CN112583577B - 基于生物密钥的医学图像加密和解密方法 - Google Patents

基于生物密钥的医学图像加密和解密方法 Download PDF

Info

Publication number
CN112583577B
CN112583577B CN202011465523.5A CN202011465523A CN112583577B CN 112583577 B CN112583577 B CN 112583577B CN 202011465523 A CN202011465523 A CN 202011465523A CN 112583577 B CN112583577 B CN 112583577B
Authority
CN
China
Prior art keywords
phase
medical image
encryption
key
spm2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011465523.5A
Other languages
English (en)
Other versions
CN112583577A (zh
Inventor
王君
王小晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202011465523.5A priority Critical patent/CN112583577B/zh
Publication of CN112583577A publication Critical patent/CN112583577A/zh
Application granted granted Critical
Publication of CN112583577B publication Critical patent/CN112583577B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0866Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H1/0011Adaptation of holography to specific applications for security or authentication
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • H04L63/0442Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload wherein the sending and receiving network entities apply asymmetric encryption, i.e. different keys for encryption and decryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/002Countermeasures against attacks on cryptographic mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/2675Phase code multiplexing, wherein the sub-holograms are multiplexed according to spatial modulation of the reference beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Of Band Width Or Redundancy In Fax (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明提出一种基于生物密钥的医学图像加密方法。该方法将螺旋相位变换SPT和虹膜相结合产生生物密钥,并结合角谱衍射‑双相位法编码,创建了一个简单高效的加密系统,解决了传统医学图像的加密安全性、加密速度和解密质量的问题。该方法可以有效抵抗噪声和多种特殊攻击。

Description

基于生物密钥的医学图像加密和解密方法
一、技术领域
本发明涉及一种信息安全和信息光学技术领域,特别是医学图像加密方法。
二、背景技术
随着信息时代的到来,对信息安全的需求正在逐渐增加,光学技术已经广泛运用到各个安全领域。光学系统具有并行处理、自由度高、不易复制等优点,使得用于安全数据传输的光学系统得到了广泛的研究。1995年美国的B.Javidi首次提出了基于4-f系统的双随机相位编码技术(DRPE)成为广泛采用的光学加密技术。由于DRPE固有的线性性质和对称性,使其安全性不高且不抗特殊攻击,因此非对称加密应运而生。LUDP分解构成的非对称加密系统具有很高的安全性能,螺旋相位变换中的奇异点使得加密系统能更好的对抗多种攻击,角谱衍射-双相位法编码生成纯相位全息图的方法具有计算速度快、重建质量高的优点而备有关注。由于虹膜生成的生物密钥具有极大有优势,采用这些技术来解决的医学图像加密的安全性问题,在光学图像加密领域仍有极大的潜力和优势。
三、发明内容
本发明针对上述传统医学图像加密技术产生的安全性不高、加密速度慢和解密质量差等问题,提出一种基于生物密钥的医学图像加密和解密方法。该方法将螺旋相位变换SPT和虹膜相结合产生生物密钥,并结合角谱衍射-双相位法编码,创建了一个简单高效的加密系统,解决了传统医学图像的加密安全性、加密速度和解密质量的问题。该方法可以有效抵抗噪声和多种特殊攻击。该方法包括加密和解密两个过程。
所述的加密过程具体描述为:
步骤一,将待加密的医学图像Im,经过角谱衍射-双相位法编码为纯相位计算全息图Hp,其结果为Hp=AS-DM(Im),其中,AS-DM为角谱衍射-双相位法编码的过程;
步骤二,利用虹膜图像Ik产生2个生物密钥SPM1和SPM2,具体方法为对虹膜图像做随机相位调制,再对其结果进行螺旋相位变换,然后做振幅截断,得到生物密钥SPM1=AT{SPT[Ik×exp(jθ1)]},其中,SPT{}表示螺旋相位变换,AT{}表示振幅截断,θ1是范围在[0,2π)的随机相位,j为虚数单位,采用同样的方法得到生物密钥SPM2,即SPM2=AT{SPT[Ik×exp(jθ2)]},其中,θ2是范围在[0,2π)的随机相位;
步骤三,采用生物密钥SPM1对得到纯相位计算全息图Hp进行相位调制,并对调制的结果进行LUDP分解得到L、U和P分量,其过程表示为:[L,U,P]=LUDP[Hp×SPM1];
步骤四,采用生物密钥SPM2对L和U分量相乘的结果分量,记为LU分量,进行相位调制,并对调制后的结果进行螺旋相位变换得到加密的密文C=SPT[(LU)×SPM2];
步骤五,对P分量做矩阵逆运算,得到私钥PK={P}-1,其中{}-1表示矩阵逆运算;
所述的解密过程具体描述为:步骤一,对密文做螺旋相位变换的逆变换,并采用SPM2的共轭做随机相位调制得到LU=ISPT{C}×conj(SPM2),其中ISPT{}表示螺旋相位变换的逆变换,conj()表示取共轭操作;
步骤二,对得到LU分量与私钥PK相乘,得到的结果再被SPM1的共轭进行相位调制,得到恢复的纯相位计算全息图Hp=(LU×PK)×conj(SPM1);
步骤三,对纯相位计算全息图进行全息再现,得到解密的医学图像明文Im=AS{Hp},其中,AS{}是角谱衍射过程。
该方法的有益效果在于:结构简单,速度快,安全性强;解密时的全息重建质量高;且由于加密系统的非对称性,具有良好的抗攻击能力。
四、附图的说明
附图1为本发明的解密和解密过程示意图。
附图2为本发明的明文、密文和解密图结果。
五、具体实施方式
下面详细说明本发明基于生物密钥的医学图像加密方法的一个典型实施例,对该方法进行进一步的具体描述。有必要在此指出的是,以下实施例只用于该方法做进一步的说明,不能理解为对该方法保护范围的限制,该领域技术熟练人员根据上述该方法内容对该方法做出一些非本质的改进和调整,仍属于本发明的保护范围。
本发明提出一种基于生物密钥的医学图像加密和解密方法,该方法包括加密和解密两个过程,如附图1所示。
所述的加密过程具体描述为:
步骤一,将待加密的医学图像Im,经过角谱衍射-双相位法编码为纯相位计算全息图Hp,其结果为Hp=AS-DM(Im),其中,AS-DM为角谱衍射-双相位法编码的过程;
步骤二,利用虹膜图像Ik产生2个生物密钥SPM1和SPM2,具体方法为对虹膜图像做随机相位调制,再对其结果进行螺旋相位变换,然后做振幅截断,得到生物密钥SPM1=AT{SPT[Ik×exp(jθ1)]},其中,SPT{}表示螺旋相位变换,AT{}表示振幅截断,θ1是范围在[0,2π)的随机相位,j为虚数单位,采用同样的方法得到生物密钥SPM2,即SPM2=AT{SPT[Ik×exp(jθ2)]},其中,θ2是范围在[0,2π)的随机相位;
步骤三,采用生物密钥SPM1对得到纯相位计算全息图Hp进行相位调制,并对调制的结果进行LUDP分解得到L、U和P分量,其过程表示为:[L,U,P]=LUDP[Hp×SPM1];
步骤四,采用生物密钥SPM2对L和U分量相乘的结果分量,记为LU分量,进行相位调制,并对调制后的结果进行螺旋相位变换得到加密的密文C=SPT[(LU)×SPM2];
步骤五,对P分量做矩阵逆运算,得到私钥PK={P}-1,其中{}-1表示矩阵逆运算;
所述的解密过程具体描述为:步骤一,对密文做螺旋相位变换的逆变换,并采用SPM2的共轭做随机相位调制得到LU=ISPT{C}×conj(SPM2),其中ISPT{}表示螺旋相位变换的逆变换,conj()表示取共轭操作;
步骤二,对得到LU分量与私钥PK相乘,得到的结果再被SPM1的共轭进行相位调制,得到恢复的纯相位计算全息图Hp=(LU×PK)×conj(SPM1);
步骤三,对纯相位计算全息图进行全息再现,得到解密的医学图像明文Im=AS{Hp},其中,AS{}是角谱衍射过程。
所述的加密过程中的角谱衍射-双相位法编码具体为:先经过一个角谱衍射过程得到衍射场的复振幅分布U,再将复振幅分布U进行双相位编码,得到纯相位计算全息图Hp,其过程表示为:
Figure GDA0003765463550000031
其中,
Figure GDA0003765463550000032
Figure GDA0003765463550000033
acos()为反余弦函数,max()为矩阵取最大值函数,
Figure GDA0003765463550000034
其中M1和M2为互补的二值棋盘格掩模。
所述的加密过程中的随机相位θ1和θ2使用随机发生器或者伪随机发生器产生,例如采用三维洛伦兹混沌系统产生,其公式为:xi=a×(yi-1-xi-1),yi=b×xi-1-xi-1×zi-1-yi-1,zi=xi-1×yi-1-c×zi-1,其中a、b、c为混沌系统的控制参数。
所述的螺旋相位变换是对复振幅U1进行阶数为q的变换,将调制后的二维符号函数sgn(u,v)作为相位板进行变换,MSPF=exp(j×q×φ(u,v)),其中MSPF表示调制后的符号函数,SPT{U1}=IFT{MSPF×FT{U1}},其中,FT和IFT分别表示傅里叶变换和傅里叶逆变换。
所述的LUDP分解是一个数学的矩阵分解运算,具体表示为:P×A=L×U,其中A表示待分解的矩阵,L是一个下三角矩阵,U是一个上三角矩阵,P是一个非奇异矩阵,且存在对应的逆矩阵。
所述的角谱衍射具体公式为:U(x,y)=AS{U0(x,y)}=IFT{FT[U0(x,y)]×H(u,v)},其中,H(u,v)=exp{j×k×z×sqrt[1-λ2×u22×v2]},k=2π/λ是波数,z是衍射距离,λ是波长,(x,y)和(u,v)分别为空域和频域的坐标,U0和U分别为物平面和衍射面的复振幅分布。
本发明的实例中,采用1024×1024的医学图像作为待加密图像,螺旋相位变换的阶数q为30000,混沌系统的控制参数a、b、c分别为10、8/3、28,波长为671纳米,衍射距离为450毫米。本发明的明文、密文和解密图结果如图2所示,其中图2(a)-(c)为明文,图2(d)-(f)为密文,图2(g)-(i)为解密图,可以看出该加密方法的解密质量非常高。

Claims (2)

1.基于生物密钥的医学图像加密和解密方法,其特征在于,该方法包括加密和解密过程两个部分;所述的加密过程具体描述为:步骤一,将待加密的医学图像Im,经过角谱衍射-双相位法编码为纯相位计算全息图Hp,其结果为Hp=AS-DM(Im),其中,AS-DM为角谱衍射-双相位法编码的过程;步骤二,利用虹膜图像Ik产生2个生物密钥SPM1和SPM2,具体方法为对虹膜图像做随机相位调制,再对其结果进行螺旋相位变换,然后做振幅截断,得到生物密钥SPM1=AT{SPT[Ik×exp(jθ1)]},其中,SPT{}表示螺旋相位变换,AT{}表示振幅截断,θ1是范围在[0,2π)的随机相位,j为虚数单位,采用同样的方法得到生物密钥SPM2,即SPM2=AT{SPT[Ik×exp(jθ2)]},其中,θ2是范围在[0,2π)的随机相位;步骤三,采用生物密钥SPM1对得到纯相位计算全息图Hp进行相位调制,并对调制的结果进行LUDP分解得到L、U和P分量,其过程表示为:[L,U,P]=LUDP[Hp×SPM1];步骤四,采用生物密钥SPM2对L和U分量相乘的结果分量,记为LU分量,进行相位调制,并对调制后的结果进行螺旋相位变换得到加密的密文C=SPT[(LU)×SPM2];步骤五,对P分量做矩阵逆运算,得到私钥PK={P}-1,其中{}-1表示矩阵逆运算;所述的解密过程具体描述为:步骤一,对密文做螺旋相位变换的逆变换,并采用SPM2的共轭做随机相位调制得到LU=ISPT{C}×conj(SPM2),其中ISPT{}表示螺旋相位变换的逆变换,conj()表示取共轭操作;步骤二,对得到LU分量与私钥PK相乘,得到的结果再被SPM1的共轭进行相位调制,得到恢复的纯相位计算全息图Hp=(LU×PK)×conj(SPM1);步骤三,对纯相位计算全息图进行全息再现,得到解密的医学图像明文Im=AS{Hp},其中,AS{}是角谱衍射过程。
2.根据权利要求1所述的基于生物密钥的医学图像加密方法,所述的随机相位θ1和θ2使用随机发生器或者伪随机发生器产生。
CN202011465523.5A 2020-12-14 2020-12-14 基于生物密钥的医学图像加密和解密方法 Active CN112583577B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011465523.5A CN112583577B (zh) 2020-12-14 2020-12-14 基于生物密钥的医学图像加密和解密方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011465523.5A CN112583577B (zh) 2020-12-14 2020-12-14 基于生物密钥的医学图像加密和解密方法

Publications (2)

Publication Number Publication Date
CN112583577A CN112583577A (zh) 2021-03-30
CN112583577B true CN112583577B (zh) 2022-10-18

Family

ID=75132185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011465523.5A Active CN112583577B (zh) 2020-12-14 2020-12-14 基于生物密钥的医学图像加密和解密方法

Country Status (1)

Country Link
CN (1) CN112583577B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259098B (zh) * 2021-05-14 2022-09-27 中国科学院大学 一种视觉密码和双随机相位加解密方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094978A1 (pt) * 2014-12-18 2016-06-23 Universidade Estadual De Campinas - Unicamp Método para recuperação de segredos encriptados com criptografia visual por alinhamento automático em dispositivos móveis
CN109492414A (zh) * 2018-11-07 2019-03-19 上海师范大学 基于生物特征密钥的多图像加密和认证方法
CN111967030A (zh) * 2020-08-12 2020-11-20 浙江师范大学 一种基于生物信息的光学图像加密、解密方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016094978A1 (pt) * 2014-12-18 2016-06-23 Universidade Estadual De Campinas - Unicamp Método para recuperação de segredos encriptados com criptografia visual por alinhamento automático em dispositivos móveis
CN109492414A (zh) * 2018-11-07 2019-03-19 上海师范大学 基于生物特征密钥的多图像加密和认证方法
CN111967030A (zh) * 2020-08-12 2020-11-20 浙江师范大学 一种基于生物信息的光学图像加密、解密方法

Also Published As

Publication number Publication date
CN112583577A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN109901370B (zh) 纯相位全息图和单随机相位编码的光学图像加解密方法
CN104517261B (zh) 基于相位恢复和稀疏双随机相位加密的安全认证方法
CN103117847B (zh) 一种基于混沌和计算全息的光学加密方法
Kong et al. Image encryption based on interleaved computer-generated holograms
Luan et al. Asymmetric image encryption and authentication based on equal modulus decomposition in the Fresnel transform domain
CN103402040A (zh) 基于空间域和傅立叶频域双重加密的双图像加密方法
Wang et al. Multiple-image encryption system using cascaded phase mask encoding and a modified Gerchberg–Saxton algorithm in gyrator domain
CN109583216A (zh) 矢量分解和相位编码的单通道彩色图像加密方法
Chen et al. Security enhancement of double random phase encoding using rear-mounted phase masking
Abuturab Securing multiple information using chaotic spiral phase encoding with simultaneous interference and superposition methods
CN112583577B (zh) 基于生物密钥的医学图像加密和解密方法
CN103258315B (zh) 基于切相分数傅立叶变换的双图像加密方法
CN105373739A (zh) 一种基于超混沌系统的量子图像加密方法
CN109120812A (zh) 一种基于迂回柱面衍射和相位保留截断的彩色图像加密方法
CN110210235A (zh) 一种基于柱面衍射和相位截断的非对称多图像加密方法
Rao et al. Optical asymmetric image encryption using vectorial light field encoding
CN104573561A (zh) 基于稀疏双随机相位加密和qr码的认证方法
CN105912940B (zh) 基于两块二进制掩模的图像认证方法
CN108898540B (zh) 基于离散分数角变换和混沌理论的双图像加密方法
Wang et al. Iterative partial phase encoding based on joint fractional Fourier transform correlator adopting phase-shifting digital holography
CN110706144A (zh) 基于螺旋相位变换和等模分解的光学彩色图像加密方法
CN112532806B (zh) 基于球面衍射变换的非对称多图像加密方法
Verma et al. Securing multiple information using bio-chaotic keys
Jeon et al. Optical asymmetric cryptography modifying the RSA public-key protocol
Baliyan et al. Image encryption through dual-pass modulated azimuthally polarized vector field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant