CN112521155A - 一种新型陶瓷吸波微球材料及其制备方法 - Google Patents

一种新型陶瓷吸波微球材料及其制备方法 Download PDF

Info

Publication number
CN112521155A
CN112521155A CN202011515467.1A CN202011515467A CN112521155A CN 112521155 A CN112521155 A CN 112521155A CN 202011515467 A CN202011515467 A CN 202011515467A CN 112521155 A CN112521155 A CN 112521155A
Authority
CN
China
Prior art keywords
absorbing
preparation
wave
acetylacetonate
microsphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011515467.1A
Other languages
English (en)
Inventor
温广武
侯永昭
仲诚
刘芸
朱楠楠
杨国威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN202011515467.1A priority Critical patent/CN112521155A/zh
Publication of CN112521155A publication Critical patent/CN112521155A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明提供了一种新型陶瓷吸波微球材料及其制备方法。所述制备方法包括以下步骤:磁性粉末与PSA液体的混合,混合物连续相中乳化;乳液固化;前体微球与连续相的分离;磁性聚合物的陶瓷化处理。本发明实施例示例的新型陶瓷吸波微球材料的制备方法,工艺简单,易于在简易的条件下制备,同时可以实现大规模工业化生产。本发明实施例示例的新型陶瓷吸波微球材料的制备方法制备得到的吸波材料具有良好的球形形貌,聚硅乙炔具有活性反应位点,成分结构可调,可与磁性物质反应交联,通过调节磁性物质的成分和含量形成不同的微观结构,改变制备得到的吸波材料对电磁波的吸收和反射能力。

Description

一种新型陶瓷吸波微球材料及其制备方法
技术领域
本发明涉及陶瓷吸波材料及其制备方法,尤其涉及新型的陶瓷吸波微球材料及其制备方法。
背景技术
随着现代技术的发展,电磁波被广泛用于无线通信系统,数据传输,卫星发射和雷达隐身技术领域。然而,电磁波造成的电磁污染严重威胁着人类的健康,工作和生活。因此有效屏蔽或吸收电磁波是当前信息化中迫切需要解决的问题。同时,电磁吸收材料的应用已成为军事领域的主要方向。因此,开发具有显着电磁吸收和宽工作频率的先进吸收材料是非常紧迫的,具有重要意义。
现代吸收材料正朝着介电和磁性轻质复合材料的方向发展。综合性能满足吸收材料“薄,宽,轻,强”的要求。磁性金属/合金颗粒因其出色的电磁性能而被公认为是电磁波吸收(EMA)的最有希望的候选者。在高于居里点的温度下,铁氧体和羰基铁基磁性吸收剂的磁性会消失,并且电磁吸收性能也会丧失。另外,由于它们较低的铁磁共振频率,它们不能在高频下使用。作为铁氧体的替代品,磁性合金具有高居里点以确保即使在高温下也具有活性,例如Co-Fe,Fe-Si和Co-Si合金。陶瓷材料由于具有热稳定性,抗辐射性和良好的机械性能而具有电磁吸收的潜力,尤其是聚合物衍生的陶瓷(PDC)。通过PDC,电磁吸收材料在成分,形貌和结构上具有很大的可变性。与其他陶瓷相比,SiCO陶瓷具有合适的阻抗匹配,良好的机械性能以及即使在空气中1000°C下仍具有较高的热稳定性。
发明内容
本发明的目的在于提供一种新型的陶瓷吸波微球材料及其制备方法,本发明通过将聚硅乙炔和磁性物质的混合物乳化制备了陶瓷吸波微球材料,聚硅乙炔作为SiCO陶瓷先驱体制备的吸波材料具有较好的高温稳定性,制备的微球吸波材料具有良好的球形形貌,提供良好的界面效果,磁性成分的引入提高材料磁损耗,制备的磁性陶瓷微球具有较强的吸波性能。
第一方面,本申请实施例提供了一种新型的陶瓷吸波微球材料的制备方法,包括以下步骤:将磁性粉末加入到PSA液体中,然后将混合物滴入二甲基硅油中搅拌乳化;烘箱中固化乳液;然后将前体微球与二甲基硅油分离;磁性聚合物的陶瓷化处理。
优选的:所述磁性物质选自氯化铁、氯化钴、氯化镍、硝酸铁、硝酸钴、硝酸镍、乙酰丙酮铁、乙酰丙酮钴、乙酰丙酮镍、铁钴镍金属粉中的一种以上。
优选的:所述聚硅乙乙炔溶液中乙酰丙酮铁、乙酰丙酮钴、乙酰丙酮镍的质量比为1%-20%。
优选的:所述聚硅乙炔可以用聚碳硅烷、聚硅氧烷替代。
优选的:所述乳化具体步骤如下:连续相可以用二甲基硅油、甘油,二甲基硅油的粘度为350-50000mP∙s,搅拌速度为400-1500转/分钟。
优选的:所述乳液固化具体步骤如下:将混合后的乳液进行加热固化,固化温度选择在180-300℃,并保温2-6小时。
优选的:所述前体微球与二甲基硅油分离具体步骤如下:将前体微球与二甲基硅油的乳液溶解分散于正己烷、四氢呋喃或二甲苯溶液中,超声分散30-60分钟,然后在5000-10000转/分钟转速下离心5-20分钟取下层粉末,重复上述过程2-5次得到磁性聚合物微球。
优选的:所述磁性聚合物微球陶瓷化具体步骤如下:将聚合物微球分散于正己烷或四氢呋喃溶液中,超声处理10-20分钟,烘干后在氮气或者氩气气氛下进行烧结,烧结温度为800-1400℃,保温1-4小时,升温速率为1-5℃/min。
第二方面,本申请实施例提供了一种由上述任一所述的制备方法制备得到的陶瓷吸波微球材料。
综上所述,本发明提供了一种先驱体转化碳化硅陶瓷及其制备方法。本发明的方案具有以下优点:
1、本发明实施例示例的新型的陶瓷吸波微球材料的制备方法,工艺简单,易于在简易的条件下制备,同时可以实现大规模工业化生产;
2、本发明实施例示例的陶瓷吸波微球的制备方法制备得到的吸波微球具有良好的球形形貌,可以提供较好的界面效应;
3、本发明实施例示例的聚硅乙炔具有较好的流动性和溶解性,可溶解于正己烷、无水乙醇、四氢呋喃;
4、本发明实施例示例的聚硅乙炔具有活性反应位点,成分结构可调,可与磁性物质反应交联,通过调节磁性物质的成分和含量形成不同的微观结构,改变制备得到的吸波材料对电磁波的吸收和反射能力。
附图说明
图1为本发明实施例示例的吸波微球热固化后的红外图。
图2为本发明实施例示例的加入乙酰丙酮铁、乙酰丙酮钴、乙酰丙酮镍后陶瓷吸波微球的XRD图。
图3为本发明实施例示例的含钴的陶瓷吸波微球的吸波性能图。
具体实施方式
为了更好的说明本发明的技术方案,下面结合附图和具体实施例对本发明制备陶瓷吸波微球作进一步详细介绍。
实施例1
将乙酰丙酮铁粉末(1g)加入到聚硅乙炔液体(9g)中,同时加入适量的四氢呋喃,使乙酰丙酮铁粉末完全溶解并通过搅拌混合。将混合物滴入二甲基硅油中,并以1000rpm搅拌。搅拌2小时后,在烘箱中200℃固化4小时,然后通过离心将前体微球与二甲基硅油分离;
分离后获得的含铁树脂微球的红外图如图1所示,在2165cm-1 2040 cm-1处的峰分别是-Si-H键和-C≡C-拉伸振动的峰,1260 cm-1和1420 cm-1是由于Si-CH3振动引起的。尤其是PSA的Si-H键与乙酰丙酮铁反应,生成了一个新的Si-O-Fe键,对应于1023至1016 cm-1的范围,这使-Si-O-在1037 cm-1处的峰变宽,同时在2165 cm-1处的Si-H键减弱,在1571 cm-1处的乙酰丙酮的-C=O键同时出现。
实施例2
首先,将乙酰丙酮镍粉末(1g)加入到PSA液体(9g)中,同时加入适量的四氢呋喃,使乙酰丙酮镍粉末完全溶解并通过搅拌混合。将混合物滴入二甲基硅油中,并以1000rpm搅拌。搅拌2小时后,按照以下步骤在烘箱中固化乳液:180℃保温1小时,200℃保温1小时,220℃保温2小时。然后通过离心将前体微球与二甲基硅油分离。分离后,在高温氧化铝管式炉中在超高纯氮气氛下进行聚合物的热解。以3℃/ min的加热速率将管式炉从室温加热至1000℃,再保持2小时。制备的陶瓷吸波微球的XRD图如图2所示。样品在35.54°,59.92°和71.69°处出现了SiC相的峰,分别对应于晶格平面(111),(220)和(311)。Fe3Si在27.33°和45.30°处出现的峰,分别对应于晶格平面(111)和(220)。
实施例3
首先,将乙酰丙酮钴粉末(2g)加入到PSA液体(8g)中,同时加入适量的丙酮,使乙酰丙酮钴粉末完全溶解并通过搅拌混合。将混合物滴入二甲基硅油中,并以1000rpm搅拌。搅拌2小时后,按照以下步骤在烘箱中固化乳液:160℃保温1小时,190℃保温1小时,200℃保温2小时。然后通过离心将前体微球与二甲基硅油分离。分离后,在高温氧化铝管式炉中在高纯氮气氛下进行聚合物的热解。以5℃/ min的加热速率将管式炉从室温加热至1200℃,再保持4小时。制备的陶瓷吸波微球的吸波性能如图3所示。
实施例4
第一步,将乙酰丙酮钴粉末(2g)加入到聚硅氧烷液体(8g)中 同时加入适量的丙酮溶液,使乙酰丙酮钴粉末完全溶解于丙酮并搅拌均匀。将混合物滴加进甘油中,并以800rpm搅拌。搅拌2小时后,按照以下步骤在烘箱中固化乳液:90℃保温2小时,100℃保温2小时。然后通过将乳液与水混合搅拌,通过抽滤的方法将前体微球与甘油分离。分离后,在氧气气氛下进行聚合物的热解。以3℃/ min的加热速率将管式炉从室温加热至800℃,再保持2小时。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所设计的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所属发明构思的情况下,有上述技术特征或其同特征进行任意组合而形成的其他技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (9)

1.一种新型陶瓷吸波微球材料的制备方法,其特征是:包括以下步骤:将磁性粉末加入到PSA液体中,然后将混合物滴入二甲基硅油中搅拌乳化;烘箱中固化乳液;然后将前体微球与二甲基硅油分离;磁性聚合物的陶瓷化处理。
2.如权利要求1所述的制备方法,其特征是:所述磁性物质选自氯化铁、氯化钴、氯化镍、硝酸铁、硝酸钴、硝酸镍、乙酰丙酮铁、乙酰丙酮钴、乙酰丙酮镍、铁钴镍金属粉中的一种以上。
3.如权利要求1所述的制备方法,其特征是:所述聚硅乙乙炔溶液中乙酰丙酮铁、乙酰丙酮钴、乙酰丙酮镍的质量比为1%-20%。
4.如权利要求1所述的制备方法,其特征是:所述聚硅乙炔可以用聚碳硅烷、聚硅氧烷替代。
5.如权利要求1所述的制备方法,其特征是:所述乳化具体步骤如下:连续相可以用二甲基硅油、甘油,二甲基硅油的粘度为350-50000mP∙s,搅拌速度为400-1500转/分钟。
6.如权利要求1所述的制备方法,其特征是:所述乳液固化具体步骤如下:将混合后的乳液进行加热固化,固化温度选择在180-300℃,并保温2-6小时。
7.如权利要求1所述的制备方法,其特征是:所述前体微球与二甲基硅油分离具体步骤如下:将前体微球与二甲基硅油的乳液溶解分散于正己烷、四氢呋喃或二甲苯溶液中,超声分散30-60分钟,然后在5000-10000转/分钟转速下离心5-20分钟取下层粉末,重复上述过程2-5次得到磁性聚合物微球。
8.如权利要求1所述的制备方法,其特征是:所述磁性聚合物微球陶瓷化具体步骤如下:将聚合物微球分散于正己烷或四氢呋喃溶液中,超声处理10-20分钟,烘干后在氮气或者氩气气氛下进行烧结,烧结温度为800-1400℃,保温1-4小时,升温速率为1-5℃/min。
9.一种如权利要求1-8任一项所述的制备方法制得的新型陶瓷吸波微球材料。
CN202011515467.1A 2020-12-21 2020-12-21 一种新型陶瓷吸波微球材料及其制备方法 Pending CN112521155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011515467.1A CN112521155A (zh) 2020-12-21 2020-12-21 一种新型陶瓷吸波微球材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011515467.1A CN112521155A (zh) 2020-12-21 2020-12-21 一种新型陶瓷吸波微球材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112521155A true CN112521155A (zh) 2021-03-19

Family

ID=75001873

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011515467.1A Pending CN112521155A (zh) 2020-12-21 2020-12-21 一种新型陶瓷吸波微球材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112521155A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798663A1 (fr) * 1999-09-17 2001-03-23 Oreal Gel aqueux comprenant un polymere filmogene sulfone hydrosoluble et une dispersion aqueuse d'organopolysiloxane, composition le comprenant et utilisations
CN103374143A (zh) * 2012-04-28 2013-10-30 中国科学院过程工程研究所 一种超大孔聚合物微球及其制备方法
CN105664897A (zh) * 2016-02-29 2016-06-15 中国科学院兰州化学物理研究所 利用o/w/o双乳液模板制备磁性多孔微球吸附材料的方法
CN108358639A (zh) * 2018-01-30 2018-08-03 山东理工大学 一种新型的陶瓷吸波材料及其制备方法
CN108359106A (zh) * 2018-03-26 2018-08-03 浙江新安化工集团股份有限公司 一种硅树脂微球乳液的制备方法
CN111269073A (zh) * 2020-02-11 2020-06-12 安徽理工大学 一种微波加热法制备含能中空微球的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798663A1 (fr) * 1999-09-17 2001-03-23 Oreal Gel aqueux comprenant un polymere filmogene sulfone hydrosoluble et une dispersion aqueuse d'organopolysiloxane, composition le comprenant et utilisations
CN103374143A (zh) * 2012-04-28 2013-10-30 中国科学院过程工程研究所 一种超大孔聚合物微球及其制备方法
CN105664897A (zh) * 2016-02-29 2016-06-15 中国科学院兰州化学物理研究所 利用o/w/o双乳液模板制备磁性多孔微球吸附材料的方法
CN108358639A (zh) * 2018-01-30 2018-08-03 山东理工大学 一种新型的陶瓷吸波材料及其制备方法
CN108359106A (zh) * 2018-03-26 2018-08-03 浙江新安化工集团股份有限公司 一种硅树脂微球乳液的制备方法
CN111269073A (zh) * 2020-02-11 2020-06-12 安徽理工大学 一种微波加热法制备含能中空微球的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
侯永昭: "基于聚硅乙炔转化的SiCO(M)陶瓷的制备及吸波性能研究", 《万方数据知识服务平台》 *

Similar Documents

Publication Publication Date Title
CN106904960B (zh) 一种Mg2SiO4-Li2TiO3复合体系LTCC材料及其制备方法
Hou et al. Enhanced electromagnetic wave absorption performance of novel carbon-coated Fe 3 Si nanoparticles in an amorphous SiCO ceramic matrix
JP2008060484A (ja) 電波吸収性磁性結晶および電波吸収体
CN110157226B (zh) 一种耐高温吸波涂料及其制备方法
KR20140118674A (ko) 근방계용 전파 흡수 시트 및 그의 제조방법
CN110028930B (zh) 一种HalS-Fe3O4@C复合材料及其制备方法和应用
He et al. Ceramsite containing iron oxide and its use as functional aggregate in microwave absorbing cement-based materials
CN106495700B (zh) 一种前驱体转化法制备掺杂稀土氧化物的SiCN(Fe)前驱体陶瓷的方法
CN114890770A (zh) 一种多孔碳化硅/碳复合气凝胶的制备方法
CN112521155A (zh) 一种新型陶瓷吸波微球材料及其制备方法
JP4153345B2 (ja) SiC−六方晶フェライト系セラミックス複合型電磁波吸収体の製造方法
CN111235695B (zh) 一种多孔碳纤维电磁吸波剂的制备方法
CN112449568A (zh) 一种制备空心钴镍合金/多孔碳复合吸波材料的方法
CN213680424U (zh) 一种基于3d打印技术的聚合物先驱体制多孔磁性陶瓷系统
JP4044273B2 (ja) 準構造SiC−フェライト系セラミックス複合型電磁波吸収体の製造方法
CN114480939B (zh) 双相高频软磁材料及其制备方法和包括其的电子器件
CN113214787B (zh) 一种吸波粉体材料及其制备方法和应用
CN108788136B (zh) 一种三壳层铁硅基软磁复合材料及其制备方法
CN117263695B (zh) 一种雷达吸波复合材料及其制备方法
CN115959915B (zh) 一种低介电常数低损耗高强度的低温烧结材料及其制备方法和应用
CN116836685A (zh) 废石油催化裂化催化剂的利用方法、微波吸收复合材料
CN109650889A (zh) 一种低烧结温度介电陶瓷的制备方法
CN117773102B (zh) 硅芳炔树脂包覆的磁性金属吸收剂及其制备方法和应用
CN112521657B (zh) 一种电磁波吸收材料及其制备方法
CN117840421A (zh) 一种电磁波吸收性能优异的非晶粉末及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210319