110437438A (zh) * | 2019-07-29 | 2019-11-12 | 福州大学 | 一种用于全钒液流电池的密集磺化含氟聚芳醚质子交换膜及其制备方法 |
-
2020
- 2020-12-11 CN CN202011440311.1A patent/CN112708155B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060258836A1 (en) * | 2003-03-19 | 2006-11-16 | Mcgrath James | Aromatic nitrile containing ion-conducting sulfonated polymeric material |
CN101388466A (zh) * | 2008-10-21 | 2009-03-18 | 中山大学 | 一种用于高温燃料电池的质子交换膜及其制备方法 |
CN107722260A (zh) * | 2017-11-07 | 2018-02-23 | 福州大学 | 一种基于双酚a的长侧链型含氟磺化聚芳醚化合物及其制备方法 |
CN110041519A (zh) * | 2019-05-05 | 2019-07-23 | 大连理工大学 | 一种长支链聚芳醚腈阴离子交换膜及其制备方法 |
CN110437438A (zh) * | 2019-07-29 | 2019-11-12 | 福州大学 | 一种用于全钒液流电池的密集磺化含氟聚芳醚质子交换膜及其制备方法 |
Non-Patent Citations (2)
Title |
---|
PENG, SANGSHAN: "Polybenzimidazole membranes with nanophase-separated structure induced by non-ionic hydrophilic side chains for vanadium flow batteries", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
陶丹等: "磺酸基在侧链萘环上的磺化聚芳醚质子交换膜的制备与性能研究", 《高分子学报》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117393854A (zh) * | 2023-11-20 | 2024-01-12 | 广东技术师范大学 | 一种提高富锂电极材料高温和高电压循环稳定性的电解液添加剂及电解液 |
Also Published As
Publication number | Publication date |
---|---|
CN112708155B (zh) | 2021-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Chemically durable polymer electrolytes for solid-state alkaline water electrolysis | |
CN110336052B (zh) | 一种混合基质型阳离子交换膜及其制备方法 | |
Chen et al. | Synthesis and properties of novel sulfonated poly (arylene ether sulfone) ionomers for vanadium redox flow battery | |
JP5222687B2 (ja) | 高分子鎖の内部に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体、高分子鎖の内部および末端に架橋構造を有するスルホン化したポリ(アリレンエーテル)共重合体およびそれを用いた高分子電解質膜 | |
CN101161639B (zh) | 固体酸、包含它的聚合物电解质膜和使用该膜的燃料电池 | |
US20230105570A1 (en) | Carbazole-based anion exchange material, preparation method therefor, and use thereof | |
CN114213688B (zh) | 聚苯并咪唑型两性离子交换膜材料及其制备方法和应用 | |
CN113437341B (zh) | 一种液流电池用两性离子传导膜及其制备方法 | |
CN110993998A (zh) | 一种含萘环聚苯并咪唑型质子交换膜及其制备方法和应用 | |
Qian et al. | Quaternary ammonium-functionalized crosslinked poly (aryl ether sulfone) s anion exchange membranes with enhanced alkaline stability for water electrolysis | |
CN112708155B (zh) | 一种基于氰基结构侧链磺化聚芳醚离子交换膜及其制备方法 | |
CN106543439B (zh) | 燃料电池用交联型含氨基磺化聚芴醚砜腈质子交换膜材料、制备方法及其应用 | |
CN110078961B (zh) | 一种多羟基功能化聚苯并咪唑离子交换膜及制备方法 | |
KR101235167B1 (ko) | 가교구조를 포함하는 술폰화된 폴리(아릴렌 에테르) 공중합체 및 이를 포함하는 고분자 전해질막 | |
CN116487665A (zh) | 一种聚氧芴吲哚型阴离子交换膜及其制备方法 | |
KR101613260B1 (ko) | 술포네이트계 단량체, 이의 제조방법, 상기 단량체의 중합체, 상기 중합체를 포함하는 고분자 전해질막, 및 이를채용한 연료전지 | |
CN112151843A (zh) | 一种中性氧化还原液流电池体系的制备方法 | |
CN115353619A (zh) | 一种微孔季铵鎓官能化阴离子交换膜及其制备方法 | |
CN115536885A (zh) | 一种亚微相分离阴离子交换膜的制备方法 | |
CN113278151B (zh) | 一类含密集型烷基硫柔性侧链结构聚芳醚砜聚合物及其制备方法和应用 | |
CN115224333A (zh) | 具有高质子传导率与稳定性的季铵化聚苯并咪唑凝胶型质子交换膜及其制备方法 | |
KR101286265B1 (ko) | 술폰화 폴리술폰케톤 공중합체, 이를 포함하는 고분자전해질, 및 이의 제조방법 | |
CN114672147A (zh) | 含金刚烷无规阴离子交换膜及其制备方法 | |
CN100336843C (zh) | 含双酚芴的磺化高聚物及其合成和应用 | |
CN109411796B (zh) | 一种用于钒电池的交联型质子交换膜及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |