CN112435823B - 一种铁基非晶合金粉料及其制备方法和用途 - Google Patents

一种铁基非晶合金粉料及其制备方法和用途 Download PDF

Info

Publication number
CN112435823B
CN112435823B CN202011242333.7A CN202011242333A CN112435823B CN 112435823 B CN112435823 B CN 112435823B CN 202011242333 A CN202011242333 A CN 202011242333A CN 112435823 B CN112435823 B CN 112435823B
Authority
CN
China
Prior art keywords
iron
amorphous alloy
based amorphous
alloy powder
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011242333.7A
Other languages
English (en)
Other versions
CN112435823A (zh
Inventor
方萌
杜阳忠
卢军伟
娄海飞
王林科
杜宇超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengdian Group DMEGC Magnetics Co Ltd
Original Assignee
Hengdian Group DMEGC Magnetics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengdian Group DMEGC Magnetics Co Ltd filed Critical Hengdian Group DMEGC Magnetics Co Ltd
Priority to CN202011242333.7A priority Critical patent/CN112435823B/zh
Publication of CN112435823A publication Critical patent/CN112435823A/zh
Priority to EP21888399.9A priority patent/EP4213165A1/en
Priority to KR1020227005818A priority patent/KR20220063764A/ko
Priority to PCT/CN2021/125034 priority patent/WO2022095702A1/zh
Priority to US18/249,216 priority patent/US20230395292A1/en
Application granted granted Critical
Publication of CN112435823B publication Critical patent/CN112435823B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • H01F1/14741Fe-Ni based alloys in the form of particles pressed, sintered or bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • B22F5/106Tube or ring forms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/008Amorphous alloys with Fe, Co or Ni as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15383Applying coatings thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • B22F2009/0828Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid with water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • B22F2302/256Silicium oxide (SiO2)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/02Amorphous
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • H01F1/1535Preparation processes therefor by powder metallurgy, e.g. spark erosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供了一种铁基非晶合金粉料及其制备方法和用途。所述铁基非晶合金粉料包括Cu元素;所述铁基非晶合金粉料的颗粒形状为球形。所述制备方法包括以下步骤:(1)将母合金进行熔炼,得到铁基非晶合金铁液;所述母合金中包括Cu元素;(2)采用水气联合雾化的方式对步骤(1)所述铁基非晶合金铁液进行处理,得到所述铁基非晶合金粉料。本发明采用熔炼‑水气联合雾化的方法制备了一种铁基非晶合金粉料,所述粉料具有更低的玻璃转化温度、晶化温度及更优异的非晶形成能力和电磁特性,还具有高磁导率、高饱和及低损耗的特点。

Description

一种铁基非晶合金粉料及其制备方法和用途
技术领域
本发明属于磁性材料领域,涉及一种铁基非晶合金粉料及其制备方法和用途。
背景技术
随着磁性器件未来的小型化和高频化的发展趋势,对磁性材料提出了越来越苛刻要求,材料的高磁导率、大饱和电流和低损耗的综合特性有一个非常高的要求。磁芯作为磁性器件的核心部件,其材料特性直接决定了器件特性,因此开发一种兼具上述优良综合特性的磁性材料是至关重要。
铁氧体材料虽然具备高磁导率和低损耗的特点,但是其饱和电流非常低限制了其应用,常规的软磁合金如FeNi、FeSi、FeSiAl、FeSiCr和羰基铁等虽然各具特点,如FeNi虽然具备高磁导率但其损耗特性一般,FeSiAl具有高磁导率和低损耗但其饱和电流较差;羰基铁粉虽然具备优异的饱和电流,但是其磁导率和损耗性能一般。如上,上述材料某些方面的劣势亦限制了其应用。而非晶软磁合金兼具高磁导率、高饱和及低损耗特点,正越来越广泛的应用于高频器件中。
CN1356403A公开了一种用于交流电应用场合的具有良好软磁性的,即使在高铁含量的情况下也可保持高磁通量密度的铁基无定形合金薄带。用这种薄带甚至在退火期间由于铁心的不同部位间存在着温度差异的条件下,仍可制成具有良好软磁性的铁心。本发明的Fe基无定形合金薄带具有高磁通量密度,主要成分中含有Fe,Si,B,C和P元素及不可能避免的杂质,其特征在于:它的组成以原子百分数计:82s值为1.74T,B80值超过1.5T,铁损值为0.12W/kg或更低。但由于其Fe含量过高非晶形成能力较差,导致在其工业化生产中无法形成非晶态,带材磁性能较差;同事其在专利中一方面未提到关于P元素添加的问题,另一方面P元素的添加含量较大,结合目前国内外磷铁行业的实际情况,磷铁的制备条件相对粗放,杂质含量过高,无法达到非晶合金的使用条件。在制备过程中,大量使用常规条件的磷铁会导致带材晶化、偏脆,且热处理后性能较差。若使用此种合金成分进行工业化成产,必须添加磷铁精炼的环节,一方面增加工艺流程的复杂性,另一方面需提高目前的冶炼水平,导致工业化生产难度加大。
CN101840764A中公开了一种高饱和磁感应强度非晶合金,其优选成分硅含量较高,超过5%,非晶形成能力低,此外,此专利中实施例中,具有相近成分的不同合金其饱和磁感应强度值相差较大,说明该组分的合金在制备过程中重复性差,导致相近成分的不同合金样品中非晶态比例差别大。
对于未来电子器件的小型化和高频化的发展趋势,对磁性材料的高磁导率、优异叠加电流和低磁芯损耗等特性有着越来越高的要求,非晶材料因材料本征高电阻率和磁晶各向同性使得其具备高磁导率和低损耗的特性,而偏球形的粉体形貌致使其具备高叠加电流。
如何得到高磁导率、高饱和及低损耗的非晶材料,具有较低的玻璃转化温度以及晶化温度,同时有更优异的非晶形成能力和电磁特性,是目前急需解决的技术问题。
发明内容
本发明的目的在于提供一种铁基非晶合金粉料及其制备方法和用途。本发明采用熔炼-水气联合雾化的方法制备了一种铁基非晶合金粉料,所述粉料具有更低的玻璃转化温度、晶化温度及更优异的非晶形成能力和电磁特性,还具有高磁导率、高饱和及低损耗的特点。
为达到此发明目的,本发明采用以下技术方案:
第一方面,本发明提供一种铁基非晶合金粉料,所述铁基非晶合金粉料包括Cu元素;所述铁基非晶合金粉料的颗粒形状为球形。
本发明中,Cu原子半径同Fe原子相当,因此Cu会部分取代Fe原子位置,并在热处理过程中Cu原子易通过热扩散作用聚成簇,为纳米晶化提供形核位置,因此通过Cu元素的加入易让粉料经过热处理时形成纳米晶从而降低磁滞损耗,因此整体损耗下降,同时Cu元素含量若过高则会导致纳米晶颗粒的过度长大从而导致损耗升高,而所述铁基非晶合金粉料的颗粒形状为球形,这种形貌更能致使其具备高叠加电流。
优选地,所述铁基非晶合金粉料包括类金属元素和主过渡金属元素。
优选地,所述类金属元素包括B、P、Si或C中的任意一种或至少两中的组合。
优选地,所述主过渡金属元素包括Ni和/或Cr。
优选地,所述铁基非晶合金粉料还包括微量过渡金属元素。
优选地,所述微量过渡金属元素包括V、Mn或Zn中的任意一种或至少两种的组合。
微量元素如V,Mn,Zn等跟Fe有大的负混合焓,适当的添加能够提升非晶形成能力,同时比Fe原子的更大的原子半径在非晶热处理时阻碍原子扩散从而抑制纳米晶晶粒的过度长大,而过度长大的晶粒会导致损耗急剧升高,因此V、Mn和Zn等元素的添加有益于材料低损耗的实现
优选地,所述铁基非晶合金粉料的化学式为aFe-bSi-cB-dP-eC-fNi-gCr-hCu-iV-jMn-kZn。
优选地,所述化学式中各元素的原子百分比为64.8%≤a≤80.2%,0%≤b≤2%,5%≤c≤10%,3%≤d≤6.2%,1.2%≤e≤5.5%,0.5%≤f≤4%,1%≤g≤5%,0.1%≤h≤1.5%,0%≤i≤0.2%,0%≤j≤0.6%,0%≤k≤0.2%;优选为64.8%≤a≤80.2%,0%≤b≤2%,5%≤c≤8%,4%≤d≤6%,3%≤e≤5%,1%≤f≤3%,2%≤g≤4%,0.5%≤h≤1.2%,0.02%≤i≤0.12%,0.1%≤j≤0.4%,0.1%≤k≤0.15%。
例如,所述铁基非晶合金粉料中Fe元素的原子百分比包括64.8%、65%、68%、70%、72%、74%、76%、78%、80%或80.2%等。
例如,所述铁基非晶合金粉料中Si元素的原子百分比包括0%、0.2%、0.4%、0.6%、0.8%、1.0%、1.2%、1.4%、1.6%、1.8%或2.0%等。
例如,所述铁基非晶合金粉料中B元素的原子百分比包括5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%或10%等。
例如,所述铁基非晶合金粉料中P元素的原子百分比包括3%、3.5%、4%、4.5%、5%、5.5%、6%或6.2%等。
例如,所述铁基非晶合金粉料中C元素的原子百分比包括1.2%、1.6%、2.0%、2.5%、3%、3.5%、4%、4.5%、5%或5.5%等。
例如,所述铁基非晶合金粉料中Ni元素的原子百分比包括0.5%、0.8%、1%、1.3%、1.5%、1.8%、2%、2.3%、2.5%、2.8%、3%、3.5%或4%等。
例如,所述铁基非晶合金粉料中Cr元素的原子百分比包括1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%或5%等。
例如,所述铁基非晶合金粉料中Cu元素的原子百分比包括0.1%、0.3%、0.5%、0.8%、1.0%、1.2%、1.4%或1.5%等。
例如,所述铁基非晶合金粉料中V元素的原子百分比包括0%、0.02%、0.04%、0.06%、0.08%、0.1%、0.12%、0.14%、0.16%、0.18%或0.2%等。
例如,所述铁基非晶合金粉料中Mn元素的原子百分比包括0%、0.05%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%、0.4%、0.45%、0.5%、0.55%或0.6%等。
例如,所述铁基非晶合金粉料中Zn元素的原子百分比包括0%、0.02%、0.04%、0.06%、0.08%、0.1%、0.12%、0.14%、0.16%、0.18%或0.2%等。
Cr元素因为电势比Fe元素更低,所以比Fe元素更容易发生氧化从而保护Fe元素不生锈,Cr元素含量越高越好;同时Ni元素虽然电极电势比Fe元素更高,但是颗粒中因为Ni存在的富Ni区和贫Ni区之间两电极电位差相当,从而也能提升合金的耐腐蚀性,Ni含量越高合金耐腐蚀性越强。但是Cr和Ni原子的含量过高会导致材料的饱和特性下降,因此结合防锈和电磁特性这两方面,合金中的Cr和Ni元素的原子百分比分别应该控制在2~4%和1~3%。
本发明中,控制Cu元素的原子百分比在0.1~1.5%的原因为,当所述铁基非晶合金粉料中Cu原子过多时,易造成形核点过多,彼此靠近的纳米晶形核点合并长大的概率加大,从而导致纳米晶粒粒径偏粗,损耗升高。
优选地,所述类金属元素中B、P和C三种元素的原子百分比之和为14%~18%,例如14%、15%、16%、17%或18%等。
本发明中,B、P和C元素等类金属元素原子半径小于Fe原子半径,同Fe元素混合负焓大,因此其比例提升非晶形成能力也会提高,但过高的类金属元素的比例会降低材料的饱和特性,同时会导致粉体材料的硬度偏高不利于材料的压制性。
优选地,所述铁基非晶合金粉料的D10为2~5μm,例如2μm、2.5μm、3μm、3.5μm、4μm、4.5μm和5μm等。
优选地,所述铁基非晶合金粉料的D50为8~12μm,例如8μm、8.5μm、9μm、9.5μm、10μm、10.5μm、11μm、11.5μm或12μm等。
优选地,所述铁基非晶合金粉料的D90为20~30μm,例如20μm、21μm、22μm、23μm、24μm、25μm、26μm、27μm、28μm、29μm或30μm等。
第二方面,本发明提供一种如第一方面所述的铁基非晶合金粉料的制备方法,所述制备方法包括以下步骤:
(1)将母合金进行熔炼,得到铁基非晶合金铁液;所述母合金中包括Cu元素;
(2)采用水气联合雾化的方式对步骤(1)所述铁基非晶合金铁液进行处理,得到所述铁基非晶合金粉料。
本发明中,所述母合金为化学式为aFe-bSi-cB-dP-eC-fNi-gCr-hCu-iV-jMn-kZn。
本发明采用水气联合雾化的方法制备铁基非晶合金粉料,因为单纯的水雾化工艺采用水为介质,介质冲量大而且粉料冷却速度快,因此所得粉料形貌方面较差,同时颗粒成分方面易导致偏析而晶化;单纯的气雾化因采用惰性气体作为介质,介质冲量小且粉料冷却速度较慢,从而粉料在形貌方面更好,成分方面也更均匀,但是其冷却速度过慢会导致晶粒在冷却过程中长大而晶化,因此采用水气联合雾化方式能够结合二者的优势获得形貌更好、非晶程度更高的粉料,所获得的所有不同组分的合金粉料通过气流分级实现不同粒度的需求。
优选地,步骤(1)所述熔炼的温度为1300~1500℃,例如1300℃、1350℃、1400℃、1450℃或1500℃等。
优选地,步骤(1)所述熔炼的时间为80~150min,例如80min、90min、100min、110min、120min、130min、140min或150min等。
优选地,步骤(2)所述水气联合雾化的处理包括将步骤(1)所述铁基非晶合金铁液送入雾化塔中,然后在所述雾化塔中通过水和气体两种雾化介质作用于步骤(1)所述铁基非晶合金铁液,将步骤(1)所述铁基非晶合金铁液破碎成细小的金属液滴,然后冷却后,得到经水气联合雾化处理的铁基非晶合金粉料。
优选地,所述水的压力为100~150Mpa,例如100Mpa、110Mpa、120Mpa、130Mpa、140Mpa或150Mpa等。
优选地,所述气体的压力为0.5Mpa~1.0Mpa,例如0.5Mpa、0.6Mpa、0.7Mpa、0.8Mpa、0.9Mpa或1Mpa等。
优选地,所述气体为保护性气体。
优选地,所述保护性气体包括N2和/Ar2
优选地,对经水气联合雾化处理的铁基非晶合金粉料再进行烘烤和气流分级。
作为本发明优选的技术方案,所述铁基合金非晶粉料的制备方法包括以下步骤:
(1)将母合金以1300~1500℃的温度熔炼80~150min,得到铁基非晶合金铁液;所述母合金中包括Cu元素;
(2)将步骤(1)所述铁基非晶合金铁液送入雾化塔中,然后在所述雾化塔中通过压力为100~150Mpa的水和压力为0.5~1.0Mpa的N2两种雾化介质作用于步骤(1)所述铁基非晶合金铁液,将步骤(1)所述铁基非晶合金铁液破碎成细小的金属液滴,然后冷却后,再进行烘烤和气流分级,得到所述铁基非晶合金粉料。
第三方面,本发明提供一种磁粉芯,所述磁粉芯包括如第一方面所述的铁基非晶合金粉料、包覆于所述铁基非晶合金粉料表面的第一无机层、包覆于所述第一无机层表面的第二无机层以及包覆于所述第二无机层表面的有机层。
优选地,所述第一无机层包括磷酸盐。
优选地,所述第二无机层包括硅酸钠、硅酸钾、硅烷偶联剂、硅酸镁或纳米SiO2中的任意一种或至少两种的组合。
优选地,所述有机层包括树脂。
优选地,所述树脂包括聚乙烯醇缩丁醛酯、环氧树脂、硅树脂或酚醛树脂中的任意一种或至少两种的组合。
第四方面,本发明还提供一种第三方面所述的磁粉芯的制备方法,所述制备方法包括将所述第一无机层、第二无机层和有机层依次包覆于第一方面所述的铁基非晶合金粉末表面,再进行烧结。
本发明中,需要进行的烧结的原因为成型后的粉体中存在应力,而应力对磁导率和磁滞损耗方面具有明显的劣化现象,此外非晶合金在热处理的过程中有部分纳米晶化趋势,能够进一步的降低材料损耗。
烧结温度和时间对本发明中铁基非晶合金粉料析出纳米晶的过程影响非常大,烧结温度过高和时间过长易导致纳米晶晶粒过粗以及一些如FeP和FeB等化合物形成,直接导致磁导率和损耗方面严重偏高,而过低的温度和过短的时间易造成纳米晶析出不明显,特性方面无明显改善。
优选地,所述烧结温度为340~440℃,例如340℃、350℃、360℃、370℃、380℃、390℃、400℃、410℃、420℃、430℃或440℃等,优选为360~400℃。
优选地,所述烧结时间为0.5~4h,例如0.5h、1h、1.5h、2h、2.5h、3h、3.5h或4h等,优选为1.5~2.5h。
相对于现有技术,本发明具有以下有益效果:
(1)本发明提供的铁基非晶合金粉料中,Cu原子半径同Fe原子相当,Cu会取代Fe原子位置,并在热处理过程中Cu原子易通过热扩散作用聚成簇,为纳米晶化提供形核位置;B、C和P元素等类金属元素原子半径小于Fe原子半径,同Fe元素混合负焓大,因此其比例提升非晶形成能力也会提高;Cr元素因为电势比Fe元素更低,所以比Fe元素更容易发生氧化从而保护Fe元素不生锈,Cr元素含量越高越好;同时Ni元素虽然电极电势比Fe元素更高,但是颗粒中因为Ni存在的富Ni区和贫Ni区之间两两电极电位差相当,从而也能提升合金的耐腐蚀性,Ni含量越高合金耐腐蚀性越强;微量元素如V,Mn,Zr等跟Fe有大的负混合焓,适当的添加能够提升非晶形成能力,同时比Fe原子的更大的原子半径在非晶热处理时阻碍原子扩散从而抑制纳米晶晶粒的过度长大。以上元素综合影响铁基非晶合金粉料的性能,包括其磁导率、饱和性以及损耗等。
(2)本发明所提供的铁基非晶合金粉料具有高磁导率、高饱和及低损耗的特点,磁导率可达50以上,损耗(1MHz@20mT)低至250mW/cm3;并具有更低的玻璃转化温度、晶化温度及更优异的非晶形成能力和电磁特性。
附图说明
图1是实施例1所提供的铁基非晶合金粉料的SEM图。
图2是实施例1-9与对比例1所提供的不同含量的Cu元素下的铁基非晶合金粉料的损耗图。
具体实施方式
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.1Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
制备方法如下:
参照非晶组分的化学式投料至中频高温熔炼炉将母合金熔炼至1400℃,熔融的铁液送入雾化塔的过程中通过高压水和低压气体两种雾化介质作用于合金液将铁液破碎成细小的金属液滴然后冷成获得非晶粉料,所述高压水压力为120MPa,气体压力为0.8MPa,通过水气联合雾化的方式制备Fe77.1Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1非晶合金粉料;
上述水气联合雾化得到的非晶粉料采用0.2wt%的磷酸进行钝化,然后包覆0.2wt%的硅酸钾,然后采用0.6wt%环氧树脂进行包覆造粒,筛分180目的粉料以1600MPa的压力压制成14mm*8mm*3mm磁粉芯的磁环,然后在氮气气氛下以360℃的烧结温度烧结2h,成型后的磁环经过热处理然后绕制30圈进行特性测试,电感值测试条件1MHz&0.25V,叠加电流值为20A,损耗测试条件为1MHz&20mT。
从图1可以看出,本实施例中提供的铁基非晶合金粉料为明显的球形颗粒。
实施例2
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.3Si1B6P5.5C4.5Ni2Cr3Cu0.2V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中中Cu元素的原子占比为0.2%。
其余制备方法与测试条件与实施例1保持一致。
实施例3
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.4Si1B6P5.5C4.5Ni2Cr3Cu0.1V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中Cu元素的原子占比为0.1%。
其余制备方法与测试条件与实施例1保持一致。
实施例4
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe76.8Si1B6P5.5C4.5Ni2Cr3Cu0.8V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中Cu元素的原子占比为0.8%。
其余制备方法与测试条件与实施例1保持一致。
实施例5
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe76.6Si1B6P5.5C4.5Ni2Cr3Cu1.0V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中Cu元素的原子占比为1%。
其余制备方法与测试条件与实施例1保持一致。
实施例6
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe76.4Si1B6P5.5C4.5Ni2Cr3Cu1.2V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中Cu元素的原子占比为1.2%。
其余制备方法与测试条件与实施例1保持一致。
实施例7
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe76.1Si1B6P5.5C4.5Ni2Cr3Cu1.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中Cu元素的原子占比为1.5%。
其余制备方法与测试条件与实施例1保持一致。
实施例8
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe75.8Si1B6P5.5C4.5Ni2Cr3Cu1.8V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中Cu元素的原子占比为1.8%。
其余制备方法与测试条件与实施例1保持一致。
实施例9
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe75.6Si1B6P5.5C4.5Ni2Cr3Cu2.0V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为,本实施例所述粉料中Cu元素的原子占比为2%。
其余制备方法与测试条件与实施例1保持一致。
对比例1
本对比例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.6Si1B6P5.5C4.5Ni2Cr3V0.1Mn0.2Zn0.1
其余制备方法与测试条件与实施例1保持一致。
从图2可以清楚的看出,本发明中Cu元素的原子百分比对于铁基非晶合金粉料的损耗值有很明显的影响。Cu元素过多或过少均会对铁基非晶合金粉料产生不利的影响。当铁基非晶合金粉料中不含有Cu元素时,其损耗远高于实施例1所提供的铁基非晶合金粉料,原因为Cu原子可以为纳米晶化提供形核点,;而实施例8和9中Cu元素含量过高,其损耗较高。而如实施例9中Cu元素比例过高会导致彼此靠近的纳米晶形核点合并长大的概率加大,从而导致纳米晶粒粒径偏粗,使得铁基非晶合金粉料的损耗升高。
表1为实施例1-9与对比例1所得到的铁基非晶合金粉料的性质。
表1
Figure GDA0002787988260000131
Figure GDA0002787988260000141
表1中实施1-9中制得的铁基非晶合金粉料中,Cu元素的原子百分比不同,实施例1-7中,Cu元素的原子百分比均在0.1~1.5%范围内,从表中数据可以得出,上述实施例中的铁基非晶合金的磁导率较好,且损耗较低;而实施例8和9中Cu元素含量过高,其损耗较高。
由实施例1与对比例1所提供数据可得,铁基非晶合金粉料中不含有Cu元素时,其损耗远高于实施例1所提供的铁基非晶合金粉料。原因为Cu原子可以为纳米晶化提供形核点,而如实施例9中Cu元素比例过高会导致彼此靠近的纳米晶形核点合并长大的概率加大,从而导致纳米晶粒粒径偏粗,是的铁基非晶合金粉料的损耗升高。
实施例10
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.1Si1B5P5.5C4Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,B元素的原子百分比为5%,C元素的原子百分比为4%,B+P+C三种类金属元素的原子百分比和为14.5%。
其余制备方法与测试条件与实施例1保持一致。
实施例11
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe89.1Si1B1P2C1Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,B元素的原子百分比为1%,P元素的原子百分比为2%,C元素的原子百分比为1%,B+P+C三种类金属元素的原子百分比和为4%。
其余制备方法与测试条件与实施例1保持一致。
实施例12
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe85.1Si1B3P3C2Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,B元素的原子百分比为3%,P元素的原子百分比为3%,C元素的原子百分比为2%,B+P+C三种类金属元素的原子百分比和为8%。
其余制备方法与测试条件与实施例1保持一致。
实施例13
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe81.1Si1B3P5C4Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,B元素的原子百分比为3%,P元素的原子百分比为5%,C元素的原子百分比为4%,B+P+C三种类金属元素的原子百分比和为12%。
其余制备方法与测试条件与实施例1保持一致。
实施例14
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe80.1Si1B6P5C2Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,P元素的原子百分比为5%,C元素的原子百分比为2%,B+P+C三种类金属元素的原子百分比和为13%。
其余制备方法与测试条件与实施例1保持一致。
实施例15
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe81.1Si1B6P2C4Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,P元素的原子百分比为2%,C元素的原子百分比为4%,B+P+C三种类金属元素的原子百分比和为12%。
其余制备方法与测试条件与实施例1保持一致。
实施例16
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe68.1Si1B8P10C7Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,B元素的原子百分比为8%,P元素的原子百分比为10%,C元素的原子百分比为7%,B+P+C三种类金属元素的原子百分比和为25%。
其余制备方法与测试条件与实施例1保持一致。
实施例17
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe72.6Si1B6P10C4.5Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,P元素的原子百分比为10%,B+P+C三种类金属元素的原子百分比和为20.5%。
其余制备方法与测试条件与实施例1保持一致。
实施例18
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe80.6Si1B6P5.5C1Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,C元素的原子百分比为1%,B+P+C三种类金属元素的原子百分比和为12.5%。
其余制备方法与测试条件与实施例1保持一致。
实施例19
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe73.1Si1B1P5.5C4.5Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中,B元素的原子百分比为1%,B+P+C三种类金属元素的原子百分比和为11%。
其余制备方法与测试条件与实施例1保持一致。
表2为实施例1与实施例10-19所得到的铁基非晶合金粉料的性质。
表2
Figure GDA0002787988260000181
Figure GDA0002787988260000191
从表2中数据可以得出,当所述铁基非晶合金粉料中B+P+C三种元素的原子百分比过高或过低时,也即实施例11-19所提供的铁基非晶合金粉料,其磁导率不够高,并且损耗非常严重,远高于实施例1所提供的铁基非晶合金粉料。
实施例20
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe72.1Si1B6P5.5C4.5Ni5Cr5Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中Ni元素的原子百分比为5%,Cr元素的原子百分比为5%。
其余制备方法与测试条件与实施例1保持一致。
实施例21
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe74.1Si1B6P5.5C4.5Ni5Cr3Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中Ni元素的原子百分比为5%。
其余制备方法与测试条件与实施例1保持一致。
实施例22
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe75.1Si1B6P5.5C4.5Ni2Cr5Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中Cr元素的原子百分比为5%。
其余制备方法与测试条件与实施例1保持一致。
实施例23
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe80.1Si1B6P5.5C4.5Ni1Cr1Cu0.5V0.1Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中Ni元素的原子百分比为1%,Cr元素的原子百分比为1%。
其余制备方法与测试条件与实施例1保持一致。
表3为实施例1与实施例20-23所得到的铁基非晶合金粉料的性质。
表3
Figure GDA0002787988260000201
Figure GDA0002787988260000211
从表3中数据可以得出,当所述铁基非晶合金粉料中Ni元素含量过低时,即实施例23所提供的铁基非晶合金粉料耐腐蚀变差,比较容易被腐蚀生锈。
实施例24
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.5Si1B6P5.5C4.5Ni2Cr3Cu0.5
本实施例与实施例1的区别为:本实施例所述粉料中不包括V、Mn和Zn元素。
其余制备方法与测试条件与实施例1保持一致。
实施例25
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.2Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.1Mn0.2
本实施例与实施例1的区别为:本实施例所述粉料中不包括Zn元素。
其余制备方法与测试条件与实施例1保持一致。
实施例26
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.3Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.1Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中不包括Mn元素。
其余制备方法与测试条件与实施例1保持一致。
实施例27
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.2Si1B6P5.5C4.5Ni2Cr3Cu0.5Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中不包括V元素。
其余制备方法与测试条件与实施例1保持一致。
实施例28
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe77.2Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.4Mn0.2Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中V元素的原子百分比为0.4%。
其余制备方法与测试条件与实施例1保持一致。
实施例29
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe76.4Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.2Mn0.6Zn0.1
本实施例与实施例1的区别为:本实施例所述粉料中V元素的原子百分比为0.2%,Mn元素的原子百分比为0.6%。
其余制备方法与测试条件与实施例1保持一致。
实施例30
本实施例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe76.1Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.2Mn0.2Zn0.4
本实施例与实施例1的区别为:本实施例所述粉料中V元素的原子百分比为0.2%,Zn元素的原子百分比为0.4%。
其余制备方法与测试条件与实施例1保持一致。
表4为实施例1与实施例24-30所得到的铁基非晶合金粉料的性质。
表4
Figure GDA0002787988260000231
Figure GDA0002787988260000241
从实施例1与实施例24的数据结果可知,铁基非晶合金粉料中不加入V、Mn和Zn等微量过渡金属元素时,其损耗会明显提高。
从实施例1与实施例25-27可知,V、Mn和Zn三种微量过渡金属元素一起加入时,损耗较低。
从实施例1与实施例28-29的数据结果可知,V、Mn和Zn三种微量过渡金属元素任何一种加入量过多都会使得铁基非晶合金粉料损耗变高。
实施例31-38
实施例31-38制备得到的铁基非晶合金粉料的化学式均为Fe77.1Si1B6P5.5C4.5Ni2Cr3Cu0.5V0.1Mn0.2Zn0.1,其制备方法与实施例1的区别仅在于烧结条件,各实施例具体烧结条件的区别见表5。
表5为实施例1与实施例31-38所得到的铁基非晶合金粉料的性质。
表5
Figure GDA0002787988260000251
实施例31-38与实施例1为同一种铁基非晶合金粉料,因此其玻璃转化温度和纳米αFe析出温度均与实施例1所提供的保持一致
从实施例1与实施例31-33的数据结果可知,烧结过程中,烧结时间过长或过短都会使得铁基非晶合金粉料的损耗明显增大。
从实施例1与实施例34的数据结果可知,烧结过程中,烧结温度过低,铁基非晶合金粉料的磁导率降低,损耗变大。
从实施例1与实施例37和38的数据结果可知,烧结过程中烧结温度过高,会导致副产物的产生,使得铁基非晶合金粉料的磁导率大大降低,同时损耗严重升高。
对比例2
本对比例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe96.5Si3.5。本对比例中烧结温度为700℃,烧结时间为2h。
其余制备方法与测试条件与实施例1保持一致。
对比例3
本对比例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe92Si3.5Cr4.5。本对比例中烧结温度为750℃,烧结时间为2h。
其余制备方法与测试条件与实施例1保持一致。
对比例4
本对比例提供一种铁基非晶合金粉料,所述粉料的颗粒形状为球形,所述铁基非晶合金粉料的化学式为Fe85Si9.5Al5.5。本对比例中烧结温度为650℃,烧结时间为2h。
其余制备方法与测试条件与实施例1保持一致。
表6为实施例1与对比例2-4所得到的铁基非晶合金粉料的性质。
表6
Figure GDA0002787988260000261
Figure GDA0002787988260000271
对比例2-4均为晶态物质,因此无玻璃转化温度和纳米αFe析出温度。
从实施例1与对比例2-3的数据结果可知,本发明所提供的铁基非晶合金在磁导率、叠加电流和损耗方面具有比其它几种合金粉料更加优异的特性。
申请人声明,以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。

Claims (25)

1.一种铁基非晶合金粉料,其特征在于,所述铁基非晶合金粉料包括Cu元素;所述铁基非晶合金粉料的颗粒形状为球形;所述铁基非晶合金粉料的化学式为aFe-bSi-cB-dP-eC-fNi-gCr-hCu-iV-jMn-kZn;所述化学式中各元素的原子百分比为64.8%≤a≤80.2%,0%≤b≤2%,5%≤c≤8%,4%≤d≤6%,3%≤e≤5%,1%≤f≤3%,2%≤g≤4%,0.5%≤h≤1.2%,0.02%≤i≤0.12%,0.1%≤j≤0.4%,0.1%≤k≤0.15%。
2.根据权利要求1所述的铁基非晶合金粉料,其特征在于,所述化学式中B、P和C三种元素的原子百分比之和为14%~18%。
3.根据权利要求1所述的铁基非晶合金粉料,其特征在于,所述铁基非晶合金粉料的D10为2~5μm。
4.根据权利要求1所述的铁基非晶合金粉料,其特征在于,所述铁基非晶合金粉料的D50为8~12μm。
5.根据权利要求1所述的铁基非晶合金粉料,其特征在于,所述铁基非晶合金粉料的D90为20~30μm。
6.根据权利要求1-5任一项所述的铁基非晶合金粉料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将母合金进行熔炼,得到铁基非晶合金铁液;所述母合金中包括Cu元素;
(2)采用水气联合雾化的方式对步骤(1)所述铁基非晶合金铁液进行处理,得到所述铁基非晶合金粉料。
7.根据权利要求6所述的铁基非晶合金粉料的制备方法,其特征在于,步骤(1)所述熔炼的温度为1300~1500℃。
8.根据权利要求6所述的铁基非晶合金粉料的制备方法,其特征在于,步骤(1)所述熔炼的时间为80~150min。
9.根据权利要求6所述的铁基非晶合金粉料的制备方法,其特征在于,步骤(2)所述水气联合雾化的处理包括将步骤(1)所述铁基非晶合金铁液送入雾化塔中,然后在所述雾化塔中通过水和气体两种雾化介质作用于步骤(1)所述铁基非晶合金铁液,将步骤(1)所述铁基非晶合金铁液破碎成细小的金属液滴,然后冷却后,得到经水气联合雾化处理的铁基非晶合金粉料。
10.根据权利要求9所述的铁基非晶合金粉料的制备方法,其特征在于,所述水的压力为100~150Mpa。
11.根据权利要求9所述的铁基非晶合金粉料的制备方法,其特征在于,所述气体的压力为0.5Mpa~1.0Mpa。
12.根据权利要求9所述的铁基非晶合金粉料的制备方法,其特征在于,所述气体为保护性气体。
13.根据权利要求12所述的铁基非晶合金粉料的制备方法,其特征在于,所述保护性气体包括N2和/Ar2
14.根据权利要求9所述的铁基非晶合金粉料的制备方法,其特征在于,对经水气联合雾化处理的铁基非晶合金粉料再进行烘烤和气流分级。
15.根据权利要求6所述的铁基非晶合金粉料的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)将母合金以1300~1500℃的温度熔炼80~150min,得到铁基非晶合金铁液;所述母合金中包括Cu元素;
(2)将步骤(1)所述铁基非晶合金铁液送入雾化塔中,然后在所述雾化塔中通过压力为100~150Mpa的水和压力为0.5~1.0Mpa的N2两种雾化介质作用于步骤(1)所述铁基非晶合金铁液,将步骤(1)所述铁基非晶合金铁液破碎成细小的金属液滴,然后冷却后,再进行烘烤和气流分级,得到所述铁基非晶合金粉料。
16.一种磁粉芯,其特征在于,所述磁粉芯包括如权利要求1-5任一项所述的铁基非晶合金粉料、包覆于所述铁基非晶合金粉料表面的第一无机层、包覆于所述第一无机层表面的第二无机层以及包覆于所述第二无机层表面的有机层。
17.根据权利要求16所述的磁粉芯,其特征在于,所述第一无机层包括磷酸盐。
18.根据权利要求16所述的磁粉芯,其特征在于,所述第二无机层包括硅酸钠、硅酸钾、硅烷偶联剂、硅酸镁或纳米SiO2中的任意一种或至少两种的组合。
19.根据权利要求16所述的磁粉芯,其特征在于,所述有机层包括树脂。
20.根据权利要求19所述的磁粉芯,其特征在于,所述树脂包括聚乙烯醇缩丁醛酯、环氧树脂、硅树脂或酚醛树脂中的任意一种或至少两种的组合。
21.根据权利要求16-20任一项所述的磁粉芯的制备方法,其特征在于,所述制备方法包括将所述第一无机层、第二无机层和有机层依次包覆于如权利要求1-5任一项所述的铁基非晶合金粉末表面,再进行烧结。
22.根据权利要求21所述的磁粉芯的制备方法,其特征在于,所述烧结温度为340~440℃。
23.根据权利要求22所述的磁粉芯的制备方法,其特征在于,所述烧结温度为360~400℃。
24.根据权利要求21所述的磁粉芯的制备方法,其特征在于,所述烧结时间为0.5~4h。
25.根据权利要求24所述的磁粉芯的制备方法,其特征在于,所述烧结时间为1.5~2.5h。
CN202011242333.7A 2020-11-09 2020-11-09 一种铁基非晶合金粉料及其制备方法和用途 Active CN112435823B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202011242333.7A CN112435823B (zh) 2020-11-09 2020-11-09 一种铁基非晶合金粉料及其制备方法和用途
EP21888399.9A EP4213165A1 (en) 2020-11-09 2021-10-20 Iron-based amorphous alloy powder, preparation method therefor and application thereof
KR1020227005818A KR20220063764A (ko) 2020-11-09 2021-10-20 철계 비금합금 분말 및 이의 제조방법과 용도
PCT/CN2021/125034 WO2022095702A1 (zh) 2020-11-09 2021-10-20 一种铁基非金合金粉料及其制备方法和用途
US18/249,216 US20230395292A1 (en) 2020-11-09 2021-10-20 Iron-based amorphous alloy powder, preparation method therefor and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011242333.7A CN112435823B (zh) 2020-11-09 2020-11-09 一种铁基非晶合金粉料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN112435823A CN112435823A (zh) 2021-03-02
CN112435823B true CN112435823B (zh) 2022-09-02

Family

ID=74700444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011242333.7A Active CN112435823B (zh) 2020-11-09 2020-11-09 一种铁基非晶合金粉料及其制备方法和用途

Country Status (5)

Country Link
US (1) US20230395292A1 (zh)
EP (1) EP4213165A1 (zh)
KR (1) KR20220063764A (zh)
CN (1) CN112435823B (zh)
WO (1) WO2022095702A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112435823B (zh) * 2020-11-09 2022-09-02 横店集团东磁股份有限公司 一种铁基非晶合金粉料及其制备方法和用途
CN114284055B (zh) * 2021-12-28 2024-02-23 江西大有科技有限公司 一种非晶粉及其制备方法
CN114388215A (zh) * 2022-02-11 2022-04-22 青岛云路先进材料技术股份有限公司 非晶粉末及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206943A (zh) * 2007-11-16 2008-06-25 北京航空航天大学 一种具有高饱和磁感应强度及良好韧性的铁基非晶软磁合金

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416879B1 (en) 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
JP2004349585A (ja) * 2003-05-23 2004-12-09 Hitachi Metals Ltd 圧粉磁心およびナノ結晶磁性粉末の製造方法
CN101624689A (zh) * 2009-08-11 2010-01-13 安泰科技股份有限公司 扁平型非晶合金粉末及包含该粉末的电磁波吸收体
CN101840764B (zh) 2010-01-25 2012-08-08 安泰科技股份有限公司 一种低成本高饱和磁感应强度的铁基非晶软磁合金
WO2018139563A1 (ja) * 2017-01-27 2018-08-02 株式会社トーキン 軟磁性粉末、Fe基ナノ結晶合金粉末、磁性部品及び圧粉磁芯
EP3666419A4 (en) * 2017-08-07 2021-01-27 Hitachi Metals, Ltd. CRYSTALLINE FE-BASED ALLOY POWDER AND METHOD FOR MANUFACTURING THEM
US11170920B2 (en) * 2017-08-07 2021-11-09 Hitachi Metals, Ltd. Fe-based nanocrystalline alloy powder, method of producing the same, Fe-based amorphous alloy powder, and magnetic core
CN108010654A (zh) * 2017-10-27 2018-05-08 东莞理工学院 一种新型球形铁基非晶合金粉末及非晶磁粉芯的制备方法
CN108172359A (zh) * 2017-11-28 2018-06-15 嘉兴长维新材料科技有限公司 球形铁基非晶合金粉末及其制备方法和在制备非晶磁粉芯中的应用
JP6931775B2 (ja) * 2018-02-15 2021-09-08 パナソニックIpマネジメント株式会社 軟磁性合金粉末、その製造方法、および、それを用いた圧粉磁心
JP6680309B2 (ja) * 2018-05-21 2020-04-15 Tdk株式会社 軟磁性粉末、圧粉体および磁性部品
CN112435823B (zh) * 2020-11-09 2022-09-02 横店集团东磁股份有限公司 一种铁基非晶合金粉料及其制备方法和用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101206943A (zh) * 2007-11-16 2008-06-25 北京航空航天大学 一种具有高饱和磁感应强度及良好韧性的铁基非晶软磁合金

Also Published As

Publication number Publication date
US20230395292A1 (en) 2023-12-07
EP4213165A1 (en) 2023-07-19
CN112435823A (zh) 2021-03-02
WO2022095702A1 (zh) 2022-05-12
KR20220063764A (ko) 2022-05-17

Similar Documents

Publication Publication Date Title
CN112435823B (zh) 一种铁基非晶合金粉料及其制备方法和用途
CA3051184C (en) Soft magnetic powder, fe-based nanocrystalline alloy powder, magnetic component and dust core
JP6226093B1 (ja) 軟磁性合金および磁性部品
JP2018070966A (ja) 軟磁性合金および磁性部品
JP5912239B2 (ja) Fe基合金組成物、Fe基ナノ結晶合金及びその製造方法、並びに磁性部品
TWI707050B (zh) 軟磁性合金及磁性部件
JP6245390B1 (ja) 軟磁性合金および磁性部品
JP2018123363A (ja) 軟磁性合金および磁性部品
JP2019123894A (ja) 軟磁性合金および磁性部品
JP2018123362A (ja) 軟磁性合金および磁性部品
WO2019102667A1 (ja) 軟磁性合金および磁性部品
WO2019102666A1 (ja) 軟磁性合金および磁性部品
JP6338001B1 (ja) 軟磁性合金および磁性部品
CN111681846B (zh) 软磁性合金和磁性零件
WO2019053950A1 (ja) 軟磁性合金および磁性部品
JP2019070175A (ja) 軟磁性合金および磁性部品
JP6744238B2 (ja) 軟磁性粉末、磁性部品及び圧粉磁芯
WO2019003680A1 (ja) 軟磁性合金および磁性部品
US4217151A (en) Cermet type magnetic material
CN113628823B (zh) 高耐蚀性的铁基纳米晶软磁合金及制备方法
JP2019123929A (ja) 軟磁性合金および磁性部品
JP4218111B2 (ja) Fe−Ni系合金粉末およびその製造方法
JP2020139192A (ja) 鉄基金属ガラス合金粉末
KR101857748B1 (ko) 철-인 합금 분말 및 이의 제조방법
CN112176246A (zh) 纳米晶软磁性材料及其制造方法、用于其的Fe基合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant