CN112646240B - 一种纳米甲壳素复合气凝胶及其制备方法和应用 - Google Patents

一种纳米甲壳素复合气凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN112646240B
CN112646240B CN202011435589.XA CN202011435589A CN112646240B CN 112646240 B CN112646240 B CN 112646240B CN 202011435589 A CN202011435589 A CN 202011435589A CN 112646240 B CN112646240 B CN 112646240B
Authority
CN
China
Prior art keywords
composite aerogel
nano chitin
nano
chitin composite
chitin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011435589.XA
Other languages
English (en)
Other versions
CN112646240A (zh
Inventor
黄瑶
刘慧�
孙云芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN202011435589.XA priority Critical patent/CN112646240B/zh
Publication of CN112646240A publication Critical patent/CN112646240A/zh
Application granted granted Critical
Publication of CN112646240B publication Critical patent/CN112646240B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Colloid Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种纳米甲壳素复合气凝胶及其制备方法和应用。本发明利用纳米甲壳素与聚二甲基硅氧烷(PDMS)形成皮克林乳液,然后以皮克林乳液为模板,交联固化后,经干燥得到纳米甲壳素复合气凝胶。本发明制备方法相对简单,未引入任何有毒有害物质作为助剂,且本发明所得的纳米甲壳素复合气凝胶具有结构均匀可控的特点,PDMS疏水位点均匀分布在材料内部,不易被侵蚀剥落,具有更好的使用稳定性,通过控制乳化时的油水相比例,也可对疏水组分含量进行控制,同时该纳米甲壳素复合气凝胶具有良好的力学性能,可在吸附饱和后通过简单的机械挤压进行吸附剂脱附并实现有机溶剂回收,并且在油水分离和水体净化等方面有良好的应用前景。

Description

一种纳米甲壳素复合气凝胶及其制备方法和应用
技术领域
本发明涉及材料制备的技术领域,尤其涉及一种纳米甲壳素复合气凝胶及其制备方法和应用。
背景技术
高分子气凝胶作为一类新兴的环境友好型三维多孔网络材料,因其低密度、高比表面积、大孔隙率、等特性在吸附剂材料和水处理领域受到关注。
甲壳素是一种天然多糖高分子,广泛存在于昆虫、甲壳类动物及真菌细胞壁中。每年地球上由生物合成的甲壳素可达几百亿吨,是自然界中仅次于纤维素的第二大类可再生天然高分子。甲壳素具有无毒性、良好的生物相容性和生物可降解性等性能,还具有止血、抗菌、调节植物生长等特殊性能,是构建绿色环保型气凝胶吸附剂的理想原材料之一。通过纳米纤维自组装的方法和溶解再生的方法均可获得甲壳素气凝胶。然而,由于甲壳素分子表面含大量亲水基团,所制备的气凝胶具有较强的亲水性,对非极性和弱极性的有机污染物亲和力及选择性较差,限制了在水污染处理中的应用。但相对亲水的甲壳素与疏水分子很难直接混溶,因此目前常用的气凝胶疏水改性方法是利用气相沉积或液相沉积法在气凝胶表面形成疏水涂层,然而表面修饰所得材料缺乏结构上的均匀性和可控性。另一方面,表面疏水涂层被有机溶剂浸润后易剥落,会导致使用过程中疏水性下降。
发明内容
本发明的目的在于,针对现有技术的上述不足,提出一种结构均匀可控、稳定性好和具有良好的力学性能的纳米甲壳素复合气凝胶及其制备方法和应用。
本发明的一种纳米甲壳素复合气凝胶的制备方法,利用纳米甲壳素与聚二甲基硅氧烷形成皮克林乳液,然后以所述皮克林乳液为模板,交联固化后,经干燥得到纳米甲壳素复合气凝胶。
一种纳米甲壳素复合气凝胶的制备方法,具体步骤如下:
S1:制备纳米甲壳素悬浮液:将甲壳素原料用20wt~40wt%NaOH进行脱乙酰处理后,经超声处理分散在0~0.1M醋酸溶液中,得到浓度为0.2~2.0wt%的纳米甲壳素悬浮液;
S2:制备复合乳液:将2-20%v/v的聚二甲基硅氧烷预聚物加入步骤S1所得纳米甲壳素悬浮液后,用高速匀浆机在10000~20000rpm转速进行乳化2~10min,得到水包油型复合乳液;
S3:交联:在步骤S2得到的水包油型复合乳液中加入0~1wt%交联剂,搅拌均匀得交联乳液;
S4:固化:将交联乳液分装到模具,于50~80℃加热1-4h固化,水洗去除多余交联剂;
S5:干燥:干燥后得到纳米甲壳素复合气凝胶。
进一步的,所述聚二甲基硅氧烷预聚物包括DowCorning Sylgard184硅橡胶,所述DowCorning Sylgard184硅橡胶由主剂和固化剂按10:1的重量比进行混合得到。
进一步的,所述交联剂包括戊二醛、环氧氯丙烷或京尼平。
进一步的,所述步骤S1中所述甲壳素原料为经漂白处理后的节肢动物外壳、软体动物骨骼、菌类和藻类提取物。
进一步的,所述步骤S5中的干燥方式为超临界干燥或冷冻干燥。
一种纳米甲壳素复合气凝胶,通过上述的制备方法制备得到。
一种纳米甲壳素复合气凝胶,所述纳米甲壳素复合气凝胶的性能为:密度:25~250mg/cm3;孔隙率80~98%,对非极性有机溶剂吸附量可达到自身质量的5~55倍。
一种纳米甲壳素复合气凝胶的应用,所述纳米甲壳素复合气凝胶作为油水分离材料和非极性或弱极性有机溶剂吸附材料。
本发明的有益效果:本发明以聚二甲基硅氧烷作为疏水组分,利用皮克林乳液的方法解决其与亲水的甲壳素之间的相容性问题,制备出具有一定疏水性的甲壳素气凝胶,用于从水体中选择性吸附非极性有机溶剂或油类;与常规表面疏水修饰的生物质气凝胶相比,本发明制备方法相对简单,未引入任何有毒有害物质作为助剂,且本发明所得的纳米甲壳素复合气凝胶具有结构均匀可控的特点,由于形成稳定的水包油型乳液,PDMS作为油相被水相的甲壳素进行包裹,PDMS疏水位点均匀分布在材料内部,不易被侵蚀剥落,具有更好的使用稳定性,通过控制乳化时的油水相比例,也可对疏水组分含量进行控制,同时该纳米甲壳素复合气凝胶具有良好的力学性能,可在吸附饱和后通过简单的机械挤压进行吸附剂脱附并实现有机溶剂回收,并且在油水分离和水体净化等方面有良好的应用前景。
附图说明
图1为实施例1-4制备的纳米甲壳素\PDMS乳液照片;
图2为实施例2制备的纳米甲壳素复合气凝胶的接触角测试图;
图3为实施例2制备的纳米甲壳素复合气凝胶表面滴加水滴(液滴1)和油红染色的四氯化碳液滴(液滴2)的照片;
图4为实施例3制备的纳米甲壳素复合气凝胶循环使用1次、2次和5次的力学性能测试结果图;
图5为实施例3制备的纳米甲壳素复合气凝胶循环利用次数和四氯化碳的吸附容量变化图。
具体实施方式
以下是本发明的具体实施例并结合附图,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
(1)甲壳素纳米纤维分散液制备:蟹壳甲壳素原料分散于33wt%NaOH溶液中,于60℃加热搅拌3h,冷却后水洗至中性,烘干得到表面脱乙酰的甲壳素粉末,脱乙酰度21%。取上述粉末2g分散于400mL纯水中,室温下搅拌6h,加入冰醋酸至终浓度为0.025M,室温下持续搅拌120h。混合液在冰浴条件下通过经超声处理(600W,20min/次ⅹ3次);所得悬浮液于10000g下离心15min,去除沉淀物后所得上清液经旋转蒸发浓缩至固含量1wt%。
(2)甲壳素-PDMS乳液制备:将PDMS预聚物按2.5%的体积比加入到实施例1所述的甲壳素纳米纤维悬浮液中,用高速匀浆机于10000rpm进行乳化处理5min,得到甲壳素纳米纤维稳定的皮克林乳液。
(3)交联:步骤(2)所得乳液中加入0.5wt%戊二醛作为交联剂,室温下搅拌30min。
(4)固化:步骤(3)所得交联乳液分装到模具,于60℃烘箱中加热2h,使其中的PDMS固化,得到复合水凝胶。
(5)干燥:步骤(4)得到的水凝胶经水洗后通过冷冻干燥得到力学性能良好的复合气凝胶,密度为42mg/cm3,孔隙率为97.1%,水接触角为126.3°。材料对水和四氯化碳的饱和吸附量分别为QW=15.84g/g,QO=26.19g/g,吸附选择系数QO/QW=1.65。压缩至50%时力学强度为48kPa。
实施例2
将实施例1步骤(2)中PDMS体积分数提高到5%,重复步骤(1)-(5)得到力学性能良好的复合气凝胶,材料密度为72mg/cm3,孔隙率为94.9%,接触角为138.1°。材料对水和四氯化碳的质量吸附量分别为QW=2.52g/g,QO=13.69g/g,吸附选择系数QO/QW=5.43。压缩至50%时力学强度为43kPa。
图2为本实施例制备的纳米甲壳素复合气凝胶的接触角测试图,从图2可以看出经PDMS复合后的纳米甲壳素气凝胶具有高度的疏水性。
图3为本实施例制备的纳米甲壳素复合气凝胶表面滴加水滴(液滴1)和油红染色的四氯化碳液滴(液滴2)的照片,从图3可以看出,本实施例制备的纳米甲壳素复合气凝胶具有良好的疏水性,对非极性有机溶剂油良好的吸附性。
实施例3
将实施例1步骤(2)中PDMS体积分数提高到10%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,材料密度为142mg/cm3,孔隙率为90.0%,接触角为131.1°。材料对水和四氯化碳的质量吸附量分别为QW=0.52g/g,QO=6.10g/g,吸附选择系数QO/QW=11.7。压缩至50%时力学强度为49kPa。
图4为本实施例制备的纳米甲壳素复合气凝胶力学性能测试结果示意图,从图4可以看出,本实施例制备的纳米甲壳素复合气凝胶多次循环压缩后仍具有一定回弹性,具有优良的力学性能。
图5为本实施例制备的纳米甲壳素复合气凝胶循环利用次数和四氯化碳的吸附容量变化图,从图5可以看出纳米甲壳素复合气凝胶循环利用多次后,对四氯化碳的吸附容量依旧很好。
实施例4
将实施例1步骤(2)中PDMS体积分数提高到20%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为246mg/cm3,孔隙率为82.7%,接触角为130.6°。材料对水和四氯化碳的质量吸附量分别为QW=0.28g/g,QO=3.87g/g,吸附选择系数QO/QW=13.8。力学压缩强度为41kPa。
图1为实施例1-4制备的纳米甲壳素\PDMS乳液照片,乳液均匀稳定,未出现分层现象。
实施例5
将实施例1步骤(3)中交联剂戊二醛置换为0.5wt%环氧氯丙烷,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为27.2mg/cm3,孔隙率为98.1%,接触角为132.6°。材料对水和四氯化碳的质量吸附量分别为QW=9.52g/g,QO=42.5g/g,吸附选择系数QO/QW=4.46。
实施例6
将实施例1步骤(1)中甲壳素纳米纤维分散液浓度稀释至0.2wt%,步骤(2)中PDMS体积分数减小至0.1%,步骤(3)中交联剂戊二醛置换为0.2wt%京尼平,步骤(5)中冷冻干燥改为乙醇和叔丁醇置换后进行超临界干燥,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为22.1mg/cm3,孔隙率为98.4%,接触角为39.5°。材料对水和四氯化碳的质量吸附量分别为QW=39.9g/g,QO=55.6g/g,吸附选择系数QO/QW=1.39。
实施例7
将实施例1步骤(1)中33wt%NaOH溶液换成20wt%NaOH,得到部分脱乙酰的甲壳素粉末,脱乙酰度17%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为43mg/cm3,孔隙率为96.9%,水接触角为129.3°。材料对水和四氯化碳的饱和吸附量分别为QW=14.95g/g,QO=28.29g/g,吸附选择系数QO/QW=1.89。
实施例8
将实施例1步骤(1)中33wt%NaOH溶液换成40wt%NaOH,温度提高到90℃,得到部分脱乙酰的甲壳素粉末,脱乙酰度28%,步骤(2)中PDMS体积分数提高至5%,经步骤(1)-(5)得到力学性能良好的复合气凝胶,密度为69mg/cm3,孔隙率为95.2%,接触角为126.1°。材料对水和四氯化碳的质量吸附量分别为QW=3.92g/g,QO=14.12g/g,吸附选择系数QO/QW=3.60。
实施例9
将实施例4步骤(2)中乳化转速降提高至20000rpm,经步骤(1)-(5)得到力学性能良好的复合气凝胶,材料密度为139mg/cm3,孔隙率为90.2%,接触角为131.1°。材料对水和四氯化碳的质量吸附量分别为QW=0.46g/g,QO=6.38g/g,吸附选择系数QO/QW=13.9。
以上未涉及之处,适用于现有技术。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围,本发明所属技术领域的技术人员可以对所描述的具体实施例来做出各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的方向或者超越所附权利要求书所定义的范围。本领域的技术人员应该理解,凡是依据本发明的技术实质对以上实施方式所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。

Claims (9)

1.一种纳米甲壳素复合气凝胶的制备方法,其特征在于:利用纳米甲壳素与聚二甲基硅氧烷形成皮克林乳液,然后以所述皮克林乳液为模板,交联固化后,经干燥得到纳米甲壳素复合气凝胶。
2.如权利要求1所述一种纳米甲壳素复合气凝胶的制备方法,其特征在于:具体步骤如下:
S1:制备纳米甲壳素悬浮液:将甲壳素原料用20wt~40wt%NaOH进行脱乙酰处理后,经超声处理分散在0~0.1M醋酸溶液中,得到浓度为0.2~2.0wt%的纳米甲壳素悬浮液;
S2:制备复合乳液:将2-20%v/v的聚二甲基硅氧烷预聚物加入步骤S1所得纳米甲壳素悬浮液后,用高速匀浆机在10000~20000rpm转速进行乳化2~10min,得到水包油型复合乳液;
S3:交联:在步骤S2得到的水包油型复合乳液中加入0~1wt%交联剂,搅拌均匀得交联乳液;
S4:固化:将交联乳液分装到模具,于50~80℃加热1-4h固化,水洗去除多余交联剂;
S5:干燥:干燥后得到纳米甲壳素复合气凝胶。
3.如权利要求2所述一种纳米甲壳素复合气凝胶的制备方法,其特征在于:所述聚二甲基硅氧烷预聚物包括DowCorning Sylgard184硅橡胶,所述DowCorning Sylgard184硅橡胶由主剂和固化剂按10:1的重量比进行混合得到。
4.如权利要求3所述一种纳米甲壳素复合气凝胶的制备方法,其特征在于:所述交联剂包括戊二醛、环氧氯丙烷或京尼平。
5.如权利要求2所述的一种纳米甲壳素复合气凝胶的制备方法,其特征在于:所述步骤S1中所述甲壳素原料为经漂白处理后的节肢动物外壳、软体动物骨骼、菌类和藻类提取物。
6.如权利要求2所述的一种纳米甲壳素复合气凝胶的制备方法,其特征在于:所述步骤S5中的干燥方式为超临界干燥或冷冻干燥。
7.一种纳米甲壳素复合气凝胶,其特征在于:通过权利要求1~6任一项所述的制备方法制备得到。
8.如权利要求7所述的一种纳米甲壳素复合气凝胶,其特征在于:所述纳米甲壳素复合气凝胶的性能为:密度:25~250mg/cm3;孔隙率80~98%,对非极性有机溶剂吸附量可达到自身质量的5~55倍。
9.如权利要求8所述的一种纳米甲壳素复合气凝胶的应用,其特征在于:所述纳米甲壳素复合气凝胶作为油水分离材料和非极性或弱极性有机溶剂吸附材料。
CN202011435589.XA 2020-12-10 2020-12-10 一种纳米甲壳素复合气凝胶及其制备方法和应用 Active CN112646240B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011435589.XA CN112646240B (zh) 2020-12-10 2020-12-10 一种纳米甲壳素复合气凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011435589.XA CN112646240B (zh) 2020-12-10 2020-12-10 一种纳米甲壳素复合气凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112646240A CN112646240A (zh) 2021-04-13
CN112646240B true CN112646240B (zh) 2021-11-30

Family

ID=75350659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011435589.XA Active CN112646240B (zh) 2020-12-10 2020-12-10 一种纳米甲壳素复合气凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112646240B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO345092B1 (no) * 2017-03-17 2020-09-28 M Vest Water As Fremgangsmåte for fremstilling og anvendelse av produkt for fjerning av forurensing i vann
CN114292447B (zh) * 2021-11-24 2022-11-15 南京林业大学 Pickering泡沫模板法制备纳米几丁质基多孔导电弹性泡沫及应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100155A1 (en) * 2005-03-24 2006-09-28 Nolabs Ab Device for wound care, and manufacturing method thereof, involving the use of nitric oxide
CN102008757A (zh) * 2010-12-07 2011-04-13 天津嘉氏堂科技有限公司 疤痕修复材料
US20160223532A1 (en) * 2013-09-11 2016-08-04 Agenus Inc. High throughput screening for biomolecules
US10183270B1 (en) * 2017-11-21 2019-01-22 The Florida International University Board Of Trustees Encapsulated particulate matters in a sol-gel silica matrix and method of preparation
CN108404221A (zh) * 2018-04-09 2018-08-17 郑州轻工业学院 一种可注射性有机硅/壳聚糖纳米复合水凝胶及其制备方法与应用
CN110054780A (zh) * 2019-04-26 2019-07-26 上海美宝生命科技有限公司 一种胶原蛋白与改性壳聚糖接枝共聚物及其制备方法和应用
CN110358135A (zh) * 2019-07-01 2019-10-22 东华大学 一种柔性纳米纤维复合气凝胶材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fabrication of chitin nanofiber-PDMS composite aerogels from Pickering emulsion templates with potential application in hydrophobic organic contaminant removal;Huang, Yao 等;《JOURNAL OF HAZARDOUS MATERIALS》;20210626;第419卷 *

Also Published As

Publication number Publication date
CN112646240A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN112646240B (zh) 一种纳米甲壳素复合气凝胶及其制备方法和应用
Yang et al. Recent progress in bio-based aerogel absorbents for oil/water separation
CN103866487B (zh) 一种纳米微晶纤维素/壳聚糖/聚乙烯醇复合纳米膜的制备方法
KR102088709B1 (ko) 지지체 상에 nfc 필름의 제작 방법
CN102327746B (zh) 一种抗污染环糊精-聚合物复合纳滤膜及其制备方法
CN107753949B (zh) 黑磷纳米片、复合水凝胶及其制备方法与应用
Guo et al. Gradient cross-linked structure: Towards superior PVA nanofiltration membrane performance
JP7270993B2 (ja) 構造制御可能なイオン交換式ナノファイバー骨格三次元分離材及びその製造方法
CN103223309A (zh) 一种碳纳米管填充优先透醇复合膜及其制备方法
CN110284323A (zh) 柔性光热转换材料及其制备方法、在海水淡化中的用途
Li et al. Hydrophobic and self-recoverable cellulose nanofibrils/N-alkylated chitosan/poly (vinyl alcohol) sponge for selective and versatile oil/water separation
CN108273476A (zh) 一种玉米蛋白-海藻酸钠复合多孔疏水吸油海绵材料的制备方法
CN105833738B (zh) 纳米纤维素/大豆蛋白复合过滤材料及制备方法、用途
Xie et al. Pickering emulsions stabilized by amphiphilic carbonaceous materials derived from wheat straw
CN112341671A (zh) 石墨烯/纤维素复合气凝胶及其制造方法
CN105273216B (zh) 三维立体超褶皱聚乳酸微球的制备方法
Ampawan et al. Selective separation of dyes by green composite membrane based on polylactide with carboxylated cellulose microfiber from empty fruit bunch
Zhang et al. Fabrication of polyurethane porous composite films using biomass-based Juncus effusus fibers for oil removal from water
CN107519540A (zh) 一种高强柔性透光可植入的蚕丝蛋白/细菌纤维素/石墨烯复合导电膜
CN113042015B (zh) 环糊精改性氧化石墨烯复合气凝胶型有机物吸附剂及其制备方法和应用
JP4166562B2 (ja) 比表面積の大きいセルロース系物質
CN115960384B (zh) 一种利用无水乙醇调节结构的弹性细菌纤维素复合气凝胶及其制备方法和应用
CN110527114B (zh) 一种基于反相胶乳法制备淀粉-β-环糊精微球的方法
Guo et al. Microbial fabrication of cellulose nanofiber-based ultrafiltration membrane: A sustainable strategy for membrane manufacture
CN110465263A (zh) 一种碳纳米管嵌套硅藻土高效吸附材料及制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant