CN112553234A - 利用乙酸或其盐生产(r)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用 - Google Patents

利用乙酸或其盐生产(r)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用 Download PDF

Info

Publication number
CN112553234A
CN112553234A CN202011464753.XA CN202011464753A CN112553234A CN 112553234 A CN112553234 A CN 112553234A CN 202011464753 A CN202011464753 A CN 202011464753A CN 112553234 A CN112553234 A CN 112553234A
Authority
CN
China
Prior art keywords
acetic acid
escherichia coli
hydroxybutyric acid
acid
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011464753.XA
Other languages
English (en)
Inventor
吴辉
费鹏
赖宁玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202011464753.XA priority Critical patent/CN112553234A/zh
Publication of CN112553234A publication Critical patent/CN112553234A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01036Acetoacetyl-CoA reductase (1.1.1.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/01Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • C12Y203/01009Acetyl-CoA C-acetyltransferase (2.3.1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/03CoA-transferases (2.8.3)
    • C12Y208/03001Propionate CoA-transferase (2.8.3.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明提供利用乙酸或其盐生产(R)‑3‑羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用,代谢途径为使用乙酸或其盐经β‑酮基硫解酶和乙酰乙酰CoA还原酶,最终利用丙酰CoA转移酶的不专一性生产(R)‑3‑羟基丁酸。本发明改造途径为构建乙酰CoA生产(R)‑3‑羟基丁酸的外源代谢途径,该途径利用了丙酰CoA转移酶的不专一性,比传统途径步骤少,且耗能少。本发明实现了在大肠杆菌中以乙酸为碳源生产(R)‑3‑羟基丁酸,并通过使用不同的丙酰CoA转移酶和宿主大肠杆菌,提高了(R)‑3‑羟基丁酸的产量与得率,证明了该代谢路径在大肠杆菌中具有通用性。本发明实现了以含乙酸的合成气发酵液为培养基发酵生产(R)‑3‑羟基丁酸。

Description

利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌 株的构建方法及应用
技术领域
本发明属于生物工程技术领域,更具体地讲,涉及利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用。
背景技术
乙酸是一种廉价易得的碳源,目前主要通过化学法合成,合成工艺主要有乙醛法、丁烷(或轻油)液相氧化法和甲醇羰基化法,其中甲醇羰基化法催化效率高,原料价格低,操作工艺简单,反应条件较其他工艺温和,是乙酸化学合成的主要方法,世界上近40%乙酸由甲醇羰基化法制备,而石油价格低廉的地方丁烷(或轻油)液相氧化法具有优势。此外,乙酸也可以通过生物发酵获得,醋杆菌属的乙醇氧化和梭菌属或不含乙醇作为中间体的醋酸杆菌属的厌氧发酵,都可以产生乙酸。如今,使用梭菌属进行合成气发酵生产乙酸成为了热门研究方向。
羟基丁酸(3-hydroxybutyric,3-HB)又称β-羟基丁酸,分子式为C4H8O3,是动物体内的一种酮体。3-HB具有1个手性中心,分为(R)-3-HB和(S)-3-HB两个对应异构体。3-羟基丁酸在人体内被当作一种备用能源,血糖浓度很低时,3-羟基丁酸可以为大脑提供能量,防止大脑细胞坏死。3-HB具有手性中心,可以用于合成复杂的手性药物或化工物质,因此(R)-3-HB是一种重要的医药和化工的中间体,有着广泛的应用。在食品工业中,3-HB可以用来生产食用香料3-羟基丁酸乙酯。在医药行业中,3-HB可以作为糖尿病病人的一种血液检测指标。在材料学中,3-HB可用于合成高质量的PHB,作为可降解塑料,用于生产药物缓释载体和体内使用的医用支架。3-HB的内酯是2004年美国能源部(DOE)提出了12种重要的平台化合物之一。此外,3-HB还在众多领域,发挥重要的作用。
化学法生产3-HB具有反应条件苛刻、对设备要求高、催化剂及有机溶剂价格昂贵和产品光学纯度低等缺点,逐渐被生物法取代。最近,许多研究者的兴趣集中在使用代谢工程菌株利用可再生能源生产3-HB,以降低成本并得到高光学纯度的3-HB。为了实现生物法生产3-HB,许多代谢路径被构建,其中大多数以葡萄糖为底物。首先,先利用碳源合成聚3-羟基丁酸酯(PHB),再降解PHB生成3-HB的代谢路径被构建。近些年,不经过PHB直接合成3-HB的代谢路径成为主流。至今,仍未有使用代谢工程菌种利用乙酸生产3-HB的报道。
发明内容
本发明的第一个目的在于提供一种利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法。
本发明的第二个目的在于提供利用上述构建方法得到的代谢工程大肠杆菌菌株。
本发明的第三个目的在于提供利用上述构建方法得到的代谢工程大肠杆菌菌株在以乙酸或其盐为碳源发酵生产(R)-3-羟基丁酸中的应用。
为了实现上述第一个目的,本发明公开以下技术方案:一种利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法,代谢途径为使用乙酸或其盐经β-酮基硫解酶和乙酰乙酰CoA还原酶,最终利用丙酰CoA转移酶的不专一性生产(R)-3-羟基丁酸。
作为一个优选方案,过表达β-酮基硫解酶编码基因(phaA)、乙酰乙酰CoA还原酶编码基因(phaB)和丙酰CoA转移酶编码基因(pct)。
作为一个优选方案,所述乙酸或其盐是指乙酸或者乙酸盐,所述乙酸盐包括乙酸钠和乙酸铵中的一种或两种。
为了实现上述第二个目的,本发明公开以下技术方案:利用上述乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法得到的代谢工程大肠杆菌菌株。
为了实现上述第三个目的,本发明公开以下技术方案:代谢工程大肠杆菌菌株在以乙酸或其盐为碳源发酵生产(R)-3-羟基丁酸中的应用。
作为一个优选方案,以含乙酸的合成气发酵液为培养基发酵生产(R)-3-羟基丁酸。
本发明的优选实施例中,代谢工程改造的大肠杆菌以乙酸为碳源发酵(R)-3-羟基丁酸,其改造途径为构建乙酰CoA生产(R)-3-羟基丁酸的代谢途径,改造途径至少包括:
(1)构建乙酰CoA生产丙酮或异丙醇的代谢途径:该途径涉及3个酶,分别为β-酮基硫解酶(PhaA)、乙酰乙酰CoA还原酶(PhaB)和丙酰CoA转移酶(Pct),编码该3个酶的基因分别为富养罗尔斯通氏菌(Ralstonia eutropha)中的phaA、phaB和拜氏羧菌(Clostridiumbeijeriinckii 8052)中的pct2040、pct3351、pct3819或pct4543(基因序列如序列表SEQ IDNO.7-SEQ ID NO.10)。通过过表达上述3个酶的基因,构建(R)-3-羟基丁酸的生产途径。
作为一个优选方案,构建乙酰CoA生产(R)-3-羟基丁酸的改造途径为:同时过表达来源于Ralstonia eutropha的phaA、phaB和Clostridium beijeriinckii8052的pct2040或pct4543
本发明以野生型大肠杆菌BW25113为出发菌,通过构建(R)-3-羟基丁酸生产途径,并用能量消耗更低的丙酰CoA转移酶替换传统生产途径中的硫酯酶,构建一条更加高效的(R)-3-羟基丁酸生产途径。同时,本发明以乙酸或乙酸盐为碳源,是指以乙酸或乙酸盐为主要碳源或者唯一碳源。合成途径中消耗的ATP和还原力由TCA和乙醛酸循环提供。同时,使用含有乙酸的羧菌合成气发酵液作为底物,证明了代谢工程大肠杆菌能够利用合成气发酵液中的乙酸生产(R)-3-羟基丁酸,实现利用合成气发酵生产的乙酸进一步生产(R)-3-羟基丁酸,提高发酵液的价值。
本发明的优点在于:本发明改造途径为构建乙酰CoA生产(R)-3-羟基丁酸的外源代谢途径,该途径利用了丙酰CoA转移酶的不专一性,比传统途径步骤少,且耗能少。本发明实现了在大肠杆菌中以乙酸为碳源生产(R)-3-羟基丁酸,并通过使用不同的丙酰CoA转移酶和宿主大肠杆菌,提高了(R)-3-羟基丁酸的产量与得率,证明了该代谢路径在大肠杆菌中具有通用性。
附图说明
图1为大肠杆菌利用乙酸或其盐生产(R)-3-羟基丁酸((R)-3-HB)代谢图。Ace,乙酸盐;AcP,乙酰磷酸;acs,乙酰CoA合成酶;ackA,乙酸激酶;pta,磷酸转乙酰酶;AcCoA,乙酰CoA;Acetoacetyl-CoA,乙酰乙酰CoA;3-HB-CoA,(R)-3-羟基丁酰CoA;3-HB,(R)-3-羟基丁酸;phaA,β-酮基硫解酶;phaB,乙酰乙酰CoA还原酶;pct,丙酰CoA转移酶;gltA,柠檬酸合酶;CIT,柠檬酸;acnAB,顺乌头酸酶;ICT,异柠檬酸;icdA,异柠檬酸脱氢酶;αKG,α酮戊二酸;sucAB,α酮戊二酸脱氢酶;SucCoA,琥珀酰CoA;sucCD,琥珀酸硫激酶;SUC,琥珀酸;aceA,异柠檬酸裂解酶;iclR,异柠檬酸裂解酶阻遏物;GOX,乙醛酸;aceB,苹果酸合成酶;MAL,苹果酸;mdh,苹果酸脱氢酶;OAA,草酰乙酸;fumABC,延胡索酸酶;FUM,延胡索酸;frdABCD,延胡索酸还原酶;sdhABCD,琥珀酸脱氢酶;PEP,磷酸烯醇式丙酮酸;PYR,丙酮酸;aceEF,丙酮酸脱氢酶复合体;ppsA,磷酸烯醇式丙酮酸合成酶A;pykAF,丙酮酸激酶;ppc,磷酸烯醇丙酮酸羧化酶;pckA,磷酸烯醇丙酮酸羧激酶;sfcA/maeA,NAD+依赖性苹果酸脱氢酶;poxB,丙酮酸氧化酶。
具体实施方式
以下,结合具体实施方式对本发明的技术进行详细描述。下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。
实施例1.(R)-3-羟基丁酸生成途径的构建
由乙酰CoA生成(R)-3-羟基丁酸的酶分别为β-酮基硫解酶(由来源于Ralstoniaeutropha的phaA编码)、乙酰乙酰CoA还原酶(由来源于Ralstonia eutropha的phaB编码)和丙酰CoA转移酶(由来源于Clostridium beijeriinckii8052的pct2040或pct4543编码)。以pTrc99a质粒为载体,同时过表达来源于Ralstonia eutropha的phaA、phaB得到重组质粒pTrc99a-phaA-RBS-phaB(简称pTrc99a-phaAB)。以pBAD33质粒为载体,过表达来源于Clostridium beijeriinckii 8052的pct2040或pct4543,同时基因前添加Trc启动子,得到重组质粒pBAD33-Trc-pct2040或pBAD33-Trc-pct4543。此外,pTrc99a载体有一段基因lacI编码lac阻遏蛋白,该蛋白可以阻断任何来源的RNA聚合酶导致的目的基因转录,添加诱导剂(乳糖或乳糖类似物)可与lac阻遏蛋白结合使其失去作用。
质粒构建方法如下:
由NCBI中查找来源于Ralstonia eutropha的phaA和phaB基因序列,将以上两个基因串联表达,并在基因之间加入经过计算优化的RBS,最后连接入线性化pTrc99a载体。由K中查找来源于Clostridium beijeriinckii 8052的pct2040和pct4543基因,分别将Trc启动子与两个基因连接后接入线性化pBAD33载体。
phaA基因通过酶切位点EcoRI和SacI酶切连接到pTrc99a上,phaB基因通过诺唯赞公司的Clone Express MultiS One Step Cloning Kit试剂盒连接到pTrc99a上。构建好的质粒通过钙转转入E.coli DH5α中,然后通过菌落PCR和测序验证。
表1构建质粒引物
Figure BDA0002833672330000051
以上序列参见SEQ ID NO.1—SEQ ID NO.6。
表2菌株和质粒
Figure BDA0002833672330000052
实施例2.最优宿主及pct基因筛选摇瓶发酵
以大肠杆菌MG1655、BW25113、W3110为出发菌(MG1655、BW25113、W3110由The ColiGenetic Stock Center提供),通过钙转转入构建(R)-3-羟基丁酸生产途径的质粒,分别得到MG1655(pTrc-99a-phaAB,pBAD33-Trc-pct2040)、MG1655(pTrc-99a-phaAB,pBAD33-Trc-pct4543)、BW25113(pTrc-99a-phaAB,pBAD33-Trc-pct2040)、BW25113(pTrc-99a-phaAB,pBAD33-Trc-pct4543)、W3110(pTrc-99a-phaAB,pBAD33-Trc-pct2040)、W3110(pTrc-99a-phaAB,pBAD33-Trc-pct4543)。在表格3中,pTrc-99a-phaAB简称为phaAB,pBAD33-Trc-pct2040简称为pct2040,pBAD33-Trc-pct4543简称为pct4543
摇瓶发酵操作:挑取平板上的单菌落接种于装有3mL LB的试管中培养过夜,然后转接到装有50mL LB培养基的锥形瓶中,接种量2%,培养条件均为37℃,220rpm。二级种子培养10h后,转入摇瓶发酵培养基(M9培养基)。M9培养基中添加10g/L乙酸钠和2g/L酵母提取物。接种量为2%,培养条件为37℃,220rpm,至OD600达到1.0左右,添加诱导剂IPTG至终浓度为0.1mM。培养过程中利用3M H2SO4维持pH值为7。上述培养基中必要时加入抗生素(氨苄青霉素终浓度为100mg/L,氯霉素为34mg/L)。
M9培养基组成(每升):Na2HPO4·12H2O 15.12g,KH2PO4 3g,NaCl 0.5g,MgSO4·7H2O 0.5g,CaCl2 0.011g,NH4Cl 1g以及1%维生素B1 0.2mL。
(R)-3-羟基丁酸及乙酸的测定方法:摇瓶发酵培养期间,间隔8h取样,12000rpm离心10分钟分离菌体和上清。发酵液上清经0.22μm微孔膜过滤,采用安捷伦高效液相色谱仪监测发酵液上清中的(R)-3-羟基丁酸及乙酸有机酸。色谱柱为BioRadAminex HPX-87离子色谱柱(300mm*7.8mm),配有紫外检测器和示差折光检测器。流动相为5mM的H2SO4,流速0.6mL/min,柱温65℃。
细胞浓度的测定采用分光光度计法测定600nm下的吸光值。
摇瓶发酵结果如表3所示。BW25113(PhaAB,pct4543)菌株拥有最高的产量和得率,产量达到0.558g/L,得率为0.137g/g。
表3基因工程菌(R)-3-羟基丁酸产量及得率
Figure BDA0002833672330000071
实施例3.发酵温度优化摇瓶发酵
以大肠杆菌BW25113或W3110为出发菌,通过钙转转入构建(R)-3-羟基丁酸生产途径的质粒,分别得到BW25113(pTrc-99a-phaAB,pBAD33-Trc-pct4543)、W3110(pTrc-99a-phaAB,pBAD33-Trc-pct2040)。在表格4中,pTrc-99a-phaAB简称为phaAB,pBAD33-Trc-pct2040简称为pct2040,pBAD33-Trc-pct4543简称为pct4543
M9培养基组成、(R)-3-羟基丁酸和乙酸的测定方法以及细胞浓度的测定方法同实施例2中所述,。摇瓶发酵操作除诱导后转入不同温度培养(25℃、30℃或37℃)外,同实施例2中所述。
摇瓶发酵结果如表4所示。诱导后25℃培养BW25113(phaAB,pct4543)产量为0.857g/L,得率达0.271g/g,为最大理论产量的37.3%。
表4基因工程菌(R)-3-羟基丁酸产量及得率
Figure BDA0002833672330000072
实施例4.上海植物生物研究所合成气发酵液摇瓶发酵
以大肠杆菌BW25113或W3110为出发菌,通过钙转转入构建(R)-3-羟基丁酸生产途径的质粒,分别得到BW25113(pTrc-99a-phaAB,pBAD33-Trc-pct4543)、W3110(pTrc-99a-phaAB,pBAD33-Trc-pct2040)。在表格5中,pTrc-99a-phaAB简称为phaAB,pBAD33-Trc-pct2040简称为pct2040,pBAD33-Trc-pct4543简称为pct4543
(R)-3-羟基丁酸和乙酸的测定方法以及细胞浓度的测定方法同实施例2中所述。培养条件为37℃,220rpm,至OD600达到1.0左右,添加诱导剂IPTG至终浓度为0.1mM。诱导后培养条件为25℃,220rpm。合成气发酵液使用3%活性炭,58℃,处理2h。合成气发酵液121℃,20min高压蒸汽灭菌后,加入CaCl2 0.011g/L,NH4Cl 1g/L以及1%维生素B1 0.2mL/L。
摇瓶发酵结果如表5所示。BW25113(PhaAB,pct4543)在活性炭处理后的合成气发酵液中产量为1.02g/L,得率达0.261g/g,为最大理论产量的36.0%。
表5基因工程菌(R)-3-羟基丁酸产量及得率
Figure BDA0002833672330000081
实施例5.合成气发酵液静息细胞转化
以大肠杆菌BW25113为出发菌,通过钙转转入构建(R)-3-羟基丁酸生产途径的质粒,分别得到BW25113(pTrc-99a-phaAB,pBAD33-Trc-pct4543)、W3110(pTrc-99a-phaAB,pBAD33-Trc-pct2040)。在表格6中,pTrc-99a-phaAB简称为phaAB,pBAD33-Trc-pct4543简称为pct4543
(R)-3-羟基丁酸和乙酸的测定方法以及细胞浓度的测定方法同实施例2中所述。培养条件为37℃,220rpm,至OD600达到1.0左右,添加诱导剂IPTG至终浓度为0.1mM。诱导后培养条件为25℃,220rpm。6h时离心(4℃,5500rpm,10min)收集菌体,用不含NH4Cl的M9培养基重悬菌体,并洗涤一次,以除去残留的培养基。然后,用合成气发酵液重悬菌体,最后在装液量250mL的锥形瓶中装入50mL合成气发酵液,并置于25℃,220rpm的条件下进行静息细胞转化。静息细胞转化初始OD600=18.3。
不含NH4Cl的M9培养基组成(每升):Na2HPO4·12H2O 15.12g,KH2PO43g,NaCl 0.5g,MgSO4·7H2O 0.5g,CaCl2 0.011g。
合成气发酵液使用3%活性炭,58℃,处理2h。合成气发酵液121℃,20min高压蒸汽灭菌后,加入CaCl2 0.011g/L和MgSO4·7H2O 0.5g/L。
静息细胞结果如表6所示。BW25113(phaAB,pct4543)在未被活性炭的合成气发酵液中产量为4.58g/L,得率达0.374g/g,为最大理论产量的51.5%。
表6基因工程菌(R)-3-羟基丁酸产量及得率
Figure BDA0002833672330000091
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 华东理工大学
<120> 利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用
<130> /
<160> 10
<170> SIPOSequenceListing 1.0
<210> 1
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
cccgaattca tgactgacgt tgtcatcg 28
<210> 2
<211> 28
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
gccgagctct tatttgcgct cgactgcc 28
<210> 3
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgactcagc gcattgcg 18
<210> 4
<211> 18
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
tcagcccata tgcaggcc 18
<210> 5
<211> 38
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
ggcctgcata tgggctgacc tgccgtcaca caggaaac 38
<210> 6
<211> 39
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
caatgcgctg agtcatgtcc actccttgat tggcttcgt 39
<210> 7
<211> 1557
<212> DNA
<213> Clostridium beijeriinckii 8052
<400> 7
atgaaatcta aatctaaagt tatgtcaaaa gagcaagctg tcgctttaat aaaaaatgga 60
gatactattg cagtaggtgg atttgttggc tgtgctcatc cagaagaaat tacagcagaa 120
atcgaaaaat cattcttgag taaacagtta cctagagatt tgacattaat atatgcagca 180
ggtcaaggtg acgggaagga taagggttta aatcatcttg gttatgaagg gctgcttaaa 240
agaataatag gtggacactg gaatttaaca ccaaagcttc aaaaactggc tatggaaaat 300
aaggtagaag catacaattt accgcaggga acaatatcac agatgtacag agatattgct 360
gctggaaaac cagggacatt aactcatgtt ggattgaaaa cctttgtaga tcctagaata 420
gaaggtgcaa agcttaataa acttacaaca gaaaacatca taagtttaat caacatagat 480
gataaggaat atttgattta taaaactttt cctataaatg ttaccatttt aaaagctaca 540
tacgcagatg aggatggata tgcaacaatg gaaaaggaag cactaacact tgatgcaact 600
gcaatggctc aagcagctaa aaattccggt ggaatagtaa ttcttcaggt tgaaaagata 660
gttgctaaag gctcacttga tccaagaaaa gtaaaaattc caggaatata tgttgatgca 720
gtagttgttg ggtctcctga aaataacatg caaacttttg gtgaagcatt taacccagca 780
tattccggag atgctagagt accagtagat tcaatagaac cattagagat taatgaaaga 840
aaagtaatag caagaagatg tgctatggaa cttgtacctg atgctgcaac aaatctagga 900
attggtatgc cggaaggaat agctatagtt gctagtgaag aaggtattgg agataaaatg 960
actctaactg tagagccagg aggaataggc ggagtacctg caggtggttt aaacttcgga 1020
gctacaacta atccattatg tataatggac caagctactc agtttgattt ttatgatggc 1080
ggtggccttg atgtagcttt tttgggattg gcacaatgtg ataaggtggg taacataaat 1140
gttagtaaat ttggtcctaa gattgcaggc tgtggtggat ttataaacat aactcaaaat 1200
tctaaaaaag ttatatactg cggcacattt acaacagggg gactgaaact aaaaatagat 1260
gaaggtaagt taataatact aagtgaaggt aaggttgata agttcgtaaa taaagttgaa 1320
caaattactt tcagtggtga atatgcatca aatattggac agcctgtact ttatgttaca 1380
gaaagagcag tatttagatt atctaaatat ggcttagttc taatagagat agcaccagga 1440
gtagatttgg agaatgatgt attggctcat atggaattta aaccaataat atcaccagat 1500
ttaaaactta tggatgaaag tatattcaag gcagaaccga tgggattaaa aatttaa 1557
<210> 8
<211> 1545
<212> DNA
<213> Clostridium beijeriinckii 8052
<400> 8
atgaacaaga taatgtcggt agaacaagca atcgccttaa tcaaaagtgg agacacagtt 60
gcatttggtg gatttatagg tgctgggcat gcagaagggg tttctaagaa acttaaggaa 120
atatacttag aacaaggtgc ccctaataat ttaactcttg tttatgcagc gggacaagga 180
gatggtaaag aaaaaggttt gaatcattta ggacaagaag gccttctttc aaaggtaata 240
ggtggacatt ggggattagc tcctaagatc caaaaactcg caattgaaaa taaaataaag 300
gcttataatc ttccacaagg agtaatatct agtctttata gagatattgc ggcaggtaaa 360
ccaggtacaa ttactcatgt tggtttaaag actttcgtag atccaagagt tgagggagga 420
aaattaaatg aatgtacaac agaggatatt gtaaaggtta ttgaaattga taataaggaa 480
tatctctact acaaagcatt tcctatagat gtatctatat taagagcaac atatgcagat 540
gaagatggaa atgcaactct tcaaaaggaa gcagcaacac tagatggttt agctatggca 600
caggcagcaa aaaattctgg tggaaaagta attcttcagg ttgagaaaat agtctctaag 660
ggaactttag atccaaagct tgtaaaaatc cctggaatac ttgtagatgc tatagttgta 720
gctaacagtg aagaccatat gcagacattt gctgaagcat ttaatccagc ctatagtgga 780
gaaataagaa tgccagtaga ttctatcgaa tgtctttcaa tggatgagag aaaaataata 840
gcaaggcgtt gtgcaatgga acttatacca aatgcagtaa ctaatcttgg tataggtatg 900
ccggagggaa tttcaatggt tgccaatgaa gaaggaatag gagatacaat gagattaact 960
attgaatctg gcccaattgg tggaatccca gcaggaggat tgagctttgg tgcagctata 1020
aacccagata gcattataga tcagtcatct caatttgatt tttatgatgg cggagggtta 1080
gatgtagcat ttttgggact agctcaatgc gatgaaaaag gcaatataaa tgtaagtaaa 1140
tttggtccta agatagctgg atgtggagga tttataaata taactcaaaa ttcaaaaaag 1200
gttatattct gtggcacatt tacagcagga ggacttaaaa ttaatgttgc tgatggcaag 1260
ctagtaatcg aaaatgaggg aagatcaaag aagtttatta agaatgttga acaaatcaca 1320
ttcagtggag attacgctag agatgtgaat caaccagtat tatatataac tgaaagggca 1380
gttttcagat taacaaaaga tggagtaaca ttagaagaaa tagctccagg ggtagattta 1440
caaaaggata ttattgatca aatggacttt aagccaataa tatcaaataa tttaaagaca 1500
atggatgaaa gaatttttaa agataagcct atgaagttga agtaa 1545
<210> 9
<211> 1527
<212> DNA
<213> Clostridium beijeriinckii 8052
<400> 9
atgaagtcaa aggtaatctc tatagaacaa tcggttgatt taataaaaaa tggagctact 60
gttgcagtag gtggatttgt tggatgtgcc catccagaac aaattacatt agaaatagaa 120
aaacaatatt taaaaaggca tgttcctaac aatttaacat tagtttttgc agctggtcaa 180
ggtgatggta aagatagagg attaaatcat cttggttatg aggggttagt tcacagaata 240
atagggggac attgggcatt gacaccaaag cttcaaaaac tagctttaga aaataaagta 300
gaagcatata atttacctca aggagttata tcacatttgt atagagacat tgcagctgga 360
aagccgggaa caattactca tgttggattg aaaacattta tagatcctag aattgaaggt 420
ggtaaactta atgaaattac aaaagaggat attgtaaaag tagttaatat tgaagagaag 480
gaatatttgc tatataaagc gtttccgata gatgttgtac ttttaagggc tacttatgca 540
gatgaagacg gaaatgcaac aatggaaaaa gaggctttaa cacttgatgc aacagcaatg 600
gctcaagctg ctaaaaattc agggggaata gtaatactac aagttgaaaa ggttgtaact 660
aaaggttcac ttgatccaag aaaagttaaa atcccaggaa tatatgttga tgctatagtt 720
gttgcatcaa cagaaaacca aatgcaaact tttagtgaaa actttaatcc agcatattgt 780
ggagatacta aggtaccagt ggattcaata gaaccattac tacttaatga aaggaaggta 840
atagcaagaa gatgtgctaa ggaactagta ccaaatgctg ttactaattt aggtattggc 900
ataccagaag gaatagctat agttgctaat gaagaaggta ttgcagatca aatgacttta 960
actgtagagc caggtggagt aggtggcgta ccagcaggtg gactaagttt tggagcttca 1020
acaaatccgg tttgcatact ggaccaatcc agtcaatttg atttttatga tggaggcggt 1080
cttgatgtag ctttcttggg attagcacaa tgtgacaaat cgggtaatat aaatgttagt 1140
aagtttggac ctaagattgc aggttgtggt gggtttatta atataactca aaatgctaag 1200
aagttaatat attgtggcac atttacagct ggtggtttaa aagtaaaaat tggagaaggt 1260
aaattaataa tagaaaatga aggtaaggct aagaaatttg ttgatgctgt cgagcaaatt 1320
acttttagtg gtgaatatgc atcaagcatt ggacaaactg tcctttatgt tacagaaaga 1380
gccgtattta agttaactaa agaggggtta cttttagaag aaatagctcc aggaataaat 1440
ttagaaaagg atattctaga taatatggat tttaagccaa taatatctcc tgaattaaag 1500
cttatggatg aaaatatgtt taaatag 1527
<210> 10
<211> 1554
<212> DNA
<213> Clostridium beijeriinckii 8052
<400> 10
gtgagaaaag taaaagtttt aacaagtcgc gaagcagtac aaatagtgaa ggatggagat 60
gtgttagtaa ctggcggatt tgttggtagt tgtgcacctg aaactcttag ttgtgcttta 120
gaaaaacgtt tcattgaaac aaatcatccg caaaatataa ctttatttca tgcagcagga 180
caaggcgata gtaaggggaa aggttcagat cattatgccc acgaaggctt acttaagaga 240
gtggttgcag gtcattataa tttagcaccg aaaattggaa agttaattaa tgaaaataaa 300
atagaagctt ataatctacc acaagggaca atttctcaat tatttagaga tattgcggga 360
aaaagaattg ggacaataac tcacgttgga ttgaatacat ttgtggatcc aagaattagt 420
ggtggaaaat taaatgaaaa aacaaaagaa gatctagtaa agctaataaa tatagaaggt 480
gaagaaaaat tattatacaa atcaattcca gttaatgtct gcttcttaag aggatctttt 540
gcagatgaat acggtaatgt atcattagaa aaagaaatag ctacacttga ggatacgtca 600
atagcccaag cttgtaagaa taatggcgga aaagtaatag ttcaagtaga aaaagtagtt 660
gaagcaggat ctttagaccc acgtcttata aaaattccag gtatatatgt agatgcggtt 720
gtaatctcaa ctcccgaaga gcatgaacaa tccttcgaat gcccatttaa tccagcagta 780
acaggtgaaa tgagaattcc attaaacagt gtagaaaaag ctccattaaa tgagagaaag 840
ataattgcga gaagagcagc tatggaatta aagaaagata cggtagtaaa tttaggtata 900
gggataccag aagttatttc tttagttgcg aatgaagaag gaattggtga atatatgaca 960
ttaactgtag aagccggtcc aataggaggt ataccacaag gatgcacagc ttttggagcg 1020
agtataaatc cagaagctat tatagatcag ccatatcaat ttgattttta tgatggtgga 1080
ggcgtcgata tagcattttt aggactagct caggttgatg aacatggaaa tttgaatgta 1140
agtaagtttg ggcctagaat tgctggatgt ggtggattca taaatataac tcaaaatgct 1200
aagaaagtgt tattttgtgg aacattcact gcaggaggct taaaagtagt aacaggagat 1260
ggcaaattag aaattaaaca agaaggaaaa gctaaaaaat tcattaagga tgtagagcaa 1320
attacattta gtggagatta tgcaagaagg atggatcaac aagttatgta tataactgag 1380
agagcagtat ttgagttaag gaaagatgga ttatacctta cagaaatagc gcctgggata 1440
gatctaaaaa aggatgtatt ggatttaatg gatttcaaac ctaaaatgga tggagtacct 1500
agactaatga atggaagaat attttatgat aagttgatgg gattaaggga gtaa 1554

Claims (6)

1.一种利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法,其特征在于,代谢途径为使用乙酸或其盐经β-酮基硫解酶和乙酰乙酰CoA还原酶,最终利用丙酰CoA转移酶的不专一性生产(R)-3-羟基丁酸。
2.根据权利要求1所述的一种利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法,其特征在于,过表达β-酮基硫解酶编码基因(phaA)、乙酰乙酰CoA还原酶编码基因(phaB)和丙酰CoA转移酶编码基因(pct)。
3.根据权利要求1所述的一种利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法,其特征在于,所述乙酸或其盐是指乙酸或者乙酸盐,所述乙酸盐包括乙酸钠和乙酸铵中的一种或两种。
4.利用权利要求1—3任一所述利用乙酸或其盐生产(R)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法得到的代谢工程大肠杆菌菌株。
5.权利要求4所述代谢工程大肠杆菌菌株在以乙酸或其盐为碳源发酵生产(R)-3-羟基丁酸中的应用。
6.根据权利要求5所述的应用,其特征在于,以含乙酸的合成气发酵液为培养基发酵生产(R)-3-羟基丁酸。
CN202011464753.XA 2020-12-14 2020-12-14 利用乙酸或其盐生产(r)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用 Pending CN112553234A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011464753.XA CN112553234A (zh) 2020-12-14 2020-12-14 利用乙酸或其盐生产(r)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011464753.XA CN112553234A (zh) 2020-12-14 2020-12-14 利用乙酸或其盐生产(r)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用

Publications (1)

Publication Number Publication Date
CN112553234A true CN112553234A (zh) 2021-03-26

Family

ID=75064266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011464753.XA Pending CN112553234A (zh) 2020-12-14 2020-12-14 利用乙酸或其盐生产(r)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用

Country Status (1)

Country Link
CN (1) CN112553234A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117965593A (zh) * 2024-02-02 2024-05-03 华南理工大学 一种生产3-羟基丁酸的菌株及其构建方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890187A (zh) * 2011-10-18 2014-06-25 昭和电工株式会社 使用辅酶a转移酶的有机酸的制造方法
CN108359628A (zh) * 2018-02-13 2018-08-03 北京化工大学 利用乙酸和丙酸生产聚羟基脂肪酸酯的基因工程菌及其构建方法和应用
CN110564757A (zh) * 2019-09-27 2019-12-13 华东理工大学 利用乙酸或其盐生产3-羟基丙酸的代谢工程大肠杆菌菌株的构建方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890187A (zh) * 2011-10-18 2014-06-25 昭和电工株式会社 使用辅酶a转移酶的有机酸的制造方法
CN108359628A (zh) * 2018-02-13 2018-08-03 北京化工大学 利用乙酸和丙酸生产聚羟基脂肪酸酯的基因工程菌及其构建方法和应用
CN110564757A (zh) * 2019-09-27 2019-12-13 华东理工大学 利用乙酸或其盐生产3-羟基丙酸的代谢工程大肠杆菌菌株的构建方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUMOTO,K.等: "Efficient (R)-3-hydroxybutyrate production using acetyl CoA-regenerating pathway catalyzed by coenzyme A transferase", 《APPL MICROBIOL BIOTECHNOL》, vol. 97, pages 205 - 210 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117965593A (zh) * 2024-02-02 2024-05-03 华南理工大学 一种生产3-羟基丁酸的菌株及其构建方法和应用

Similar Documents

Publication Publication Date Title
AU2015369651B2 (en) Method of producing and processing diamines
Lemos et al. Synthesis of polyhydroxyalkanoates from different short-chain fatty acids by mixed cultures submitted to aerobic dynamic feeding
KR101596605B1 (ko) 이산화탄소 고정 회로를 도입한 미생물
CN107881186B (zh) 利用乙酸生产羟基丙酸的代谢工程大肠杆菌菌株的构建方法与应用
JP5644108B2 (ja) 有機酸の製造方法
KR20190137060A (ko) 1-단계 발효에 의한 (r)-3-하이드록시부티르산 또는 이의 염의 제조
KR20090029256A (ko) 재생가능한 공급원으로부터 발효에 의한 글리콜산의 제조 방법
CN109321590B (zh) 利用乙酸生产l-乳酸的基因工程菌及其构建方法和应用
JP2022530467A (ja) 再生可能資源からの化学物質の生成
AU2013272645A1 (en) D-glucaric acid-producing bacterium, and method for manufacturing D-glucaric acid
CN117844728B (zh) 一种l-缬氨酸生产菌株及其构建方法与应用
CN114480235B (zh) 一种代谢工程改造大肠杆菌发酵制备α-酮异戊酸的方法
CN101802200B (zh) 使用重组微生物制备(s)-3-羟丁酸和(s)-3-羟丁酸酯的方法
CN112553234A (zh) 利用乙酸或其盐生产(r)-3-羟基丁酸的代谢工程大肠杆菌菌株的构建方法及应用
CN111411128B (zh) 一种生产α,ω-二元羧酸的整细胞生物催化方法及其应用
MX2015004180A (es) Microorganismos recombinantes para producir acidos organicos organicos.
CN110317767B (zh) 一种高产苏氨酸的基因工程菌及其应用方法
JP6054872B2 (ja) CoA転移酵素を用いる有機酸の製造方法
CN108424937B (zh) 一种酶法合成丹参素的方法
CN114921392B (zh) 一种高效联产葡萄糖酸和蒜糖醇的方法
US20050069995A1 (en) (R)-hydroxycarboxylic acid producing recombinant microorganism and process for preparing (r)-hydroxycarboxylic acid using the same
CN116376995B (zh) 一种利用苏氨酸制备甘氨酸、乙酰辅酶a及乙酰辅酶a衍生物的方法
CN106801063B (zh) 一种形态改变的工程大肠杆菌的构建方法、工程大肠杆菌及应用
CN109337848B (zh) 一种同时生产乙醇酸和乳酸的基因工程菌及其构建方法和应用
CN114107147B (zh) 一种可利用甲醇生产光学纯1,3-丁二醇的重组微生物及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210326

WD01 Invention patent application deemed withdrawn after publication