CN112624740A - 一种高熵ntc热敏电阻陶瓷材料及其制备方法 - Google Patents

一种高熵ntc热敏电阻陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN112624740A
CN112624740A CN202011570890.1A CN202011570890A CN112624740A CN 112624740 A CN112624740 A CN 112624740A CN 202011570890 A CN202011570890 A CN 202011570890A CN 112624740 A CN112624740 A CN 112624740A
Authority
CN
China
Prior art keywords
entropy
fuel
thermistor
ntc
ntc thermistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011570890.1A
Other languages
English (en)
Other versions
CN112624740B (zh
Inventor
高家兴
向凤云
唐光明
魏小明
张忠模
徐丽艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Materials Research Institute Co Ltd
Original Assignee
Chongqing Materials Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Materials Research Institute Co Ltd filed Critical Chongqing Materials Research Institute Co Ltd
Priority to CN202011570890.1A priority Critical patent/CN112624740B/zh
Publication of CN112624740A publication Critical patent/CN112624740A/zh
Application granted granted Critical
Publication of CN112624740B publication Critical patent/CN112624740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Thermistors And Varistors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高熵NTC热敏电阻陶瓷材料及其制备方法,其中,高熵NTC热敏电阻材料的化学式为Mg(Alx1Cox2Crx3Fex4Mnx5)2O4,所述高熵NTC热敏材料为单一尖晶石相结构。本发明所述材料具有高熵陶瓷的迟滞扩散效应,使其组织结构保持长期稳定,提高热敏电阻抗老化性能。

Description

一种高熵NTC热敏电阻陶瓷材料及其制备方法
技术领域
本发明涉及一种材料,特别涉及一种高熵NTC热敏电阻陶瓷材料及其制备方法。
背景技术
NTC热敏电阻是温度传感器领域中的重要元件,具有测温精度高,成本低,体积小等优点。具有较高的温度灵敏度和稳定性,并且价格低廉,在温度测量,温度控制,抑制浪涌电流等方面具有广泛的应用。热敏电阻的阻值会随使用时间的增加而发生漂移,这种现象称之为老化。传统热敏电阻的老化一直限制了热敏电阻在高精度高稳定性应用环境中的使用。
NTC热敏电阻一般采用具有尖晶石结构的过渡金属氧化物。早期NTC热敏电阻采用二主元设计,但二主元NTC热敏电阻工艺稳定性差,对烧结温度敏感。后来出现三主元、四主元热敏电阻,其性能较二主元热敏电阻有了较大提高。但热敏电阻的老化性能仍不能让人满意。热敏电阻的老化与热敏电阻在使用过程中的结构演变有关。目前一般认为NTC热敏电阻的导电既不是电子在导带中运动的结果,同时也不是空穴在价带中迁移所造成的,而是电子在能级之间直接转移、跃迁的结果,是电子从某一个原子跃迁到另一个相邻原子位置上的结果。因此阳离子的分布对热敏电阻的导电能力有影响。研究认为热敏电阻晶体内的阳离子导致晶格畸变,增大了晶格的弹性能,为消除或减少晶格内弹性能,阳离子倾向与定向、集束排列,在热敏电阻制备过程中,高温会打破这种定向、集束状态,并在冷却时将这种非平衡状态保留下来。但这种非平衡状态会在使用过程中向平衡态演变,这就导致阳离子分布发生变化,热敏电阻的阻值发生漂移。
高熵陶瓷由于具有动力学的迟滞扩散效应,如果将高熵陶瓷设计为热敏电阻,其阳离子的扩散速度会降低,阳离子的分布难以发生变化,高熵热敏电阻的老化性能将获得提高。
发明内容
本发明的目的是提供一种高熵NTC热敏电阻陶瓷材料及其制备方法,所述材料具有高熵陶瓷的迟滞扩散效应,使其组织成分保持长期稳定,提高热敏电阻抗老化性能。
本发明的技术方案是:
高熵NTC热敏电阻材料,该电阻材料的化学式为Mg(Alx1Cox2Crx3Fex4Mnx5)2O4,所述高熵NTC热敏材料为单一尖晶石相结构。
所述电阻材料的化学式中的x1、x2、x3、x4、x5的值为0.05~0.35,并且x1+x2+x3+x4+x5=1。
上述高熵热NTC敏电阻材料的制备方法,有以下步骤:
按上述配比取Mg、Al、Co、Cr、Fe、Mn的硝酸盐,按照(NO3)-1与燃料的配比称取燃料,加水溶解,混匀,得到硝酸盐和燃料的混合水溶液;
将混合水溶液置于300~500℃下反应0.5~1小时,得到陶瓷粉体。
以2~5℃/min的升温速率加热陶瓷粉体到1000~1200℃,保温1~3小时得到高熵NTC热敏电阻材料粉体。
所述Mg、Al、Co、Cr、Fe、Mn的硝酸盐分别为Mg(NO3)2·6H2O、Al(NO3)3·9H2O、Co(NO3)2·6H2O、Cr(NO3)3·9H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O。
所述燃料为尿素、乙酸、柠檬酸、草酸、甘氨酸中的一种或几种。
所述(NO3)-1与燃料的摩尔比为(NO3)-1:燃料的比例=1:1。
本发明高熵NTC热敏陶瓷是MgAl2O4、MgCo2O4、MgCr2O4、MgFe2O4和MgMn2O4的固溶体,该固溶体为立方尖晶石相AB2O4,其A位被Mg2+占据,B位被Al3+、Co3+、Cr3+、Fe3+、Mn3+五种金属阳离子以等原子比或接近等原子比随机占据,是一种高熵陶瓷材料,具有高熵陶瓷特有的高温稳定性,有利于制备具有高精度、使用寿命长和良好互换性的热敏电阻。通过改变B位五种金属元素的比例即可改变固溶体中各组元的比例,其单一组分的可调整范围大(5%~35%),组分协同调整方案多(如某组元增加10%,其它四组元总共减少10%就有无数种组合),相应的可制备出大量不同性能的热敏电阻,以适应不同使用环境。本发明采用液相方法制备陶瓷粉体,原材料达到分子水平的分散,产物实现化学计量比,粉体粒子直径为纳米级,烧结活性高,利于低温烧结。
本发明所述高熵NTC热敏陶瓷可用于热敏电阻、催化剂材料等。
附图说明
图1为实施例1的XRD图谱。
图2为本发明实施例1高熵热敏电阻粉体的SEM照片。
图3为本发明实施例1高熵热敏电阻粉体相应Cr元素的EDS图谱。
图4为本发明实施例1高熵热敏电阻粉体相应Mn元素的EDS图谱。
图5为本发明实施例1高熵热敏电阻粉体相应Fe元素的EDS图谱。
图6为本发明实施例1高熵热敏电阻粉体相应Co元素的EDS图谱。
图7为本发明实施例1高熵热敏电阻粉体相应Al元素的EDS图谱。
图8为本发明实施例1高熵热敏电阻粉体相应Mg元素的EDS图谱。
具体实施方式
本实施例所述的试剂均采用市售的分析纯试剂。
实施例1
称取:25.64gMg(NO3)2·6H2O、7.50g Al(NO3)3·9H2O、5.82g Co(NO3)2·6H2O、8.00g Cr(NO3)3·9H2O、8.08g Fe(NO3)3·9H2O、5.02g Mn(NO3)2·4H2O、50.4g柠檬酸、去离子水100g配置成溶液,放入500℃马弗炉中反应1小时,收集反应生成的粉体放入氧化铝坩埚中以5℃每分的升温速率加热到1000℃,保温1小时得到Mg(Al0.2Co0.2Cr0.2Fe0.2Mn0.2)2O4粉体。其XRD图谱参见图1。该图谱表明,所制备高熵热敏电阻为纯尖晶石相,未含其它杂质相;图2~8为粉体的SEM照片和Mg、Mn、Fe、Co、Cr、Al的EDS图普,从图中可以看出,Mg、Mn、Fe、Co、Cr、Al等金属阳离子没有出现明显的偏析或富集。所制备的粉体为高熵陶瓷粉体。
实施例2
称取:25.64g Mg(NO3)2、3.75g Al(NO3)3、5.82gCo(NO3)2、12.00gCr(NO3)3、8.08gFe(NO3)3、5.02gMn(NO3)2、50.4g柠檬酸、去离子水100g配置成溶液,放入500℃马弗炉中反应1小时,收集反应生成的粉体放入氧化铝坩埚中以5℃每分的升温速率加热到1000℃,保温1小时得到Mg(Al0.1Co0.2Cr0.3Fe0.2Mn0.2)2O4粉体。

Claims (6)

1.一种高熵NTC热敏电阻材料,其特征在于:该电阻材料的化学式为Mg(Alx1Cox2Crx3Fex4Mnx5)2O4,所述高熵NTC热敏材料为单一尖晶石相结构。
2.根据权利要求1所述的电阻材料,其特征在于:所述电阻材料的化学式中的x1、x2、x3、x4、x5的值为0.05~0.35,并且x1+x2+x3+x4+x5=1。
3.权利要求1所述高熵NTC热敏电阻材料的制备方法,其特征在于,有以下步骤:
按权利要求1或2所述配比取Mg、Al、Co、Cr、Fe、Mn的硝酸盐,按照(NO3)-1与燃料的配比取燃料,加水溶解,混匀,得到硝酸盐和燃料的混合水溶液,300~500℃下反应0.5~1小时,得到的粉体,以2~5℃/min的升温速率加热到1000~1200℃,保温1~3小时得到高熵NTC热敏电阻陶瓷粉体。
4.根据权利要求3所述的方法,其特征在于:所述Mg、Al、Co、Cr、Fe、Mn的硝酸盐分别为Mg(NO3)2·6H2O、Al(NO3)3·9H2O、Co(NO3)2·6H2O、Cr(NO3)3·9H2O、Fe(NO3)3·9H2O、Mn(NO3)2·4H2O。
5.根据权利要求3所述的方法,其特征在于:所述燃料为尿素、乙酸、柠檬酸、草酸、甘氨酸中的一种或几种。
6.根据权利要求3所述的方法,其特征在于:所述(NO3)-1与燃料的摩尔比为(NO3)-1:燃料=1:1。
CN202011570890.1A 2020-12-26 2020-12-26 一种高熵ntc热敏电阻陶瓷材料及其制备方法 Active CN112624740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011570890.1A CN112624740B (zh) 2020-12-26 2020-12-26 一种高熵ntc热敏电阻陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011570890.1A CN112624740B (zh) 2020-12-26 2020-12-26 一种高熵ntc热敏电阻陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112624740A true CN112624740A (zh) 2021-04-09
CN112624740B CN112624740B (zh) 2022-08-02

Family

ID=75325863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011570890.1A Active CN112624740B (zh) 2020-12-26 2020-12-26 一种高熵ntc热敏电阻陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112624740B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093224A (zh) * 2022-07-18 2022-09-23 天津大学 一种烧绿石相高熵陶瓷的制备方法及应用
CN115894029A (zh) * 2023-01-03 2023-04-04 中国科学院新疆理化技术研究所 基于高熵稀土锆酸盐的氧不敏感型负温度系数热敏材料
CN116023140A (zh) * 2023-01-03 2023-04-28 中国科学院新疆理化技术研究所 基于高熵稀土锡酸盐的氧不敏感型负温度系数热敏材料

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037942A (en) * 1959-11-02 1962-06-05 Gen Electric Positive temperature coefficient of resistivity resistor
BE790822A (fr) * 1971-11-02 1973-04-30 Merck & Co Inc Revetements pour substrats ferreux
JPS5295091A (en) * 1976-02-04 1977-08-10 Nippon Denso Co Ltd High temperature thermister element
WO1993022255A1 (de) * 1992-04-24 1993-11-11 Siemens Matsushita Components Gmbh & Co. Kg Sinterkeramik für hochstabile thermistoren und verfahren zu ihrer herstellung
JPH10312907A (ja) * 1997-05-09 1998-11-24 Matsushita Electric Ind Co Ltd サーミスタ素子とその製造方法
CA2299167A1 (fr) * 1997-08-13 1999-02-25 Hydro-Quebec Varistances a base de poudres nanocristallines produites par broyage mecanique intense
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法
CN101161604A (zh) * 2006-10-13 2008-04-16 同济大学 一种铁氧体材料及其制备方法
US20090074604A1 (en) * 2007-09-19 2009-03-19 Industrial Technology Research Institute Ultra-hard composite material and method for manufacturing the same
US7559494B1 (en) * 1996-09-03 2009-07-14 Ppg Industries Ohio, Inc. Method of forming non-stoichiometric nanoscale powder comprising temperature-processing of a stoichiometric metal compound
CN103193474A (zh) * 2013-03-04 2013-07-10 合肥工业大学 一种新型负温度系数热敏电阻材料及其制备方法
CN105967674A (zh) * 2016-05-06 2016-09-28 中国科学院新疆理化技术研究所 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
CN108439982A (zh) * 2018-05-14 2018-08-24 济南大学 一种轴向复合负温度系数热敏陶瓷材料及其制备方法
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法
CN110556536A (zh) * 2019-09-19 2019-12-10 安徽工业大学 用于锂离子电池的六元高熵氧化物材料及制备方法
CN112331908A (zh) * 2019-08-05 2021-02-05 三星电子株式会社 氧化物、其制备方法、包括氧化物的固体电解质和包括氧化物的电化学装置
US20210098676A1 (en) * 2019-10-01 2021-04-01 West Virginia University Compositions and methods for doped thermoelectric ceramic oxides
CN112830790A (zh) * 2021-01-22 2021-05-25 广东工业大学 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
US20210260704A1 (en) * 2020-02-24 2021-08-26 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys
CN113372088A (zh) * 2021-07-23 2021-09-10 中国科学院兰州化学物理研究所 一种以高熵氧化物为功能颜料制备水性陶瓷功能涂料的方法
CN113683410A (zh) * 2021-08-09 2021-11-23 中国科学院上海硅酸盐研究所 具有负电卡效应的钛酸铋基铋层状结构无铅压电陶瓷及其制备方法
CN113745548A (zh) * 2021-09-09 2021-12-03 南华大学 基于尖晶石结构的高熵陶瓷材料及其制备方法和应用

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3037942A (en) * 1959-11-02 1962-06-05 Gen Electric Positive temperature coefficient of resistivity resistor
BE790822A (fr) * 1971-11-02 1973-04-30 Merck & Co Inc Revetements pour substrats ferreux
JPS5295091A (en) * 1976-02-04 1977-08-10 Nippon Denso Co Ltd High temperature thermister element
WO1993022255A1 (de) * 1992-04-24 1993-11-11 Siemens Matsushita Components Gmbh & Co. Kg Sinterkeramik für hochstabile thermistoren und verfahren zu ihrer herstellung
US7559494B1 (en) * 1996-09-03 2009-07-14 Ppg Industries Ohio, Inc. Method of forming non-stoichiometric nanoscale powder comprising temperature-processing of a stoichiometric metal compound
JPH10312907A (ja) * 1997-05-09 1998-11-24 Matsushita Electric Ind Co Ltd サーミスタ素子とその製造方法
CA2299167A1 (fr) * 1997-08-13 1999-02-25 Hydro-Quebec Varistances a base de poudres nanocristallines produites par broyage mecanique intense
CN101161604A (zh) * 2006-10-13 2008-04-16 同济大学 一种铁氧体材料及其制备方法
CN101127266A (zh) * 2007-09-12 2008-02-20 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法
US20090074604A1 (en) * 2007-09-19 2009-03-19 Industrial Technology Research Institute Ultra-hard composite material and method for manufacturing the same
CN103193474A (zh) * 2013-03-04 2013-07-10 合肥工业大学 一种新型负温度系数热敏电阻材料及其制备方法
CN105967674A (zh) * 2016-05-06 2016-09-28 中国科学院新疆理化技术研究所 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
CN108439982A (zh) * 2018-05-14 2018-08-24 济南大学 一种轴向复合负温度系数热敏陶瓷材料及其制备方法
CN109180188A (zh) * 2018-10-08 2019-01-11 中南大学 一种高熵含硼碳化物超高温陶瓷粉体及其制备方法
CN112331908A (zh) * 2019-08-05 2021-02-05 三星电子株式会社 氧化物、其制备方法、包括氧化物的固体电解质和包括氧化物的电化学装置
CN110556536A (zh) * 2019-09-19 2019-12-10 安徽工业大学 用于锂离子电池的六元高熵氧化物材料及制备方法
US20210098676A1 (en) * 2019-10-01 2021-04-01 West Virginia University Compositions and methods for doped thermoelectric ceramic oxides
US20210260704A1 (en) * 2020-02-24 2021-08-26 Honda Motor Co., Ltd. Multi component solid solution high-entropy alloys
CN112830790A (zh) * 2021-01-22 2021-05-25 广东工业大学 一种铪铌基三元固溶体硼化物的导电陶瓷及其制备方法和应用
CN113372088A (zh) * 2021-07-23 2021-09-10 中国科学院兰州化学物理研究所 一种以高熵氧化物为功能颜料制备水性陶瓷功能涂料的方法
CN113683410A (zh) * 2021-08-09 2021-11-23 中国科学院上海硅酸盐研究所 具有负电卡效应的钛酸铋基铋层状结构无铅压电陶瓷及其制备方法
CN113745548A (zh) * 2021-09-09 2021-12-03 南华大学 基于尖晶石结构的高熵陶瓷材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRIANNA MUSICO: "Tunable magnetic ordering through cation selection in entropic spinel oxides", 《PHYSICAL REVIEW MATERIALS》 *
张忠模: "采用Fe-Al-Mn-O系热敏材料的温度报警铠装热敏电缆的研制", 《功能材料》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115093224A (zh) * 2022-07-18 2022-09-23 天津大学 一种烧绿石相高熵陶瓷的制备方法及应用
CN115894029A (zh) * 2023-01-03 2023-04-04 中国科学院新疆理化技术研究所 基于高熵稀土锆酸盐的氧不敏感型负温度系数热敏材料
CN116023140A (zh) * 2023-01-03 2023-04-28 中国科学院新疆理化技术研究所 基于高熵稀土锡酸盐的氧不敏感型负温度系数热敏材料
CN116023140B (zh) * 2023-01-03 2023-08-22 中国科学院新疆理化技术研究所 基于高熵稀土锡酸盐的氧不敏感型负温度系数热敏材料
CN115894029B (zh) * 2023-01-03 2023-09-01 中国科学院新疆理化技术研究所 基于高熵稀土锆酸盐的氧不敏感型负温度系数热敏材料

Also Published As

Publication number Publication date
CN112624740B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
CN112624740B (zh) 一种高熵ntc热敏电阻陶瓷材料及其制备方法
CN103011811B (zh) 一种高温负温度系数热敏电阻材料的制备方法
Ma et al. Preparation and characterization of single-phase NiMn 2 O 4 NTC ceramics by two-step sintering method
CN105967674A (zh) 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
CN110550947A (zh) 一种钇和锆共掺杂的宽温区高温热敏电阻材料及其制备方法
JPH0799103A (ja) サーミスタ用磁器組成物およびサーミスタ素子
CN115093224A (zh) 一种烧绿石相高熵陶瓷的制备方法及应用
CN112811891B (zh) 一种尖晶石相高熵热敏电阻材料及其制备方法
JP3254595B2 (ja) サーミスタ用磁器組成物
CN104557040A (zh) 一种高温热敏电阻材料及其制备方法
CN104310984B (zh) 一种热敏陶瓷材料及其制备方法
US20150137050A1 (en) Metal-oxide sintered body for temperature sensor, and method for manufacturing same
Battault et al. Aging of iron manganite negative temperature coefficient thermistors
JP3331447B2 (ja) サーミスタ用磁器組成物の製造方法
JPH02143502A (ja) Ntcサーミスタの製造方法
US5976421A (en) Indium-containing, oxide-ceramic thermistor
JP2734686B2 (ja) サーミスタ用酸化物半導体
CN115894026B (zh) 一种低电阻率高b值的ntc热敏电阻材料及制备方法
JP2008292402A (ja) 温感素子、温感素子の製造方法、一次相転移温度の調整方法
Badelin et al. Effect of ageing on magnetic and electrical properties of Ti–substituted La-Sr manganites
JP3362644B2 (ja) サーミスタ素子とその製造方法及びそのサーミスタ素子を用いた温度センサ
JP2948933B2 (ja) サーミスタ用組成物
CN116947466A (zh) 一种高熵稀土铬酸盐高温型负温度系数热敏材料
JP2904007B2 (ja) 温度センサ
JP2578889B2 (ja) サーミスタ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant