CN112447840A - 半导体器件、高电子迁移率晶体管器件及其制备方法 - Google Patents

半导体器件、高电子迁移率晶体管器件及其制备方法 Download PDF

Info

Publication number
CN112447840A
CN112447840A CN202010919708.2A CN202010919708A CN112447840A CN 112447840 A CN112447840 A CN 112447840A CN 202010919708 A CN202010919708 A CN 202010919708A CN 112447840 A CN112447840 A CN 112447840A
Authority
CN
China
Prior art keywords
hemt
source
layer
bipolar transistor
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010919708.2A
Other languages
English (en)
Inventor
皮特·莫昂
P·范米尔贝克
阿布舍克·班纳吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Components Industries LLC
Original Assignee
Semiconductor Components Industries LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Components Industries LLC filed Critical Semiconductor Components Industries LLC
Publication of CN112447840A publication Critical patent/CN112447840A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1127Devices with PN heterojunction gate
    • H01L31/1129Devices with PN heterojunction gate the device being a field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/765Making of isolation regions between components by field effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/142Energy conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022416Electrodes for devices characterised by at least one potential jump barrier or surface barrier comprising ring electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及半导体器件、高电子迁移率晶体管(HEMT)器件及其制备方法。该HEMT器件可包括具有二维电子气(2DEG)的电流沟道。该光电HEMT还可包括嵌入HEMT的源极和漏极中的至少一者内的光电双极型晶体管,该光电双极型晶体管与HEMT的电流沟道串联。

Description

半导体器件、高电子迁移率晶体管器件及其制备方法
相关申请的交叉引用
本申请要求于2019年9月4日提交的美国临时专利申请62/895,807和于2019年11月1日提交的美国非临时专利申请16/671,366的权益,这些专利申请的全部内容以引用方式并入本文中。
技术领域
本说明书涉及半导体器件、高电子迁移率晶体管(HEMT)器件及其制备方法。
背景技术
HEMT是一种应用电流沟道的晶体管,该电流沟道是在具有不同带隙的两种材料之间的边界处使用异质结而形成的。例如,相对较宽带隙材料诸如AlGaN(氮化铝镓)可掺杂有或可不掺杂有n型杂质,并且被用于与无掺杂的较低带隙材料诸如GaN(氮化镓)形成结。然后,达到平衡,其中较窄带隙材料具有形成二维电子气(2DEG)的过量多数载流子。因此,并且由于窄带隙材料不具有通过散射而干扰电流的掺杂杂质,因而除了其他优点外,HEMT器件还提供非常高的开关速度、低电阻、高增益、高阻断电压和高功率应用。
发明内容
本根据一个一般方面,半导体器件包括高电子迁移率晶体管(HEMT)。HEMT具有:包括二维电子气(2DEG)的电流沟道,和嵌入HEMT的源极和漏极中的至少一者内的光电双极型晶体管,该光电双极型晶体管与HEMT的电流沟道串联。
根据另一个一般方面,高电子迁移率晶体管(HEMT)器件包括:沟道层;与沟道层相邻并与该沟道层形成异质结的势垒层,该异质结导致二维电子气(2DEG)出现在沟道层内。该HEMT还包括源极和漏极以及光电双极型晶体管,该源极和该漏极形成在2DEG的相对端处以在该源极与该漏极之间限定电流沟道,该光电双极型晶体管形成在该源极和该漏极中的至少一者中并与该电流沟道串联。
根据另一个一般方面,制备高电子迁移率晶体管(HEMT)的方法包括:形成层叠堆,该层叠堆至少包括沟道层和与沟道层相邻的势垒层;以及形成异质结,在该异质结处电流沟道被限定于该沟道层中。该方法还包括:在该层叠堆中掩模并蚀刻源极生长区域和漏极生长区域,以及在该源极生长区域和该漏极生长区域中执行选择性再生长,从而形成HEMT的都与电流沟道电接触的源极区域和漏极区域,该选择性再生长包括交替掺杂物类型的至少三个层的再生长和掺杂,其中该至少三个层中的至少一个层为光电层。
一个或多个具体实施的细节在附图和以下描述中阐明。其他特征将从说明书和附图中以及从权利要求书中显而易见。
附图说明
图1是根据一些示例性具体实施的具有嵌入式双极型晶体管的光电HEMT的电路图。
图2例示了具有图1的嵌入式双极型晶体管的光电HEMT的示例性器件结构。
图3例示了具有图1的嵌入式双极型晶体管的光电HEMT的示例性倒装芯片器件结构。
图4是具有图1的嵌入式双极型晶体管的光电HEMT的更详细示例性器件结构。
图5是例示用于形成图1的光电HEMT的具体实施的示例性过程的流程图。
图6例示了与图5的示例性过程相对应的第一示例性中间器件结构。
图7例示了与图5的示例性过程相对应的第二示例性中间器件结构。
图8例示了与图5的示例性过程相对应的第三示例性中间器件结构。
图9例示了与图5的示例性过程相对应的第四示例性中间器件结构。
图10例示了与图5的示例性过程相对应的第五示例性器件结构。
图11例示了与图10的示例相对应的另选示例性器件结构。
具体实施方式
如下文的详细描述,实施方案包括光电HEMT,该光电HEMT在HEMT的源极和漏极中的至少一者内具有嵌入式双极型晶体管,并且与HEMT的电流沟道串联。嵌入式双极型晶体管是响应于具有特定波长的入射光而接通否则处于关断状态(即,常关)的光电器件。因此,嵌入式双极型晶体管使该光电HEMT能够用作常关器件,并且不需要传统的栅极结构。相反,嵌入式双极型晶体管响应于入射光而提供选通功能。
一般来说,由于上文所提及的2DEG的存在,因而形成“常开”HEMT是很简单的。然而,尤其针对高功率应用,“常关”HEMT会是所需的,并且已开发出了对上述HEMT结构的若干修改以使常关HEMT器件成为可能。一般来说,在高功率应用中常关HEMT可具有改善的安全特性,并且可简化相关的驱动电路。
在常关HEMT中,栅极结构可用于激活HEMT。然而,此类栅极结构的引入通常与栅极电容/电感的相应引入相关联。因为HEMT器件表现出非常快的开关速度,所以此类栅极电容/电感有可能导致不期望的过压/欠压峰值。
然而,在所描述的具体实施中,因为入射光(例如,激光)可以非常高的速度进行切换,所以可以非常高的切换速度操作光电HEMT。当不存在具有相关栅极接触件的传统单独栅极结构,如本文中所描述和所图示,那么也移除了不期望的栅极电容/电感的可能性。此外,可在非常高的电压下安全可靠地操作光电HEMT。另外,可容易地且低成本地制造本文中所描述各种实施方案的光电HEMT。
图1是根据一些示例性具体实施的具有嵌入式双极型晶体管的光电HEMT 100的电路图。在图1的示例中,光电HEMT 100包括源极102和漏极104。光电HEMT 100的沟道区域106是使用高电子迁移率的至少一个2DEG区域而形成的。
此外,在图1中,光电双极型晶体管108被例示为与沟道106串联连接。如上文所提及和下文的详细描述,光电双极型晶体管108可以是防止电流经过沟道106的常关器件,除非光电双极型晶体管108被激活。因此,当从位于光电双极型晶体管108的基极处的光源112接收到光110时,在光电双极型晶体管108的发射极与集电极之间并通过其基极而激活电流,使得源极-漏极电流也被允许流过沟道106。
在一些配置中,光源112可以是能够以大约飞秒或更快的速度进行切换的低功率激光器。一般来说,光源112可被调谐成与如本文中所述的HEMT 100的对应材料属性相匹配,但为了示例的目的,一些具体实施可使用光功率输出在数十毫瓦(例如,70mW-90mW)范围内的光源。例如,当光电双极型晶体管108具有在100-1500范围内的增益时,上述范围的光功率可足以为HEMT提供例如10A或更大的额定电流。
图2例示了具有图1的嵌入式双极型晶体管100的光电HEMT的示例性器件结构200。在图2的示例中,衬底202被图示为具有与其接触而形成的沟道层204,并且势垒层206与沟道层204形成异质结。如上所述,出现在沟道层204与势垒层206的界面处的异质结形成沟道区域208,该沟道区域包括高电子迁移率的2DEG区域。例如,沟道层204可以是具有相对较大宽度和相对较窄带隙能的未掺杂材料,而势垒层206可以是具有相对较薄宽度和相对较宽带隙能的掺杂或未掺杂材料。
另外,在图2中,源极区域/发射极区域210形成为与基极层212接触,该基极层自身与源极/集电极层214接触。因此,如本文中所描述,图2的器件200有效地包括具有HEMT源极的区域215,该HEMT源极具有嵌入其中的光电双极型晶体管。因此,结合上文关于图1所描述的工作原理,入射光110使电流能够使用沟道208在区域215与漏极216之间流动。
图2是例示图1的光电HEMT100的具体实施的可能结构特性的简化示例。在各种实施方案中,图2的示例性结构可通过如下方式而实现:使用适用于其各层的各种可用材料,移除或包含各种附加或另选的层或区域,以期望的方式改变各种层中的任一层的电特性,或者以与本文所述的运行特性一致的方式实现器件200。因此,尽管本文中关于图3至图9描述了具体实施中的一些此类变型,但其他具体实施也是可行的。
例如,在图2中,光110被图示为入射到衬底202上。如从图1的示例中可以理解,光110被设计成激活基极212。因此,在图2中,衬底202以及沟道层204和源极/集电极区域214可全部形成为光110可透射的,使得光110可到达并激活基极212。
换句话说,在示例性具体实施中,基极区域212可被构造成具有带隙能Eg,该带隙能Eg与器件200中定位在基极区域212与光110之间的任何材料的带隙相比更低。在图2的示例中,光穿越衬底202、沟道层204和源极/集电极区域214,如所描述和所图示。然而,在其他具体实施中,其他中间层或区域可被包括,并且也可以被光110穿越。
在其他具体实施中,如图3中所示,可将衬底202省略。在其他具体实施中,光110可从与图2中所示角度不同的角度入射。如果形成光110可透射的中间层是不可能的、不可行的或不优选的,那么具体实施可通过部分地移除或省略层/区域的原本将阻挡光110的部分(例如,通过使层/区域更小,或者通过包括使光110能够到达基极区域212的孔或其他结构)而使光110能够到达基级区域212。
例如,光110可从与图2中所示方向垂直的方向(例如,从图2的左侧)入射到基极区域212上。在其他的示例中,光110可在与图2中所示方向相反的方向(例如,从器件200的顶部,如图2中所示)入射到器件200上。在一些示例性情况下,如上文所提及的,源极/发射极区域210可被构造成仅部分地覆盖基极区域212,从而允许光110到达基极区域212。
图3例示了具有图1的嵌入式双极型晶体管的光电HEMT的示例性倒装芯片器件结构300。一般来说,术语“倒装芯片”是指任何已知的或未来的技术,其中在器件在第一取向上的初始构造之后使所构造的器件翻转或者以其他方式反转或旋转,以便在第二取向(例如,倒置)上附接至单独的支撑结构。在许多情况下,使用连同过渡至最终所需支撑结构而移除的初始支撑结构来实现初始构造。例如,可将以衬底作为底层所形成的结构翻转且附接到电路板,于是可将该衬底移除。
在图3的示例中,源极302被例示为具有嵌入其中的光电双极型晶体管303,如上文关于图2所示和所描述。另外,与图2一致,沟道层304被示出为与势垒层306形成异质结界面,从而形成2DEG区域308。
在图3的示例中,如上所述,漏极310被例示为还包括嵌入式双极型晶体管311。因此,器件结构300例示了图1和图2的示例性具体实施可使用在HEMT的源极和漏极中的任一者或两者(例如,至少一者)中的嵌入式双极型晶体管来实现。
因为图3代表倒装芯片实施方案,所以电路板312被示出为给源极302、漏极310和势垒层306提供物理支撑。当然,图3是简化的示例,并且电路板312代表任意合适类型的物理支撑结构,该物理支撑结构还能够提供与图3的器件元件以及与可能期望结合图3的示例一起工作的各种其他电路元件(例如,驱动电路)的所需电连接。例如,电路板312可以是器件封装的引线框架。
与图2的示例并且与上文结合图3所提供的描述相一致,图2的衬底202可在器件形成和所得器件的随后翻转期间使用。然后,可在附接到电路板312之后将衬底202移除。在此类情况下,衬底202无需是光110可透射的,因为该衬底最终在器件使用之前被移除。
相反,可使用具有开口封盖314的封装,以便允许光110进入有源器件区域。因此,封盖开口可以适合于匹配下面的器件结构的任何方式被限定于开口封盖314中。
图4是具有图1的嵌入式双极型晶体管100的光电HEMT的更详细的示例性器件结构。在图4的示例中,出于示例和说明的目的,提供了各种示例性材料、掺杂度和参数值范围。其他具体实施可在这些方面和其他方面有所不同。
在图4中,示出了碳掺杂的氮化镓(GaN)缓冲层402,该缓冲层在高电压环境下使用图4的器件的情况下可为有利的。例如,通过用碳或其他合适的p型材料掺杂GaN缓冲层402,GaN的n型性质被有效地反掺杂,使得层402更具绝缘性并且能够承受高电压。
GaN沟道层404包括位于与AlGaN势垒层408的异质结处的2DEG层406。此外,在图4中,重掺杂的n++材料的层410是在与n-漂移层412相邻的位置形成的。p掺杂基极层414是在n-漂移层412与n++掺杂源极层416之间形成的,该源极层与覆盖n++层416、p-基极层414和表面钝化层419的源极接触件417电接触,并且该源极层电连接到源极场板418,如下文所述。介电层420在源极接触件417和源极场板418之上延伸。因此,在该示例中,这些层形成与例如图3的源极区域302相对应的源极区域,使得层416/414/412/410形成嵌入其中并且与图3的嵌入式双极型晶体管303相对应的NPN双极型晶体管。
为了利用本文中关于p-基极层414所描述的各种光电性质,可使用任何合适的直接带隙材料(例如,III-V材料,诸如GaN或氮化铟(InN)或者它们的组合)形成p-基极层。例如,InGaN可以与用于限定p-基极层414的带隙的In的期望掺杂范围一起使用。这样,例如,如本文中所提及,可调节p-基极层414的带隙,以确保p-基极层414的带隙低于介于p-基极层414和用于切换的光源之间的结构的任意层的带隙。这样,如上所述,可响应于光源而在p-基极层414内部生成电子-空穴对。另外,如上文所提及的,p-基极层414中的此类电子-空穴生成有效地产生基极电流,该基极电流将光电流放大达大约一百倍、一千倍或更多倍。
在图4的示例中,p-基极层414被例示为经由源极接触层417电连接到源极/发射极区域416。然而,在其他具体实施(例如,图10的具体实施)中,p-基极层可以是未连接的并且保持电浮动状态。
此外,在图4中,如上文所提及,源极场板(FP)418被例示为与源极接触件417电接触,并且在钝化层419和势垒层408之上延伸。参考图1的电路图,源极FP 418可被理解为代表与2DEG沟道106并联的电容器,即,被连接在双极型晶体管108的漏极104和集电极之间。
因此,当漏极104在关断状态期间经历非常高的电压时,双极型晶体管108(例如,图4中的410/412/414/416)被屏蔽以避免经历此高电压。否则,在没有此类保护的情况下,基极区域414可能经受穿通。因此,即使当HEMT作为整体是高电压器件时,双极型晶体管108可被实现为低电压器件。
换句话说,场板418覆盖钝化层419和势垒层408,并且这些元件一起形成位于源极金属417与2DEG 406之间的电容器。当在该寄生电容器上施加足够高的电压(例如,针对600V额定器件为约50V)时,该寄生电容器将耗尽2DEG。
例如,即使在HEMT漏极处的漏极电压为500V-600V或更大,双极集电极区域410、412也可保持小于例如50V(即,在50V处被夹断)。可通过配置例如表面钝化层419的厚度、或场板418在表面钝化层419上方的长度/延伸来设定所需的电压范围。例如,针对给定的厚度和500V-600V的示例性电压范围,场板420的延伸可在0.5微米至5微米的范围内,从而实现50V的夹断。
换句话说,当HEMT漏极(在图4中未示出)的漏极电势达到高电压时,源极场板418将耗尽2DEG沟道406。当图4的HEMT关断并且HEMT漏极变为高电压时,场板418与2DEG 406之间的电容将耗尽。2DEG层406中的电荷将被耗尽,并且HEMT晶体管将保持在关断状态。在关断状态下,一旦触发激光器关闭,跨n-生成层410、412的电场将从基极区域414中清除过量的载流子。
如上文所提及,在所描述的具体实施中,在运行期间p-基极层414具有设置在p-基极层414与光源之间的任意材料的最低带隙Eg。因此,例如当中间层包含GaN和Si时,可使用InN形成p-基极层414,该p-基极层具有例如Eg=0.77eV的带隙,该带隙小于Si的1.1eV的下一个最小带隙。另选地,针对GaN和SiC,p-基极层414可为InGaN,该InGaN具有例如10%Ga以获得带隙Eg=3.17eV,该带隙小于例如SiC的3.3eV带隙。在其他具体实施中,中间AlGaN层可通过用Al进行掺杂而使其带隙Eg有效地升高。例如,25%Al掺杂将会导致Eg=4.14eV的带隙。
图5是例示用于形成图1的光电HEMT的具体实施的示例性过程的流程图。在对应的相应图6至图10中示出了图5的单独操作502-510。
在图5中,执行层的初始生长(502),例如金属有机化学气相沉积(MOCVD)工艺堆叠或其他合适的工艺。将操作502的示例性结果在图6中示出,其中层叠堆被图示为已形成并且包括衬底602,该衬底可以是例如GaN、Si、碳化硅(SiC)、氮化铝(AlN)或蓝宝石。如果需要,可将应变消除层604包含在后续的层中,以促进针对会在衬底602与第一沟道层606之间发生的任何晶格失配的应变消除。
例如,在图6中,沟道层606被例示为是使用GaN形成的,该沟道层606与由Si形成的衬底602具有非平凡的晶格失配。例如,通过在应变消除层604内包含掺杂有一定百分比Al的GaN,可解除在结处所产生的应变。
因此,可在第一GaN沟道层606与第一AlGaN势垒层610之间的异质结处形成第一2DEG 608。类似地,形成于第一AlGaN势垒层610上的第二GaN沟道层612可在与第二AlGaN势垒层616形成的异质结处限定第二2DEG 614。
最后,在图6中示出了表面钝化层618。表面钝化层618可用于例如使第二AlGaN势垒层616的表面呈惰性。在各种具体实施中,可使用与所示出的602、604、606、610、612、616和618不同的材料。
在图6中,如关于图7至图10进一步说明和描述,两个2DEG沟道608和614形成并行的沟道和对应的电流路径。另外,具有多个此类沟道可用于使多个2DEG沟道的漂移电阻与在HEMT的源极/漏极内部所形成的嵌入式双极型晶体管的基极电流解耦,如本文中所描述。
此外,在图5中,可掩模并蚀刻源极/漏极生长区域(504)。如图7中所示,此类掩蔽和蚀刻导致其中可形成源极区域的开口702、以及其中可形成漏极区域的开口704的形成。如图8至图10中所示,此类源极区域/漏极区域可包括本文中所描述的各类型的嵌入式双极型晶体管。
然后,可进行源极区域和漏极区域的选择性再生长(506)。例如,如图8中所示,可使源极区域802和漏极区域804再生长。具体地,针对源极区域802,可使n+区域806生长,接着使n-漂移区域808生长。可添加p-基极层810,然后添加用作源极/发射极的n+区域812。在使层806/808/818/812生长时,相对应的层814、816、818、820也将沉积于该器件的漏极侧上,从而包括至少漏极区域814。
可再次执行掩模和蚀刻(508),这次是为了蚀刻并移除漏极侧层816、818、820。将所得到的结构示于图9中,其中区域902表示被蚀刻材料的位置。
然而,在其他具体实施中,并且如上文关于图3的示例和所示漏极侧嵌入式双极型晶体管311所提及的,也能够保持层816、818、820,以便用于形成此类漏极侧嵌入式双极型晶体管。另外,如关于图3所描述的,除了源极侧嵌入式双极型晶体管(例如,图3的303)以外或者代替该源极侧嵌入式双极型晶体管,可实现此类漏极侧双极型晶体管。
最后,在图5中,可进行源极侧壁的钝化、以及源极区域和漏极区域的金属化及源极场板的形成(510)。如图10中所示,结果可包括垂直的钝化表面1002及源极/漏极金属化物1004。此外,在图10中,可形成沿表面钝化层618水平地延伸的源极场板1006,如上所述。
图11示出了另选实施方案,其中图8的层816、818、820未被蚀刻,并且相反被保留并且在漏极侧上经受与在源极侧上的对应层808、810、812相同的掺杂。然后,同样如图11中所示,可连同对应的源极侧元件(即,表面钝化层1002、金属接触件1004和漏极场板1006)添加漏极侧表面钝化层1102、金属接触件1104和场板1106。因此,图11与图3的实施方案300的示例性具体实施相对应。
在各种实施方案中,可针对对应HEMT器件的期望用途和应用来选择合适的掺杂度。出于举例的目的,本文中公开为n+或N+的掺杂层(例如,410、416、806、812、814、820)可在约1×1018cm-3至1×1021cm-3的范围内,具有例如10nm至500nm的对应厚度。本文中公开为p或P的掺杂层(例如,414、810、818)可在约1×1016cm-3至1×1019cm-3的范围内,具有例如20nm至1000nm的对应厚度。本文中公开为n-或n漂移的掺杂层(例如,412、808、816)可在约1×1015cm-3至1×1018cm-3的范围内,具有例如50nm至2000nm的对应厚度。
在各种实施方案中,半导体器件可包括高电子迁移率晶体管(HEMT)。该HEMT可具有包含二维电子气(2DEG)的电流沟道、以及嵌入HEMT的源极和漏极中的至少一者内的光电双极型晶体管,该光电双极型晶体管与HEMT的电流沟道串联。该HEMT可以是倒装芯片安装的。
该光电双极型晶体管可被配置为响应于从至少一个激光器所接收的激光而接通,并且HEMT可响应于激光的脉冲而接通和关断。该HEMT的源极和漏极可以使用第一掺杂物类型而形成,并且该源极和该漏极中的至少一者可以至少包括以下区域:第一区域,该第一区域具有第一掺杂物类型并且形成源极和漏极中的至少一者的第一部分,并且形成光电双极型晶体管的发射极;第二区域,该第二区域具有第二掺杂物类型并且由光电材料形成,并且形成光电双极型晶体管的基极;和第三区域,该第三区域具有该第一掺杂物类型并且形成源极和漏极中的至少一者的第二部分,并且形成光电双极型晶体管的集电极。第二区域可以是电浮动的。
场板可以与电流沟道并联地形成,并被配置为提供并联电容器,该并联电容器屏蔽光电双极型晶体管以使该光电双极型晶体管免受超过光电双极型晶体管的击穿电压的HEMT电压的影响。
在各种示例性具体实施中,高电子迁移率晶体管(HEMT)器件可包括沟道层以及与该沟道层相邻并与其形成异质结的势垒层,该异质结导致二维电子气(2DEG)出现在沟道层内。该HEMT器件可以包括:源极和漏极,该源极和该漏极形成在2DEG的相对端处以在该源极和该漏极之间限定电流沟道;和光电双极型晶体管,该光电双极型晶体管形成在该源极和该漏极中的至少一者中并与该电流沟道串联。
在示例性实施方案中,在HEMT中,该源极和该漏极可使用第一掺杂物类型来形成,并且该源极和该漏极中的至少一者可至少包括以下三个区域:第一区域,该第一区域具有第一掺杂物类型并且形成源极和漏极中的至少一者的第一部分,并且形成光电双极型晶体管的发射极;第二区域,该第二区域具有第二掺杂物类型并且由光电材料形成,并且形成光电双极型晶体管的基极;和第三区域,该第三区域具有第一掺杂物类型并且形成源极和漏极中的至少一者的第二部分,并且形成光电双极型晶体管的集电极。在HEMT中,光电双极型晶体管可被配置为响应于从至少一个激光器所接收的激光而接通,并且HEMT可响应于激光的脉冲而接通和关断。
HEMT可包括:形成为与势垒层接触的钝化层和形成为与该钝化层接触的接触层。HEMT可包括场板,该场板形成为与接触层接触并被配置为提供电容,该电容与电流沟道并联并屏蔽光电双极型晶体管使该光电双极型晶体管免受超过光电双极型晶体管的击穿电压的HEMT电压的影响。
在HEMT中,光电双极型晶体管可以包括发射极、基极和集电极,该基极是使用光电材料形成的,该光电材料的带隙能小于HEMT的定位在基极与用于激活光电双极型晶体管的入射光之间的任何中间材料的带隙能。可将光电双极型晶体管嵌入于源极内,并且基极可电连接到源极的源极接触件。
制造高电子迁移率晶体管(HEMT)的方法可包括:形成层叠堆,该层叠堆至少包括沟道层和与该沟道层相邻的势垒层;以及形成异质结,在该异质结处电流沟道被限定于该沟道层中。该方法可包括在层叠堆中掩模并蚀刻源极生长区域和漏极生长区域,并且在该源极生长区域和该漏极生长区域中执行选择性再生长,从而形成HEMT的都与电流沟道电接触的源极区域和漏极区域,该选择性再生长包括交替掺杂物类型的至少三个层的再生长和掺杂,其中该至少三个层中的至少一个层为光电层。该方法可包括形成与电流沟道并联的场板层。
应当理解,在前述描述中,当元件诸如层、区域、衬底或部件被提及为在另一个元件上,连接到另一个元件,电连接到另一个元件,耦接到另一个元件,或电耦接到另一个元件时,元件可以直接地在另一个元件上,连接到或耦接到另一个元件上,或者可以存在一个或多个中间元件。相反,当元件被提及直接在另一个元件或层上、直接连接到另一个元件或层、或直接耦合到另一个元件或层时,不存在中间元件或层。虽然在整个具体实施方式中可能不会使用术语直接在…上、直接连接到…、或直接耦接到…,但是被示为直接在元件上、直接连接或直接耦接的元件能以此类方式提及。本申请的权利要求书(如果存在的话)可被修订以叙述在说明书中描述或者在附图中示出的示例性关系。
如在本说明书和权利要求书中所使用的,除非根据上下文明确地指出特定情况,否则单数形式可包括复数形式。除了附图中所示的取向之外,空间相对术语(例如,在…上方、在…上面、在…之上、在…下方、在…下面、在…之下、在…之以下等)旨在涵盖器件在使用或操作中的不同取向。在一些具体实施中,在…上面和在…下面的相对术语可分别包括竖直地在…上面和竖直地在…下面。在一些具体实施中,术语邻近能包括横向邻近或水平邻近。
一些具体实施可使用各种半导体处理和/或封装技术来实现。一些具体实施可使用与半导体衬底相关联的各种类型的半导体处理技术来实现,该半导体衬底包含但不限于,例如硅(Si)、砷化镓(GaAs)、氮化镓(GaN)、碳化硅(SiC)等。
虽然所描述的具体实施的某些特征已经如本文所述进行了说明,但是本领域技术人员现在将想到许多修改形式、替代形式、变化形式和等同形式。因此,应当理解,所附权利要求书旨在涵盖落入具体实施的范围内的所有此类修改形式和变化形式。应当理解,这些修改形式和变化形式仅仅以举例而非限制的方式呈现,并且可以进行形式和细节上的各种变化。除了相互排斥的组合以外,本文所述的装置和/或方法的任何部分可以任意组合进行组合。本文所述的具体实施能包括所描述的不同具体实施的功能、部件和/或特征的各种组合和/或子组合。

Claims (11)

1.一种半导体器件,其特征在于,所述半导体器件包括:
高电子迁移率晶体管HEMT,所述HEMT具有:
电流沟道,所述电流沟道包括二维电子气2DEG;和
光电双极型晶体管,所述光电双极型晶体管嵌入所述HEMT的源极和漏极中的至少一者内,所述光电双极型晶体管与所述HEMT的所述电流沟道串联。
2.根据权利要求1所述的半导体器件,其中,所述光电双极型晶体管是常关的,并且将所述HEMT保持在常关状态直到被入射光激活,并且进一步地其中响应于所述入射光,所述HEMT被接通并且通过所述HEMT的所述电流沟道的电流被启用。
3.根据权利要求1所述的半导体器件,其中,所述半导体器件还至少包括所述HEMT的由至少第二2DEG提供的第二电流沟道,其中,所述光电双极型晶体管与所述2DEG和至少所述第二2DEG的并联组合串联。
4.根据权利要求1所述的半导体器件,其中,所述HEMT的所述源极和所述漏极是使用第一掺杂物类型形成的,并且所述源极和所述漏极中的至少一者包括:
第一区域,所述第一区域具有第一掺杂物类型并且形成所述源极和所述漏极中的至少一者的第一部分,并且形成所述光电双极型晶体管的发射极;
第二区域,所述第二区域具有第二掺杂物类型并且由光电材料形成,并且形成所述光电双极型晶体管的基极;和
第三区域,所述第三区域具有所述第一掺杂物类型并且形成所述源极和所述漏极中的至少一者的第二部分,并且形成所述光电双极型晶体管的集电极。
5.根据权利要求1所述的半导体器件,其中,所述光电双极型晶体管包括发射极、基极和集电极,所述基极是使用光电材料形成的,所述光电材料的带隙能小于所述HEMT的定位在所述基极与用于激活所述光电双极型晶体管的入射光之间的任何中间材料的带隙能。
6.一种高电子迁移率晶体管HEMT器件,其特征在于,所述HEMT器件包括:
沟道层;
势垒层,所述势垒层与所述沟道层相邻并与所述沟道层形成异质结,所述异质结导致二维电子气2DEG出现在所述沟道层内;
源极和漏极,所述源极和所述漏极形成在所述2DEG的相对端处以在所述源极与所述漏极之间限定电流沟道;和
光电双极型晶体管,所述光电双极型晶体管形成在所述源极和所述漏极中的至少一者中并与所述电流沟道串联。
7.根据权利要求6所述的HEMT器件,其中,所述光电双极型晶体管是常关的,并且将所述HEMT保持在常关状态直到被入射光激活,并且进一步地其中响应于所述入射光,所述HEMT被接通并且通过所述HEMT的所述电流沟道的电流被启用。
8.根据权利要求6所述的HEMT器件,其中,所述光电双极型晶体管包括发射极、基极和集电极,所述基极是使用光电材料形成的,所述光电材料的带隙能小于所述HEMT的定位在所述基极与用于激活所述光电双极型晶体管的入射光之间的任何中间材料的带隙能。
9.一种制备高电子迁移率晶体管HEMT的方法,其特征在于,所述方法包括:
形成层叠堆,所述层叠堆至少包括沟道层和与所述沟道层相邻的势垒层,以及形成异质结,在所述异质结处电流沟道被限定于所述沟道层中;
在所述层叠堆中掩模并蚀刻源极生长区域和漏极生长区域;以及
在所述源极生长区域和所述漏极生长区域中执行选择性再生长,从而形成所述HEMT的都与所述电流沟道电接触的源极区域和漏极区域,所述选择性再生长包括交替掺杂物类型的至少三个层的再生长和掺杂,其中,所述至少三个层中的至少一个层是光电层。
10.根据权利要求9所述的方法,其中,所述方法还包括:
掩模并蚀刻所述源极区域和所述漏极区域中的一者,以从所述一者移除所述至少三个层中的至少两个层。
11.根据权利要求9所述的方法,其中,所述光电层的带隙能小于所述HEMT的设置在所述光电层与入射光源之间的任何中间层的带隙能。
CN202010919708.2A 2019-09-04 2020-09-04 半导体器件、高电子迁移率晶体管器件及其制备方法 Pending CN112447840A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962895807P 2019-09-04 2019-09-04
US62/895,807 2019-09-04
US16/671,366 US10964733B2 (en) 2019-09-04 2019-11-01 Opto-electronic HEMT
US16/671,366 2019-11-01

Publications (1)

Publication Number Publication Date
CN112447840A true CN112447840A (zh) 2021-03-05

Family

ID=74680208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010919708.2A Pending CN112447840A (zh) 2019-09-04 2020-09-04 半导体器件、高电子迁移率晶体管器件及其制备方法

Country Status (2)

Country Link
US (1) US10964733B2 (zh)
CN (1) CN112447840A (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114830351A (zh) * 2019-12-31 2022-07-29 苏州晶湛半导体有限公司 一种半导体结构及其制备方法
CN116457946A (zh) * 2021-08-03 2023-07-18 美国亚德诺半导体公司 氮化镓再生长中的杂质还原技术
CN114388615B (zh) * 2022-01-17 2023-05-09 东莞源礼灯饰有限公司 一种立体复数堆叠外延结构芯片

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000022128A (ja) 1998-07-06 2000-01-21 Murata Mfg Co Ltd 半導体発光素子、および光電子集積回路素子
US6782828B2 (en) 2001-04-09 2004-08-31 Charles D. Widener Pliant firearm projectiles
WO2010134334A1 (ja) * 2009-05-22 2010-11-25 住友化学株式会社 半導体基板、電子デバイス、半導体基板の製造方法及び電子デバイスの製造方法
US8742453B2 (en) * 2011-08-17 2014-06-03 Bae Systems Information And Electronic Systems Integration Inc. High linearity hybrid transistor device
US9177992B2 (en) * 2013-01-09 2015-11-03 Nthdegree Technologies Worldwide Inc. Active LED module with LED and transistor formed on same substrate
US9269784B2 (en) * 2013-08-21 2016-02-23 Global Communication Semiconductors, Inc. Gallium arsenide based device having a narrow band-gap semiconductor contact layer
US10186514B1 (en) * 2017-09-06 2019-01-22 Qualcomm Incorporated Bi-stable static random access memory (SRAM) bit cells formed from III-V compounds and configured to achieve higher operating speeds

Also Published As

Publication number Publication date
US10964733B2 (en) 2021-03-30
US20210066355A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
CN108807527B (zh) 具有栅极堆叠中的隧道二极管的iiia族氮化物hemt
US9589951B2 (en) High-electron-mobility transistor with protective diode
CN109545850B (zh) 半导体元件及其制造方法
US8779438B2 (en) Field-effect transistor with nitride semiconductor and method for fabricating the same
US9362389B2 (en) Polarization induced doped transistor
JP5589850B2 (ja) 半導体装置及びその製造方法
US8716756B2 (en) Semiconductor device
WO2015056797A1 (ja) 窒化物半導体装置およびその製造方法、ならびにダイオードおよび電界効果トランジスタ
KR20160057343A (ko) 질화갈륨(GaN) 고 전자이동도 트랜지스터용 구조체
WO2011013306A1 (ja) 半導体装置
CN112447840A (zh) 半导体器件、高电子迁移率晶体管器件及其制备方法
JP2014154887A (ja) 垂直型ガリウムナイトライドトランジスタおよびその製造方法
US20170033098A1 (en) GaN-BASED SCHOTTKY DIODE RECTIFIER
KR20130014850A (ko) 파워소자의 제조방법
US11527606B2 (en) Semiconductor device and method for forming the same
CN108352408B (zh) 半导体装置、电子部件、电子设备以及半导体装置的制造方法
CN113451403A (zh) 高电子迁移率晶体管及其制作方法
WO2024116739A1 (ja) 窒化物半導体デバイスおよびその製造方法
US20230326981A1 (en) Semiconductor device and manufacturing method thereof
WO2024116612A1 (ja) 窒化物半導体デバイス
CN116344608A (zh) 半导体装置及其制作方法
JP2023133798A (ja) 窒化物半導体デバイス
KR20240011387A (ko) 고전압에 강한 GaN 반도체 소자의 구조 및 그 제조방법
CN118302866A (zh) 半导体器件及其制造方法
KR20130077475A (ko) 파워소자 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210305