CN112647063A - 基于激光辐照的dlc-纳米金刚石复合涂层制备方法 - Google Patents

基于激光辐照的dlc-纳米金刚石复合涂层制备方法 Download PDF

Info

Publication number
CN112647063A
CN112647063A CN202011372926.5A CN202011372926A CN112647063A CN 112647063 A CN112647063 A CN 112647063A CN 202011372926 A CN202011372926 A CN 202011372926A CN 112647063 A CN112647063 A CN 112647063A
Authority
CN
China
Prior art keywords
diamond
nano
coating
carbon
composite coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011372926.5A
Other languages
English (en)
Other versions
CN112647063B (zh
Inventor
崔雨潇
郭平
马家豪
戚厚军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tju Binhai Industrial Research Institute Co ltd
Original Assignee
Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology and Education China Vocational Training Instructor Training Center filed Critical Tianjin University of Technology and Education China Vocational Training Instructor Training Center
Priority to CN202011372926.5A priority Critical patent/CN112647063B/zh
Publication of CN112647063A publication Critical patent/CN112647063A/zh
Application granted granted Critical
Publication of CN112647063B publication Critical patent/CN112647063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种基于激光辐照的DLC‑纳米金刚石复合涂层制备方法,包括:对纳米金刚石涂层表面进行预处理;将飞秒激光光束聚焦在预处理后的纳米金刚石涂层表面晶粒顶端,进行飞秒激光刻蚀扫描处理,将纳米金刚石涂层表层纳米金刚石团簇原位诱变为类金刚石;3)对类金刚石‑纳米金刚石复合涂层进行后处理。本发明不仅能够在纳米金刚石涂层表面制备类金刚石薄膜,同时大幅改善类金刚石‑纳米金刚石复合涂层的表面粗糙度,具有显著增益效果。本发明获得的类金刚石‑纳米金刚石复合涂层的表面粗糙度大幅降低,在摩擦过程中可显著降低摩擦副的摩擦系数和对磨面的磨损量。本发明的制备方法工艺简单,成本低廉,非常适合于干摩擦及水润滑工况。

Description

基于激光辐照的DLC-纳米金刚石复合涂层制备方法
技术领域
本发明涉及一种复合涂层的制备方法。特别是涉及一种基于激光辐照的DLC-纳米金刚石复合涂层制备方法。
背景技术
纳米金刚石涂层具有高硬度、高弹性模量、极低摩擦系数和良好的自润滑性能、极高的热导率和化学稳定性、小介电常数、宽带隙等优秀的力学性能和物理性能,在耐磨减摩器件及生物植入器件领域具有广阔的应用前景。然而,通过化学气相沉积工艺制备获得的纳米金刚石涂层的表面粗糙度相对较高,通常无法直接应用于上述领域。不仅如此,纳米金刚石涂层的高表面粗糙度往往在摩擦过程中形成相对较高的摩擦系数,并对对磨表面造成较高的磨损。
然而金刚石材料具有极高的硬度,传统的机械抛光工艺效率较低,并且抛光曲面困难,容易在金刚石涂层表面产生划痕,影响金刚石涂层在上述领域的应用,因此难以直接应用于CVD金刚石涂层的精密抛光。一些研究人员利用金刚石一定条件下转化为石墨的特点,提出对金刚石涂层进行化学抛光,但是这些抛光方法常常需要使用特殊的抛光液,并最终带来环境污染问题。
除抛光外,在金刚石涂层表面施加固体润滑剂是降低金刚石涂层摩擦系数及其对对磨表面磨损量的另一种思路。类金刚石(diamond-like carbon,DLC)薄膜是一种具有sp2和sp3成分的非晶碳膜,具有优秀的自润滑性能。对纳米金刚石薄膜同时施加抛光和类金刚石薄膜可望进一步改善纳米金刚石涂层的摩擦磨损性能,然而常规的抛光和类金刚石薄膜制备的复合工艺非常复杂,且成本高昂。
发明内容
本发明所要解决的技术问题是,提供一种大幅改善类金刚石-纳米金刚石复合涂层表面粗糙度的基于激光辐照的DLC-纳米金刚石复合涂层制备方法。
本发明所采用的技术方案是:一种基于激光辐照的DLC-纳米金刚石复合涂层制备方法,包括如下步骤:
1)对纳米金刚石涂层表面进行预处理;
2)将飞秒激光光束聚焦在预处理后的纳米金刚石涂层表面晶粒顶端,进行飞秒激光刻蚀扫描处理,将纳米金刚石涂层表层纳米金刚石团簇原位诱变为类金刚石;
3)对类金刚石-纳米金刚石复合涂层进行后处理。
步骤1)所述的纳米金刚石涂层表面的纳米金刚石涂层晶粒的粒径为50~100nm。
步骤1)所述的纳米金刚石涂层的表面粗糙度为Ra 70~100nm。
步骤1)所述的预处理,是将纳米金刚石涂层浸入由金刚石微粉和甘油配制的悬浊液中超声研磨5min,其中金刚石微粉的粒径为2~5μm,随后浸入无水乙醇中超声清洗5min,然后烘干。
所述的由金刚石微粉和甘油配制的悬浊液中所述金刚石微粉与所述甘油的配比为1:1。
步骤2)所述的飞秒激光的能量密度为0.34~0.68J/cm2,脉冲宽度为200fs,重复频率为50MHz,光斑直径为10μm。
步骤2)所述的飞秒激光的刻蚀扫描间距为3~5μm。
步骤3)所述的后处理,是将类金刚石-纳米金刚石涂层置于无水乙醇中进行超声处理5min,去除飞秒激光辐照后残留在类金刚石-纳米金刚石复合涂层表面的杂质。
步骤3)进行后处理后,完成的类金刚石-纳米金刚石复合涂层的表面粗糙度为Ra15~30nm,表层类金刚石薄膜的厚度为50~100nm。
本发明的基于激光辐照的DLC-纳米金刚石复合涂层制备方法,不仅能够在纳米金刚石涂层表面制备类金刚石薄膜,同时大幅改善类金刚石-纳米金刚石复合涂层的表面粗糙度,具有显著增益效果。本发明采用飞秒激光辐照方法,将纳米金刚石涂层表层金刚石成分原位诱变为类金刚石成分,获得的类金刚石-纳米金刚石复合涂层的表面粗糙度相较未经过飞秒激光辐照的纳米金刚石涂层大幅降低,在摩擦过程中可显著降低摩擦副的摩擦系数和对磨面的磨损量。本发明的制备方法工艺简单,成本低廉,非常适合于干摩擦及水润滑工况。
附图说明
图1是本发明基于激光辐照的DLC-纳米金刚石复合涂层制备方法的抛光流程图;
图2是例制备的类金刚石-纳米金刚石复合涂层的表面形貌的SEM图片;
图3是实例1制备的类金刚石-纳米金刚石复合涂层的截面形貌的SEM图片;
图4是实例1制备的类金刚石-纳米金刚石复合涂层的XPS图谱;
图5是实例2制备的类金刚石-纳米金刚石复合涂层的表面形貌的SEM图片;
图6是实例2制备的类金刚石-纳米金刚石复合涂层的截面形貌的SEM图片。
具体实施方式
下面结合实施例和附图对本发明的基于激光辐照的DLC-纳米金刚石复合涂层制备方法做出详细说明。
如图1所示,本发明的基于激光辐照的DLC-纳米金刚石复合涂层制备方法,包括如下步骤:
1)对纳米金刚石涂层表面进行预处理;其中,
所述的纳米金刚石涂层表面的纳米金刚石涂层晶粒的粒径为50~100nm。所述的纳米金刚石涂层的表面粗糙度为Ra 70~100nm。
所述的预处理,是将纳米金刚石涂层浸入由金刚石微粉和甘油配制的悬浊液中超声研磨5min,其中金刚石微粉的粒径为2~5μm,随后浸入无水乙醇中超声清洗5min,然后烘干。所述的由金刚石微粉和甘油配制的悬浊液中所述金刚石微粉与所述甘油的配比为1:1。
2)将飞秒激光光束聚焦在预处理后的纳米金刚石涂层表面晶粒顶端,进行飞秒激光刻蚀扫描处理,将纳米金刚石涂层表层纳米金刚石团簇原位诱变为类金刚石(diamond-like carbon,DLC);其中,
所述的飞秒激光的能量密度为0.34~0.68J/cm2,脉冲宽度为200fs,重复频率为50MHz,光斑直径为10μm。所述的飞秒激光的刻蚀扫描间距为3~5μm。
3)对类金刚石-纳米金刚石复合涂层进行后处理;其中,
所述的后处理,是将类金刚石-纳米金刚石涂层置于无水乙醇中进行超声处理5min,去除飞秒激光辐照后残留在类金刚石-纳米金刚石复合涂层表面的杂质。
进行后处理后,完成的类金刚石-纳米金刚石复合涂层的表面粗糙度为Ra 15~30nm,表层类金刚石薄膜的厚度为50~100nm。
下面结合具体实施例对本发明的基于激光辐照的DLC-纳米金刚石复合涂层制备方法进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实例1:
以晶粒尺寸50nm,表面粗糙度Ra 70nm的纳米金刚石涂层为对象,进行飞秒激光辐照。首先对纳米金刚石涂层表面进行预处理,将其浸入由金刚石微粉和甘油配制的悬浊液中超声研磨5min,其中金刚石微粉的粒径为2μm,随后浸入无水乙醇中进行超声清洗5min,然后烘干。
采用脉冲宽度为200fs、能量密度0.34J/cm2、重复频率50MHz、光斑直径为10μm的飞秒激光,将飞秒激光光束聚焦于微米金刚石涂层表面,进行飞秒激光辐照扫描处理,扫描间距为3μm。飞秒激光辐照将纳米金刚石表层纳米金刚石成分原位诱变为类金刚石成分。
将类金刚石-纳米金刚石复合涂层置于无水乙醇中进行超声处理5min,去除飞秒激光辐照后残留在类金刚石-纳米金刚石复合涂层表面的杂质。
制备获得的类金刚石-纳米金刚石复合涂层,表层类金刚石薄膜的厚度为50nm,表面粗糙度由Ra 70nm降至30nm。
图2为本实施例制备的类金刚石-纳米金刚石复合涂层的表面形貌的SEM图片。图3为本实施例制备的类金刚石-纳米金刚石复合涂层的截面形貌的SEM图片。图4为本实施例制备的类金刚石-纳米金刚石复合涂层的XPS图谱。
实例2:
以晶粒尺寸100nm,表面粗糙度Ra 100nm的纳米金刚石涂层为对象,进行飞秒激光辐照。首先对纳米金刚石涂层表面进行预处理,将其浸入由金刚石微粉和甘油配制的悬浊液中超声研磨5min,其中金刚石微粉的粒径为5μm,随后浸入无水乙醇中进行超声清洗5min,然后烘干。
采用脉冲宽度为200fs、能量密度0.68J/cm2、重复频率50MHz、光斑直径为10μm的飞秒激光,将飞秒激光光束聚焦于微米金刚石涂层表面,进行飞秒激光辐照扫描处理,扫描间距为5μm。飞秒激光辐照将纳米金刚石表层纳米金刚石成分原位诱变为类金刚石成分。
将类金刚石-纳米金刚石复合涂层置于无水乙醇中进行超声处理5min,去除飞秒激光辐照后残留在类金刚石-纳米金刚石复合涂层表面的杂质。
制备获得的类金刚石-纳米金刚石复合涂层,表层类金刚石薄膜的厚度为100nm,表面粗糙度由Ra 100nm降至15nm。
图5为本实施例制备的类金刚石-纳米金刚石复合涂层的表面形貌的SEM图片。图6为本实施例制备的类金刚石-纳米金刚石复合涂层的截面形貌的SEM图片。
实例3:
以晶粒尺寸50nm,表面粗糙度Ra 80nm的纳米金刚石涂层为对象,进行飞秒激光辐照。首先对纳米金刚石涂层表面进行预处理,将其浸入由金刚石微粉和甘油配制的悬浊液中超声研磨5min,其中金刚石微粉的粒径为3.5μm,随后浸入无水乙醇中进行超声清洗5min,然后烘干。
采用脉冲宽度为200fs、能量密度0.5J/cm2、重复频率50MHz、光斑直径为10μm的飞秒激光,将飞秒激光光束聚焦于微米金刚石涂层表面,进行飞秒激光辐照扫描处理,扫描间距为4μm。飞秒激光辐照将纳米金刚石表层纳米金刚石成分原位诱变为类金刚石成分。
将类金刚石-纳米金刚石复合涂层置于无水乙醇中进行超声处理5min,去除飞秒激光辐照后残留在类金刚石-纳米金刚石复合涂层表面的杂质。
制备获得的类金刚石-纳米金刚石复合涂层,表层类金刚石薄膜的厚度为100nm,表面粗糙度由Ra 80nm降至30nm。

Claims (9)

1.一种基于激光辐照的DLC-纳米金刚石复合涂层制备方法,其特征在于,包括如下步骤:
1)对纳米金刚石涂层表面进行预处理;
2)将飞秒激光光束聚焦在预处理后的纳米金刚石涂层表面晶粒顶端,进行飞秒激光刻蚀扫描处理,将纳米金刚石涂层表层纳米金刚石团簇原位诱变为类金刚石;
3)对类金刚石-纳米金刚石复合涂层进行后处理。
2.根据权利要求1所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,步骤1)所述的纳米金刚石涂层表面的纳米金刚石涂层晶粒的粒径为50~100nm。
3.根据权利要求1所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,步骤1)所述的纳米金刚石涂层的表面粗糙度为Ra 70~100nm。
4.根据权利要求1所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,步骤1)所述的预处理,是将纳米金刚石涂层浸入由金刚石微粉和甘油配制的悬浊液中超声研磨5min,其中金刚石微粉的粒径为2~5μm,随后浸入无水乙醇中超声清洗5min,然后烘干。
5.根据权利要求4所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,所述的由金刚石微粉和甘油配制的悬浊液中所述金刚石微粉与所述甘油的配比为1:1。
6.根据权利要求1所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,步骤2)所述的飞秒激光的能量密度为0.34~0.68J/cm2,脉冲宽度为200fs,重复频率为50MHz,光斑直径为10μm。
7.根据权利要求1所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,步骤2)所述的飞秒激光的刻蚀扫描间距为3~5μm。
8.根据权利要求1所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,步骤3)所述的后处理,是将类金刚石-纳米金刚石涂层置于无水乙醇中进行超声处理5min,去除飞秒激光辐照后残留在类金刚石-纳米金刚石复合涂层表面的杂质。
9.根据权利要求1所述的基于飞秒激光辐照原位诱变的类金刚石-纳米金刚石复合涂层的制备方法,其特征在于,步骤3)进行后处理后,完成的类金刚石-纳米金刚石复合涂层的表面粗糙度为Ra 15~30nm,表层类金刚石薄膜的厚度为50~100nm。
CN202011372926.5A 2020-11-30 2020-11-30 基于激光辐照的dlc-纳米金刚石复合涂层制备方法 Active CN112647063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011372926.5A CN112647063B (zh) 2020-11-30 2020-11-30 基于激光辐照的dlc-纳米金刚石复合涂层制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011372926.5A CN112647063B (zh) 2020-11-30 2020-11-30 基于激光辐照的dlc-纳米金刚石复合涂层制备方法

Publications (2)

Publication Number Publication Date
CN112647063A true CN112647063A (zh) 2021-04-13
CN112647063B CN112647063B (zh) 2022-06-07

Family

ID=75349693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011372926.5A Active CN112647063B (zh) 2020-11-30 2020-11-30 基于激光辐照的dlc-纳米金刚石复合涂层制备方法

Country Status (1)

Country Link
CN (1) CN112647063B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113681168A (zh) * 2021-09-10 2021-11-23 郑州磨料磨具磨削研究所有限公司 一种利用脉冲激光烧蚀均匀化加工金刚石膜表面的方法
CN113832447A (zh) * 2021-09-08 2021-12-24 宁波杭州湾新材料研究院 一种导电自润滑复合涂层及其制备方法
CN116247017A (zh) * 2023-02-06 2023-06-09 中国人民解放军国防科技大学 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409746A (zh) * 2013-07-12 2013-11-27 江苏大学 一种毫秒激光熔覆制备纳米金刚石复合涂层的方法
CN110565065A (zh) * 2018-06-06 2019-12-13 深圳先进技术研究院 碳化硅-纳米金刚石复合涂层、其制备方法和应用、冷挤压模具凸模及模具
WO2020135971A1 (en) * 2018-12-28 2020-07-02 Asml Netherlands B.V. Substrate holder for use in a lithographic apparatus and a method of manufacturing a substrate holder
CN111647875A (zh) * 2020-07-09 2020-09-11 上海交通大学 高光洁度复杂形状超纳米金刚石涂层刀具批量制备方法
CN113088849A (zh) * 2021-03-09 2021-07-09 武汉大学 激光诱导合成纳米金刚石的复合强化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409746A (zh) * 2013-07-12 2013-11-27 江苏大学 一种毫秒激光熔覆制备纳米金刚石复合涂层的方法
CN110565065A (zh) * 2018-06-06 2019-12-13 深圳先进技术研究院 碳化硅-纳米金刚石复合涂层、其制备方法和应用、冷挤压模具凸模及模具
WO2020135971A1 (en) * 2018-12-28 2020-07-02 Asml Netherlands B.V. Substrate holder for use in a lithographic apparatus and a method of manufacturing a substrate holder
CN111647875A (zh) * 2020-07-09 2020-09-11 上海交通大学 高光洁度复杂形状超纳米金刚石涂层刀具批量制备方法
CN113088849A (zh) * 2021-03-09 2021-07-09 武汉大学 激光诱导合成纳米金刚石的复合强化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓福铭等: "微/纳米金刚石复合涂层刀具的制备及切削试验", 《人工晶体学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113832447A (zh) * 2021-09-08 2021-12-24 宁波杭州湾新材料研究院 一种导电自润滑复合涂层及其制备方法
CN113832447B (zh) * 2021-09-08 2024-05-31 宁波杭州湾新材料研究院 一种导电自润滑复合涂层及其制备方法
CN113681168A (zh) * 2021-09-10 2021-11-23 郑州磨料磨具磨削研究所有限公司 一种利用脉冲激光烧蚀均匀化加工金刚石膜表面的方法
CN116247017A (zh) * 2023-02-06 2023-06-09 中国人民解放军国防科技大学 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用
CN116247017B (zh) * 2023-02-06 2024-07-02 中国人民解放军国防科技大学 一种金刚石衬底sp3-sp2杂化成键网络层制备方法及应用

Also Published As

Publication number Publication date
CN112647063B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
CN112647063B (zh) 基于激光辐照的dlc-纳米金刚石复合涂层制备方法
Su et al. Lubricating performances of graphene oxide and onion-like carbon as water-based lubricant additives for smooth and sand-blasted steel discs
Chen et al. Surface modulation to enhance chemical mechanical polishing performance of sliced silicon carbide Si-face
CN101487121B (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
CN107937955A (zh) 一种提高干摩擦条件下铝合金表面耐磨性的方法
CN105200391B (zh) 适用于水润滑的金刚石涂层拉拔模具制备方法
Bin et al. Application of ultra-smooth composite diamond film coated WC–Co drawing dies under water-lubricating conditions
CN107281544A (zh) 一种钛及钛合金表面自润滑耐磨复合涂层及其制备方法
Fan et al. Surface composition–lubrication design of Al2O3/Ni laminated composites—Part I: Tribological synergy effect of micro–dimpled texture and diamond–like carbon films in a water environment
Hu et al. Tribological properties of nano-porous anodic aluminum oxide template
RU2440441C2 (ru) Деталь в скользящем контакте в режиме смазки, покрытая тонкой пленкой
Xiang et al. Study of tribological properties of textured boron-doped diamond film under water lubrication
Xing et al. High-temperature tribological properties of Si3N4/TiC ceramic with bionic surface textures and DLC coatings
Sui et al. Nano‐twisted double helix carbon debris improves the wear resistance of ultra‐thick diamond‐like carbon coatings
Li et al. Energy beam-based direct and assisted polishing techniques for diamond: A review
Cao et al. Simultaneously improving the corrosion resistance and wear resistance of internal surface of aluminum pipe by using multilayer diamond-like carbon-Si coatings
CN207552455U (zh) 一种涂覆磁流体的织构化表面润滑基体
CN105648499A (zh) 一种钛合金表面梯度减摩耐磨涂层及其制备方法
CN106119814A (zh) 一种在黄铜上化学镀Ni‑P、Ni‑P‑PTFE复合涂层的表面自润滑技术
CN112479203A (zh) 一种在金刚石表面原位生成减磨石墨烯薄膜的方法与制件
Hu et al. Fabrication and tribological properties of the laser textured SiC cylinders with diamond coating
WO2012153819A1 (ja) 炭素膜積層体、並びにその積層体の製造方法及びそれを用いた潤滑材
JP2013087325A (ja) 硬質炭素膜及びその形成方法
Khun et al. Effects of platinum content on tribological properties of platinum/nitrogen doped diamond-like carbon thin films deposited via magnetron sputtering
CN113652626B (zh) 一种实现复杂形状钢铁零件低温渗氮的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240204

Address after: Room 214, Building 3, No. 48 Jialingjiang Road, Lingang Economic Zone, Binhai New Area, Tianjin, 300452

Patentee after: TJU BINHAI INDUSTRIAL RESEARCH INSTITUTE CO.,LTD.

Country or region after: China

Address before: 300222 1310 Dagu South Road, Hexi District, Tianjin

Patentee before: TIANJIN University OF TECHNOLOGY AND EDUCATION (CHINA VOCATIONAL TRAINING INSTRUCTOR TRAINING CENTER)

Country or region before: China

TR01 Transfer of patent right