CN113979465A - 一种基于稀土基卤化物纳米晶的合成方法 - Google Patents

一种基于稀土基卤化物纳米晶的合成方法 Download PDF

Info

Publication number
CN113979465A
CN113979465A CN202111384842.8A CN202111384842A CN113979465A CN 113979465 A CN113979465 A CN 113979465A CN 202111384842 A CN202111384842 A CN 202111384842A CN 113979465 A CN113979465 A CN 113979465A
Authority
CN
China
Prior art keywords
flask
solution
minutes
nanocrystals
tmcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111384842.8A
Other languages
English (en)
Inventor
陈旭
王猛
张飞
程珊珊
史志锋
李新建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202111384842.8A priority Critical patent/CN113979465A/zh
Publication of CN113979465A publication Critical patent/CN113979465A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/36Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 halogen being the only anion, e.g. NaYF4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7704Halogenides
    • C09K11/7705Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Biophysics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种基于稀土基卤化物纳米晶的合成方法,属于光电技术领域,所述一种基于稀土基卤化物纳米晶的合成方法包括将3mmol的Cs2CO3、3mL的油酸和20mL的十八烯装入50mL三颈圆底烧瓶中,将烧瓶在真空和100℃的温度下进行脱气处理,将溶液在N2条件下加热至一定温度,直到所有Cs2CO3溶解,将1mmol的TmCl3·6H2O、1mL的油酸和2mL的油胺装入具有5mL的十八烯的50mL三颈圆底烧瓶中,将混合溶液进行脱气处理并在120℃进行真空搅拌操作,将烧瓶进行加热处理,在达到一定温度后,注入1‑3mL油酸铯溶液,待反应1‑5分钟后,通过在冰水浴中冷却烧瓶来淬灭所获得的粗溶液,对获得的粗溶液进行两轮离心过程,获得胶体Cs3TmCl6纳米晶,具有高效制备、灵活应用和简便实用的优点。

Description

一种基于稀土基卤化物纳米晶的合成方法
技术领域
本发明涉及光电技术领域,具体是涉及一种基于稀土基卤化物纳米晶的合成方法。
背景技术
随着经济社会的发展,能源供需短缺问题日益突出,煤价过高而引起的拉闸限电,已经严重影响到人们的正常生活,因此节约能源成为人类实现可持续发展的必然选择。尤其照明领域,其用电量占全球总电量的20%左右,绿色照明、环保光源、节约电能日益受到重视。发光二极管(LED),是采用固体半导体芯片为发光材料,与传统灯具相比,LED灯具有寿命长、光效高、稳定性高、安全性好、低功耗、抗震、响应快、可平面封装及产品易于轻薄化、小型化等特点,符合绿色照明工程节能与环保的要求,被誉为“21世纪新固体光源时代的革命性技术”。
目前的商业化应用的LED的材料主要是发射蓝光的氮化镓类半导体,在蓝宝石或者碳化硅底板的表面上,重叠层积氮化铝半导体层和氮化镓类半导体层。在称为活性层、发蓝色光的部分设置了使用P型氮化镓类半导体层和N型氮化镓类半导体层重叠的构造,其中,PN结是制作高亮度LED所必须采用的构造,但是,制造原料单一,难以通过不同种类的生产原料进行制备,由上可见,现有的发光二极管存在难以通过不同种类的生产原料进行制备的缺点。
因此,需要提供一种基于稀土基卤化物纳米晶的合成及白光发光二极管的应用,旨在解决上述问题。
发明内容
针对现有技术存在的不足,本发明实施例的目的在于提供一种基于稀土基卤化物纳米晶的合成方法,以解决上述背景技术中的问题。
为实现上述目的,本发明提供如下技术方案:
一种基于稀土基卤化物纳米晶的合成方法,包括如下步骤:
S1、将3mmol的Cs2CO3、3mL的油酸和20mL的十八烯装入50mL三颈圆底烧瓶中,将烧瓶在真空和100℃的温度下进行脱气处理;
S2、将溶液在N2条件下加热至一定温度,直到所有Cs2CO3溶解;
S3、将1mmol的TmCl3·6H2O、1mL的油酸和2mL的油胺装入具有5mL的十八烯的50mL三颈圆底烧瓶中,将混合溶液进行脱气处理并在120℃进行真空搅拌操作;
S4、将烧瓶进行加热处理,在达到一定温度后,注入1-3mL油酸铯溶液;
S5、待反应1-5分钟后,通过在冰水浴中冷却烧瓶以淬灭所获得的粗溶液;
S6、对获得的粗溶液进行两轮离心过程,获得胶体Cs3TmCl6纳米晶。
作为本发明进一步的方案,所述S1步骤中的脱气处理时间为30分钟。
作为本发明进一步的方案,所述S2步骤中的加热温度为125℃。
作为本发明进一步的方案,所述S3步骤中真空搅拌操作的时间为60分钟。
作为本发明进一步的方案,所述S4步骤中加热温度为220-280℃。
作为本发明进一步的方案,所述S6步骤中的两轮离心过程:
第一次离心过程为获得的粗溶液在7000rpm下进行10分钟,弃去上清液,并加入正己烷洗涤沉淀;
第二次离心过程为将得到的溶液在12000rpm下进行5分钟,弃去上清液获得Cs3TmCl6纳米晶。
综上所述,本发明实施例与现有技术相比具有以下有益效果:
本发明通过调控反应温度、表面配体的比例、前驱体的添加比例以及反应时间得到宽带蓝光的Cs3TmCl6纳米晶,通过利用该材料的高荧光量子产率、宽带发射及良好的稳定性,应用到白光二极管上,具有较高的显色指数和接近日色的色坐标,具备高效制备、灵活应用和简便实用的效果。
为更清楚地阐述本发明的结构特征和功效,下面结合附图与具体实施例来对本发明进行详细说明。
附图说明
图1为发明实施例的Cs3TmCl6纳米晶的透射电镜图。
图2为发明实施例的X射线光电子能谱测试图。
图3为发明实施例的纳米晶的吸收和发射光谱图。
图4为发明实施例中不同的反应温度下的XRD谱图和发光量子产率图。
图5为发明实施例的不同的油酸和油胺比例下的XRD谱图以及对应的发光量子产率图。
图6为发明实施例的不同的前驱体Cs和Tm比例下的XRD谱图以及对应的发光量子产率图。
图7为发明实施例的把白光发光二极管显色图以及其色坐标图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述。
在本发明的一个实施例中,参见图1、图2、图4、图5和图6,所述一种基于稀土基卤化物纳米晶的合成方法,包括如下步骤:
S1、将3mmol的Cs2CO3、3mL的油酸和20mL的十八烯装入50mL三颈圆底烧瓶中,将烧瓶在真空和100℃的温度下进行脱气30分钟;
S2、将溶液在N2条件下加热至125℃,直到所有Cs2CO3溶解;
S3、将1mmol的TmCl3·6H2O、1mL的油酸和2mL的油胺装入具有5mL的十八烯的50mL三颈圆底烧瓶中,将混合溶液进行脱气处理并在120℃进行真空搅拌60分钟;
S4、将烧瓶加热至220-280℃,在达到此温度后,注入1-3mL油酸铯溶液;
S5、待反应1-5分钟后,通过在冰水浴中冷却烧瓶以淬灭所获得的粗溶液;
S6、对获得的粗溶液进行两轮离心过程,获得胶体Cs3TmCl6纳米晶。
在本实施例中,所述S6步骤中的两轮离心过程包括:第一次离心过程为获得的粗溶液在7000rpm下进行10分钟,弃去上清液,并加入正己烷洗涤沉淀;第二次离心过程为将得到的溶液在12000rpm下进行5分钟,弃去上清液获得Cs3TmCl6纳米晶。
通过图1,可以得出制备的纳米晶的粉笔均匀,尺寸为14nm左右;
通过图2,可以证明Cs、Tm和Cl原子的存在,且比例大约为29.05:10.41:60.54,接近Cs3TmCl6中原子的化学计量比,说明成功合成了Cs3TmCl6
通过图4,可以看出在反应温度处于220-280℃,都可以合成出Cs3TmCl6纳米晶,其中,发光量子产率在220℃时是最大的;
通过图5,可以看出不同的油酸和油胺比例下都能成功合成出Cs3TmCl6纳米晶,其中,当油酸:油胺的比例为1:2时,发光量子产率位于最高点;
通过图6,可以看出在不同的前驱体Cs和Tm配比下都能成功合成出Cs3TmCl6纳米晶,其中,发光量子产率在前驱体Cs:Tm配比为3:1的情况下处于最大值。
综上,在反应温度为220℃、油酸和油胺的比例为1:2且前驱体Cs:Tm的比例为3:1时,可以得到最大的发光量子产率。
在本发明的一个实施例中,参见图3和图7,所述一种Cs3TmCl6纳米晶在白光发光二极管方面的应用,包括如下步骤:
S1、将干燥的Cs3TmCl6纳米晶与(Ba,Sr)2SiO4:Eu2+的荧光粉以2:1的质量比在聚二甲基硅氧烷密封剂中混合,以获得均匀的混合物;
S2、将混合物放入真空室中以除去里面的气泡;
S3、将混合物滴在紫外LED芯片的窗口上,并在真空烘箱中对其进行两次固化处理,即可获得光激发的白光二极管。
在本实施例中,所述S3步骤中的两次固化处理包括:第一次固化处理为将其放入真空烘箱中在40℃的条件下固化40分钟;第二次固定处理为将其放入真空烘箱中并在110℃的条件下固化100分钟。
通过图3,当纳米晶的吸收(Abs.)和发射光谱(PL)在370nm光激发的情况下,白光二极管的吸收边在370nm左右,发射光谱峰位于440nm,其峰宽可以达到90nm;
通过图7,在365nm紫外发光二极管上涂上蓝光发射(440nm)的Cs3TmCl6纳米晶和黄光发射(556nm)的(Ba,Sr)2SiO4:Eu2+粉末制备的白光发光二极管,工作电流为10mA,其中色温为5388K,显色指数为87,白光发光二极管的色坐标为(0.337,0.334),非常接近日光。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于稀土基卤化物纳米晶的合成方法,其特征在于,包括如下步骤:
S1、将3mmol的Cs2CO3、3mL的油酸和20mL的十八烯装入50mL三颈圆底烧瓶中,将烧瓶在真空和100℃的温度下进行脱气处理;
S2、将溶液在N2条件下加热至一定温度,直到所有Cs2CO3溶解;
S3、将1mmol的TmCl3·6H2O、1mL的油酸和2mL的油胺装入具有5mL的十八烯的50mL三颈圆底烧瓶中,将混合溶液进行脱气处理并在120℃进行真空搅拌操作;
S4、将烧瓶进行加热处理,在达到一定温度后,注入1-3mL油酸铯溶液;
S5、待反应1-5分钟后,通过在冰水浴中冷却烧瓶以淬灭所获得的粗溶液;
S6、对获得的粗溶液进行两轮离心过程,获得胶体Cs3TmCl6纳米晶。
2.根据权利要求1所述的基于稀土基卤化物纳米晶的合成方法,其特征在于,所述S1步骤中的脱气处理时间为30分钟。
3.根据权利要求1所述的基于稀土基卤化物纳米晶的合成方法,其特征在于,所述S2步骤中的加热温度为125℃。
4.根据权利要求1所述的基于稀土基卤化物纳米晶的合成方法,其特征在于,所述S3步骤中真空搅拌操作的时间为60分钟。
5.根据权利要求1所述的基于稀土基卤化物纳米晶的合成方法,其特征在于,所述S4步骤中加热温度为220-280℃。
6.根据权利要求1所述的基于稀土基卤化物纳米晶的合成方法,其特征在于,所述S6步骤中的两轮离心过程:
第一次离心过程为获得的粗溶液在7000rpm下进行10分钟,弃去上清液,并加入正己烷洗涤沉淀;
第二次离心过程为将得到的溶液在12000rpm下进行5分钟,弃去上清液获得Cs3TmCl6纳米晶。
CN202111384842.8A 2021-11-22 2021-11-22 一种基于稀土基卤化物纳米晶的合成方法 Pending CN113979465A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111384842.8A CN113979465A (zh) 2021-11-22 2021-11-22 一种基于稀土基卤化物纳米晶的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111384842.8A CN113979465A (zh) 2021-11-22 2021-11-22 一种基于稀土基卤化物纳米晶的合成方法

Publications (1)

Publication Number Publication Date
CN113979465A true CN113979465A (zh) 2022-01-28

Family

ID=79749735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111384842.8A Pending CN113979465A (zh) 2021-11-22 2021-11-22 一种基于稀土基卤化物纳米晶的合成方法

Country Status (1)

Country Link
CN (1) CN113979465A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107934916A (zh) * 2017-11-16 2018-04-20 中山大学 一种稳定无铅的全无机双钙钛矿a2bb’x6纳米晶的制备方法
CN108753284A (zh) * 2018-04-26 2018-11-06 吉林大学 一种高荧光红光发射的Mn:CsPbCl3纳米簇的制备方法
US20190345382A1 (en) * 2018-05-14 2019-11-14 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Perovskite quantum dot preparation method and perovskite quantum dot solution
CN110564415A (zh) * 2019-07-30 2019-12-13 广西大学 一种协同增强Mn:CsPbCl3纳米晶紫外辐射稳定性和光学性能的方法
CN112480912A (zh) * 2019-09-11 2021-03-12 中国科学院大连化学物理研究所 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用
CN112939063A (zh) * 2021-02-26 2021-06-11 郑州大学 一种铟基卤化物钙钛矿纳米晶及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107934916A (zh) * 2017-11-16 2018-04-20 中山大学 一种稳定无铅的全无机双钙钛矿a2bb’x6纳米晶的制备方法
CN108753284A (zh) * 2018-04-26 2018-11-06 吉林大学 一种高荧光红光发射的Mn:CsPbCl3纳米簇的制备方法
US20190345382A1 (en) * 2018-05-14 2019-11-14 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Perovskite quantum dot preparation method and perovskite quantum dot solution
CN110564415A (zh) * 2019-07-30 2019-12-13 广西大学 一种协同增强Mn:CsPbCl3纳米晶紫外辐射稳定性和光学性能的方法
CN112480912A (zh) * 2019-09-11 2021-03-12 中国科学院大连化学物理研究所 一种钠铟基双钙钛矿纳米晶体材料及其制备和应用
CN112939063A (zh) * 2021-02-26 2021-06-11 郑州大学 一种铟基卤化物钙钛矿纳米晶及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAGOUI ZHENG: "Ternary Chlorides in the Systems ACl/TmCl3 (A5Cs, Rb, K)" *
H. J. SEIFERT: "TERNARY CHLORIDES OF THE TRIVALENT EARLY LANTHANIDES Phase diagrams, crystal structures and thermodynamic properties" *

Similar Documents

Publication Publication Date Title
Cui et al. The use of carbon quantum dots as fluorescent materials in white LEDs
He et al. Recent advances in white light-emitting diodes of carbon quantum dots
Shang et al. How to produce white light in a single-phase host?
Zhang et al. Fluorescent nanomaterial-derived white light-emitting diodes: what's going on
Heber Nobel prize 2014: Akasaki, amano & nakamura
Shen et al. White LED based on YAG: Ce, Gd phosphor and CdSe–ZnS core/shell quantum dots
Li et al. Simple synthesis of CuInS2/ZnS core/shell quantum dots for white light-emitting diodes
TWI538980B (zh) 螢光體及使用其之發光裝置
Yin et al. The thermal stability performances of the color rendering index of white light emitting diodes with the red quantum dots encapsulation
Cai et al. High-performance and stable CsPbBr 3 light-emitting diodes based on polymer additive treatment
Singh et al. Inorganic red perovskite quantum dot integrated blue chip: a promising candidate for high color-rendering in w-LEDs
KR101172351B1 (ko) 광변환 필름을 구비하는 백색 면광원 장치 및 그 제조방법
Kim et al. White-light-emitting Eu2+ and Mn2+-codoped silicate phosphors synthesized through combustion process
Parauha et al. Enhancement of photoluminescence and tunable properties for Ce3+, Eu2+ activated Na2CaSiO4 downconversion phosphor: A novel approach towards spectral conversion
Lin et al. Red-emission improvement of Eu2+–Mn2+ co-doped Sr2Si5N8 phosphors for white light-emitting diodes
Chung et al. Hybrid YAG/CdSe quantum dots phosphors for white light-emitting diodes
TWI515922B (zh) 螢光體及使用其之發光裝置
Islam et al. White Light-Emitting Diodes: Past, Present, and Future
CN113979465A (zh) 一种基于稀土基卤化物纳米晶的合成方法
Kwon et al. Design of binder-free phosphor paste for warm white LEDs
CN114214063B (zh) 一种单基质白光发射碳点荧光粉的制备方法
Chuang et al. Enhancing the Color Rendering Index for Phosphor‐converted White LEDs Using Cadmium‐Free CuInS2/ZnS QDs
Hu et al. Self-formed C-dot-based 2D polysiloxane with high photoluminescence quantum yield and stability
Changyu CdSe/ZnS/CdS core/shell quantum dots for white LEDs
Yu et al. Luminous properties of Sr1− xZnxSe: Eu2+ phosphors for LEDs application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220128

RJ01 Rejection of invention patent application after publication