CN112480912A - 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用 - Google Patents

一种钠铟基双钙钛矿纳米晶体材料及其制备和应用 Download PDF

Info

Publication number
CN112480912A
CN112480912A CN201910858015.4A CN201910858015A CN112480912A CN 112480912 A CN112480912 A CN 112480912A CN 201910858015 A CN201910858015 A CN 201910858015A CN 112480912 A CN112480912 A CN 112480912A
Authority
CN
China
Prior art keywords
indium
sodium
double perovskite
silver
based double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910858015.4A
Other languages
English (en)
Inventor
韩克利
韩沛耿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201910858015.4A priority Critical patent/CN112480912A/zh
Publication of CN112480912A publication Critical patent/CN112480912A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/626Halogenides
    • C09K11/628Halogenides with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/429Photometry, e.g. photographic exposure meter using electric radiation detectors applied to measurement of ultraviolet light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了新型未掺杂和银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料,其步骤包括将含铯化合物、醋酸钠、醋酸铟、醋酸银加入到烧瓶中,再加入1‑十八烯、油酸、油胺,搅拌混合,在100‑110℃抽真空1h;通氮气,4‑8℃/min升温到180‑185℃,在165‑170℃时注入含氯化合物,当温度到180℃时,迅速冰浴至室温,离心去除上清液,然后用甲苯洗2遍,离心去除上清液,再将沉淀分散到正己烷中,离心去除沉淀,得到纳米晶体胶体。本发明制备方法简单,解决了铅基钙钛矿的毒性问题,并通过银掺杂提高了钙钛矿纳米晶体的稳定性,同时改善其荧光性能,在光电领域具有良好的应用前景。

Description

一种钠铟基双钙钛矿纳米晶体材料及其制备和应用
技术领域
本发明属于发光二极管技术领域,具体涉及一种新型发光二极管纳米发光材料合成和应用。
背景技术
铅基钙钛矿纳米晶体材料具有良好的光电性质,已被用于制备发光二极管、太阳能电池和光电探测器等设备。但是,其毒性和不稳定性,严重制约了其大规模应用。因此,高效非铅钙钛矿纳米发光材料受到全世界科研工作者的广泛关注。
因此,为了环境友好和可持续发展,采用无毒或低毒的非铅元素代替铅,是钙钛矿材料发展的必然趋势。在非铅钙钛矿中,双钙钛矿由于其三维结构和好的稳定性,具有潜在的应用前景。但是,目前非铅全无机钠基双钙钛矿材料还没有被报道。
发明内容
本发明的目的在于提供新型未掺杂和银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料及其制备方法,该材料制备简单,环保无毒,光电性能优异,有望用于发光二极管等光电器件。
新型未掺杂和银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料,其特征在于,所述双钙钛矿纳米材料化学式为Cs2NaInCl6纳米晶体,所述银掺杂双钙钛矿纳米材料化学式为Cs2NaInCl6:Ag纳米晶体,该双钙钛矿纳米材料具有的面心立方结构。
所述未掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的变温热注射制备方法如下:
按所需量将含铯化合物、醋酸钠、醋酸铟加入到50ml烧瓶中,再加入1-十八烯、油酸、油胺,搅拌混合,在100-115℃抽真空40min-90min;通氮气,4-8℃/min升温到170-190℃,在165±5℃时注入含氯化合物,当温度到170-190℃时,迅速冰浴,冷却至室温;9000±1500转/min离心5-30分钟去除上清液,然后用甲苯洗1-4遍,10000±500转/min离心10±6分钟去除上清液,再将沉淀分散到正己烷中,6000±1000转/min离心10±6分钟去除沉淀,得到Cs2NaInCl6纳米晶体胶体。
所述银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的变温热注射制备方法如下:
按所需量将含铯化合物、醋酸钠、醋酸铟、醋酸银加入到50ml烧瓶中,再加入1-十八烯、油酸、油胺,搅拌混合,在100-115℃抽真空40-90min;通氮气,4-8℃/min升温到175-195℃,在165±5℃时注入含氯化合物,当温度到175-195℃时,迅速冰浴,冷却至室温;9000±1500转/min离心5-30分钟去除上清液,然后用甲苯洗1-4遍,10000±500转/min离心10±6分钟去除上清液,再将沉淀分散到正己烷中,6000±1000转/min离心10±6分钟去除沉淀,得到Cs2NaInCl6:Ag纳米晶体胶体。
制备过程中所用的反应温度是梯度变温的过程,及变温热注射过程。
制备过程中所用的含铯化合物为醋酸铯或油酸铯中的一种。
制备过程中所用的含氯化合物为三甲基氯硅烷、苯甲酰氯或2-乙基己酰氯中的一种。
制备过程中:每合成0.5mmol Cs2NaInCl6或Cs2NaInCl6:Ag纳米晶体需要10ml 1-十八烯,2.9ml油酸,0.65ml油胺。
所述的未掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的应用,其特点在于该纳米材料的边长为12.5±5nm,光学带隙在4.25eV,可作为光敏材料适合用于紫外光电探测器中。
所述的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的应用,其特点在于该纳米材料的边长为9.7±5nm,光学带隙在4.25eV,可作为光敏材料适合用于紫外光电探测器中。
所述的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的应用,其特点在于银离子可能取代钠离子或铟离子的位置,也可能在晶格的间隙中。
所述的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的应用,其特点在于银的掺杂量是大于0%,小于等于5%。
所述的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的应用,其特点在于该材料在室温下有很强的黄色荧光,荧光峰很宽,覆盖了整个可见光区,峰中心位置在540nm,可作为黄色荧光粉,适合用于黄光二极管的荧光层,或与蓝光材料组成暖白光发光二极管。
所述的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的应用,其特点在于该材料的荧光量子产率高达31.1%,可作为发光材料用于发光二极管中电致发光。
所述的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料,该材料可以在25℃、55%相对湿度和0.6个太阳光照下稳定均超过1个月。
有益效果:本发明提供了新型未掺杂和银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料及其变温热注射合成方法,少量的银元素掺杂,使得制备的三维银掺杂非铅全无机钠铟基双钙钛矿纳米晶体具有很强的黄色荧光,以及优异的稳定性,具有很好的光电应用前景。
发明制备方法简单,解决了铅基钙钛矿的毒性问题,并通过银掺杂提高了钙钛矿纳米晶体的稳定性,同时改善其荧光性能,在光电领域具有良好的应用前景。
附图说明
图1为本发明未掺杂和银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的粉末XRD衍射谱图。
图2为本发明未掺杂(图2a)和银掺杂(图2b)非铅全无机钠铟基双钙钛矿纳米晶体材料的透射电子显微镜(TEM)图片。
图3为本发明未掺杂和银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料的紫外-可见吸收光谱及室温稳态荧光光谱。
图4为本发明四种不同银掺杂比例的非铅全无机钠铟基双钙钛矿纳米晶体材料在254纳米紫外灯下的荧光图片。
具体实施方式
下面结合附图及具体的实施案例对本发明做进一步描述:
实施例1
将115.2mg醋酸铯、36.9mg醋酸钠和146.0mg醋酸铟加入到50ml烧瓶中,再加入10ml1-十八烯,2.9ml油酸,0.65ml油胺,搅拌混合,在105℃抽真空1h;通氮气,6℃/min升温到180℃,在165℃时注入0.4ml三甲基氯硅烷,当温度到180℃时,迅速冰浴,冷却至室温,9000±1000转/min离心10分钟去除上清液,然后用甲苯洗2遍,10000转/min离心5分钟去除上清液,再将沉淀分散到正己烷中,5000转/min离心5分钟去除沉淀,得到平均边长约为12.5nm的Cs2NaInCl6纳米晶体胶体。
经粉末XRD衍射测试,如图1所示,获得的未掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料结晶度高,是单一的纯相,具有明显的面心立方结构。
实施列2
将115.2mg醋酸铯、35.1mg醋酸钠、146.0mg醋酸铟和3.8mg醋酸银加入到50ml烧瓶中,再加入10ml1-十八烯,2.9ml油酸,0.65ml油胺,搅拌混合,在105℃抽真空1h;通氮气,6℃/min升温到185℃,在170℃时注入0.4ml三甲基氯硅烷,当温度到185℃时,迅速冰浴,冷却至室温,9000±1000转/min离心10分钟去除上清液,然后用甲苯洗2遍,10000转/min离心5分钟去除上清液,再将沉淀分散到正己烷中,5000转/min离心5分钟去除沉淀,得到边长约为9.7nm的Cs2NaInCl6:Ag纳米晶体胶体。
经粉末XRD衍射测试,如图1所示,获得的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料结晶度高,是单一的纯相,具有明显的面心立方结构。
经透射电子显微镜测试,如图2所示,获得的未掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料粒径分布均匀,边长约为12.5纳米;获得的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料粒径分布均匀,边长约为9.7纳米。
经紫外-可见吸收测试和稳态荧光测试,如图3所示,获得的银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料在可见光范围内具有较宽的荧光发射光谱。如图4所示,四种不同银掺杂比例的非铅全无机钠铟基双钙钛矿纳米晶体材料在254纳米紫外灯下的荧光图片。
以上所述的实施例只是本发明的较佳方案,仅用于说明本发明而不用于限制本发明的范围,凡采用等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (10)

1.一种钠铟基双钙钛矿纳米晶体材料,包括未掺杂或银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料,其特征在于,所述未掺杂双钙钛矿纳米材料化学式为Cs2NaInCl6纳米晶体,所述银掺杂双钙钛矿纳米材料化学式为Cs2NaInCl6:Ag纳米晶体;该未掺杂或银掺杂钠铟基双钙钛矿纳米材料具有的面心立方结构。
2.根据权利要求1所述钠铟基双钙钛矿纳米晶体材料,其特征在于:
未掺杂钠铟基双钙钛矿纳米晶体材料的边长为12.5±5nm;
银掺杂钠铟基双钙钛矿纳米晶体材料的边长为9.7±5nm;
银掺杂双钙钛矿纳米材料中银的摩尔含量(Ag/(Ag+Na))为大于0到小于等于5%,优选1±0.5%。
3.一种权利要求1或2所述的双钙钛矿纳米晶体材料的制备方法,其特征在于,未掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料按照以下步骤进行:
(一)按所需量将含铯化合物、醋酸钠、醋酸铟加入到反应容器中,再加入1-十八烯、油酸、油胺,搅拌混合,在100-115℃抽真空40-90min;
(二)通氮气,从室温按4-8℃/min升温到170-190℃,在165±5℃时注入含氯化合物,当温度到170-190℃时,反应容器置于冰浴降温,冷却至室温;
(三)9000±1500转/min离心5-30分钟去除上清液,然后沉淀用甲苯洗1-4遍,10000±500转/min离心10±6分钟去除上清液,再将沉淀分散到正己烷中,6000±1000转/min离心10±6分钟去除沉淀,得到Cs2NaInCl6纳米晶体胶体;
或,银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料按照以下步骤进行:
(一)按所需量将含铯化合物、醋酸钠、醋酸铟、醋酸银加入到反应容器中,再加入1-十八烯、油酸、油胺,搅拌混合,在100-115℃抽真空40-90min;
(二)通氮气,从室温按4-8℃/min升温到175-195℃,在165±5℃时注入含氯化合物,当温度到175-195℃时,反应容器置于冰浴降温,冷却至室温;
(三)9000±1500转/min离心5-30分钟去除上清液,然后沉淀用甲苯洗1-4遍,10000±500转/min离心10±6分钟去除上清液,再将沉淀分散到正己烷中,6000±1000转/min离心10±6分钟去除沉淀,得到Cs2NaInCl6:Ag纳米晶体胶体。
4.根据权利要求3所述的制备方法,其特征在于:制备过程中所用的含铯化合物为醋酸铯或油酸铯中的一种或二种以上。
5.根据权利要求3所述的制备方法,其特征在于:制备过程中所用的含氯化合物为三甲基氯硅烷、苯甲酰氯或2-乙基己酰氯中的一种或二种以上。
6.根据权利要求3所述的制备方法,其特征在于:制备过程中,每合成0.5mmolCs2NaInCl6或Cs2NaInCl6:Ag纳米晶体需要12±3ml 1-十八烯,3±0.2ml油酸,0.8±0.2ml油胺。
7.根据权利要求3-6任一所述的制备方法,其特征在于:
未掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料制备过程中制备过程中,含铯化合物、醋酸钠、醋酸铟、含氯化合物按Cs、Na、In、Cl计的摩尔用量比为(1-1.6):(0.8-1):1:(8-12)。
银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料制备过程中,含铯化合物、醋酸钠、醋酸铟、醋酸银、含氯化合物按Cs、(Na+Ag)、In、Cl计的摩尔用量比为(1-1.6):(0.8-1):1:(8-12),Ag/(Na+Ag)≤0.1。
8.根据权利要求1或2所述的钠铟基双钙钛矿纳米晶体材料的应用,其特征在于:未掺杂非铅全无机钠铟基双钙钛矿纳米材料的边长为12.5±5nm,光学带隙在4.25eV,可作为光敏材料适合用于紫外光电探测器中;
或,银掺杂非铅全无机钠铟基双钙钛矿纳米材料的粒径为9.7±5nm,光学带隙在4.25eV,可作为光敏材料适合用于紫外光电探测器中。
9.根据权利要求1或2所述的钠铟基双钙钛矿纳米晶体材料的应用,其特征在于:银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料,银离子可能取代钠离子或铟离子的位置,也可能在晶格的间隙中;
其中银的掺杂量是大于0%,小于等于5%,且实际掺杂量小于等于投料比,优选范围1±0.5%。
10.根据权利要求1或2所述的钠铟基双钙钛矿纳米晶体材料的应用,其特征在于:银掺杂非铅全无机钠铟基双钙钛矿纳米晶体材料在室温下有很强的黄色荧光,荧光峰很宽(400-750nm),覆盖了整个可见光区,峰中心位置在540nm,可作为黄色荧光粉,适合用于黄光二极管的荧光层,或与蓝光材料组成暖白光发光二极管;
或者,该材料的荧光量子产率高达31.1%,可作为发光材料用于发光二极管中电致发光。
CN201910858015.4A 2019-09-11 2019-09-11 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用 Pending CN112480912A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910858015.4A CN112480912A (zh) 2019-09-11 2019-09-11 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910858015.4A CN112480912A (zh) 2019-09-11 2019-09-11 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用

Publications (1)

Publication Number Publication Date
CN112480912A true CN112480912A (zh) 2021-03-12

Family

ID=74920182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910858015.4A Pending CN112480912A (zh) 2019-09-11 2019-09-11 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用

Country Status (1)

Country Link
CN (1) CN112480912A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072933A (zh) * 2021-04-08 2021-07-06 南京理工大学 一种非铅全无机铟基零维钙钛矿纳米晶体及制作方法
CN113088282A (zh) * 2021-04-08 2021-07-09 南京理工大学 含配位水非铅全无机铟基零维钙钛矿纳米晶体及制作方法
CN113979465A (zh) * 2021-11-22 2022-01-28 郑州大学 一种基于稀土基卤化物纳米晶的合成方法
CN114410304A (zh) * 2022-01-24 2022-04-29 吉林大学 一种新型稀土基无铅钙钛矿纳米晶材料及其制备方法与应用
CN114410303A (zh) * 2022-01-24 2022-04-29 吉林大学 一种新型镧系家族无铅钙钛矿纳米晶材料及其制备方法与应用
CN114605988A (zh) * 2022-04-01 2022-06-10 上海电力大学 一种零维蓝色发光钙钛矿材料及其制备方法
CN115369488A (zh) * 2022-07-16 2022-11-22 上海大学 一种溶液法生长的卤化物钙钛矿单晶表面的处理方法
CN115490259A (zh) * 2022-10-24 2022-12-20 吉林大学 一种高荧光效率无机非铅钙钛矿纳米晶及其制备方法
EP4349783A1 (en) * 2022-08-24 2024-04-10 Indian Oil Corporation Limited A process for synthesis of b-site doped abx3 perovskite nanocrystals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299393A (zh) * 2017-06-08 2017-10-27 华中科技大学 一种多元钙钛矿材料及其制备与应用
CN108659827A (zh) * 2018-06-15 2018-10-16 华中科技大学 近紫外激发的双钙钛矿单基质白光荧光材料及制备与应用
CN109054814A (zh) * 2018-09-10 2018-12-21 华中科技大学 一种紫外激发白光多元非铅钙钛矿荧光粉及其制备方法
CN109830550A (zh) * 2019-01-16 2019-05-31 暨南大学 一种无铅双钙钛矿单晶的紫外光探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107299393A (zh) * 2017-06-08 2017-10-27 华中科技大学 一种多元钙钛矿材料及其制备与应用
CN108659827A (zh) * 2018-06-15 2018-10-16 华中科技大学 近紫外激发的双钙钛矿单基质白光荧光材料及制备与应用
CN109054814A (zh) * 2018-09-10 2018-12-21 华中科技大学 一种紫外激发白光多元非铅钙钛矿荧光粉及其制备方法
CN109830550A (zh) * 2019-01-16 2019-05-31 暨南大学 一种无铅双钙钛矿单晶的紫外光探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEIGENG HAN等: "Size effect of lead-free halide double perovskite on luminescence property", 《SCIENCE CHINA CHEMISTRY》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072933A (zh) * 2021-04-08 2021-07-06 南京理工大学 一种非铅全无机铟基零维钙钛矿纳米晶体及制作方法
CN113088282A (zh) * 2021-04-08 2021-07-09 南京理工大学 含配位水非铅全无机铟基零维钙钛矿纳米晶体及制作方法
CN113979465A (zh) * 2021-11-22 2022-01-28 郑州大学 一种基于稀土基卤化物纳米晶的合成方法
CN114410304A (zh) * 2022-01-24 2022-04-29 吉林大学 一种新型稀土基无铅钙钛矿纳米晶材料及其制备方法与应用
CN114410303A (zh) * 2022-01-24 2022-04-29 吉林大学 一种新型镧系家族无铅钙钛矿纳米晶材料及其制备方法与应用
CN114605988A (zh) * 2022-04-01 2022-06-10 上海电力大学 一种零维蓝色发光钙钛矿材料及其制备方法
CN114605988B (zh) * 2022-04-01 2024-05-03 上海电力大学 一种零维蓝色发光钙钛矿材料及其制备方法
CN115369488A (zh) * 2022-07-16 2022-11-22 上海大学 一种溶液法生长的卤化物钙钛矿单晶表面的处理方法
CN115369488B (zh) * 2022-07-16 2024-03-22 上海大学 一种溶液法生长的卤化物钙钛矿单晶表面的处理方法
EP4349783A1 (en) * 2022-08-24 2024-04-10 Indian Oil Corporation Limited A process for synthesis of b-site doped abx3 perovskite nanocrystals
CN115490259A (zh) * 2022-10-24 2022-12-20 吉林大学 一种高荧光效率无机非铅钙钛矿纳米晶及其制备方法
CN115490259B (zh) * 2022-10-24 2023-06-23 吉林大学 一种高荧光效率无机非铅钙钛矿纳米晶及其制备方法

Similar Documents

Publication Publication Date Title
CN112480912A (zh) 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用
Zhang et al. Core/shell metal halide perovskite nanocrystals for optoelectronic applications
Tang et al. Lead‐free halide double perovskite nanocrystals for light‐emitting applications: strategies for boosting efficiency and stability
CN111348674B (zh) Cs3Cu2X5(X=Cl、Br、I)纳米晶的制备方法及产物
Duan et al. High quantum-yield CdSexS1− x/ZnS core/shell quantum dots for warm white light-emitting diodes with good color rendering
CN116120932B (zh) 一种层状双钙钛矿荧光材料的制备方法
Xie et al. Stability enhancement of Cs3Cu2I5 powder with high blue emission realized by Na+ doping strategy
CN113072933A (zh) 一种非铅全无机铟基零维钙钛矿纳米晶体及制作方法
CN112480913A (zh) 一种银钠混合双钙钛矿合金纳米晶体材料及其制备和应用
CN110255607B (zh) 一种高稳定性十字形CsPbBr3钙钛矿纳米晶的制备方法及其制得的产品
Li et al. Chemical synthesis and applications of colloidal metal phosphide nanocrystals
Shah et al. Recent advances and emerging trends of rare-earth-ion doped spectral conversion nanomaterials in perovskite solar cells
Pan et al. Progress in the preparation and application of CsPbX 3 perovskites
KR20120100568A (ko) 셀레늄화구리인듐 나노입자 및 그의 제조 방법
Wang et al. Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3 perovskite quantum dots
Zhong et al. Encapsulation of lead halide perovskite nanocrystals (NCs) at the single-particle level: strategies and properties
CN115948802A (zh) 一种宽带黄光发射有机无机杂化双钙钛矿单晶/粉末材料及其制备方法和应用
Shen et al. Stability strategies of perovskite quantum dots and their extended applications in extreme environment: A review
Ji et al. In Situ Synthesis of UltraStable TiO2 Coating Rb+-Doped Red Emitting CsPbBrI2 Perovskite Quantum Dots
Ahmad et al. Manganese and copper doped perovskites nanocrystals and their optoelectronic applications
CN114410304A (zh) 一种新型稀土基无铅钙钛矿纳米晶材料及其制备方法与应用
Hu et al. Ligand-modified synthesis of shape-controllable and highly luminescent CsPbBr 3 perovskite nanocrystals under ambient conditions
Jiang et al. Improved optical properties of lead-free double perovskite Cs2NaBiCl6 nanocrystal via K ions doping
Sakthivel et al. Band gap tailoring, structural and optical features of MgS nanoparticles: influence of Ag+ ions
CN111253940A (zh) 一系列三维非铅铟铋混合双钙钛矿黄光材料及合成与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210312

RJ01 Rejection of invention patent application after publication