CN112397301A - 高稀土含量烧结钕铁硼磁体的制备方法 - Google Patents

高稀土含量烧结钕铁硼磁体的制备方法 Download PDF

Info

Publication number
CN112397301A
CN112397301A CN202011313137.4A CN202011313137A CN112397301A CN 112397301 A CN112397301 A CN 112397301A CN 202011313137 A CN202011313137 A CN 202011313137A CN 112397301 A CN112397301 A CN 112397301A
Authority
CN
China
Prior art keywords
sintering
rare earth
magnet
boron magnet
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011313137.4A
Other languages
English (en)
Inventor
陈秀雷
彭众杰
朱晓男
董占吉
丁开鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Shougang Magnetic Materials Inc
Original Assignee
Yantai Shougang Magnetic Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Shougang Magnetic Materials Inc filed Critical Yantai Shougang Magnetic Materials Inc
Priority to CN202011313137.4A priority Critical patent/CN112397301A/zh
Publication of CN112397301A publication Critical patent/CN112397301A/zh
Priority to JP2021157000A priority patent/JP7211690B2/ja
Priority to EP21208954.4A priority patent/EP4002398A1/en
Priority to US17/531,809 priority patent/US11776719B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0557Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种高稀土含量烧结钕铁硼磁体的制备方法,属于磁体材料制备领域,包括以下步骤:(S1)按照一定元素比例配料,使用真空甩带炉制成薄带合金片,经过氢处理、磨粉、成型、取向、等静压等工艺得到生坯;(S2)将生坯先在低温下进行第一步烧结;(S3)然后再在施加一定压力的条件下进行第二步烧结;(S4)进行时效处理,最终得到钕铁硼烧结磁体。利用本发明所述的一种高稀土含量烧结钕铁硼磁体的制备方法,所得烧结钕铁硼磁体结构致密,无异常长大晶粒,晶界相清晰,磁性能较高。

Description

高稀土含量烧结钕铁硼磁体的制备方法
技术领域
本发明涉及一种磁性材料的制备方法,尤其涉及一种高稀土含量烧结钕铁硼磁体的制备方法,属于磁性材料制备领域。
背景技术
钕铁硼磁体因优异的磁性能广泛应用于存储设备、电子元件、风力发电、电机等领域。随着应用领域的扩展,恶劣条件下使用的钕铁硼磁体为了满足对其磁性能要求,需要进一步提高其磁性能。
目前批量钕铁硼产品的剩磁已经可以达到钕铁硼理论饱和磁化强度的百分之九十左右,而矫顽力在不加重稀土的条件下,尚难以达到理论值的三分之一,具有较大的提升空间。通过重稀土元素取代可以显著提高钕铁硼磁体的矫顽力。但重稀土价格较贵,且资源较少。为了降低原料成本,减少重稀土使用量,依靠技术进步,优化生产过程中各工序的工艺方法成为重要的手段。通过优化烧结、时效温度,优化磁体微观组织结构,使得磁体中颗粒形貌、尺寸均匀,并形成具有一定厚度,分布均匀的晶界相,抑制主相颗粒间的磁交换耦合作用。传统工艺制备的磁体往往存在磁体密度不均,孔隙率高,晶界分布不均等缺陷。为了改善微观结构,在烧结过程中施加压力的方式得到广泛的应用。专利号CN103981337A对烧结完成的磁体进行三级热处理,并在第二级热处理中施加20~60Mpa的压力,以此方式提高磁体性能;专利CN103310933B采用边烧结边从四个方向加压的方式,利用高温下产生富钕相达到液相烧结的效果,磁体收缩致密,内部孔洞减少。专利CN109791836A在烧结温度达到300℃以上时加压烧结,随后进行高温和低温热处理,既能抑制因烧结而产生的收缩不均的问题,又能抑制因加压烧结导致的磁体组织不均匀、磁特性降低的问题。
但是,目前相关的方法中,或者是在烧结过程中一直施加压力,需要特殊的工装模具,增加了设备成本;或者是未考虑到高温、高压条件下高稀土成分容易过烧导致性能下降的问题。特别是对于高稀土总量磁体,在烧结过程中温度太低则不易致密化,温度过高容易过烧,同时富稀土相容易在三角区富集,不易在两主相颗粒之间分布形成有效的晶界相,这都限制了磁性能的提高。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种高稀土含量烧结钕铁硼磁体的制备方法,以解决高稀土含量钕铁硼磁体在烧结过程中,低温烧结则密度低、致密性差;高温烧结则局部颗粒容易异常长大,以及主相颗粒之间晶界相缺失,稀土成分得不到有效利用,而导致的磁性能低的问题。
技术方案:为实现上述目的,一种高稀土含量烧结钕铁硼磁体的制备方法,其特征在于,包括以下步骤:
(S1)将含有稀土元素的原材料进行配料,将配好的原材料使用真空甩带炉制成薄带合金片,至少经过氢处理、磨粉、成型、取向、等静压工艺得到生坯;
(S2)将由步骤(S1)得到的生坯放入烧结炉中进行第一步烧结;
(S3)在真空环境下,对步骤(S2)烧结完成的毛坯进行第二步烧结,并在烧结的同时施加压力;
(S4)对步骤(S3)得到的产品进行时效处理。
进一步地,步骤(S1)所述薄带合金片中,稀土元素质量百分比为33.0%~37.0%。
进一步地,步骤(S2)中的第一步烧结温度范围为830℃~880℃,烧结时间为2~10小时,真空度在5×10-1Pa以下。
进一步地,步骤(S2)得到的产品密度范围为7.08~7.37g/cm3
进一步地,步骤(S3)中施加压力的方式为沿取向方向单轴加压,加压压强1Mpa~5Mpa。
进一步地,步骤(S3)中的第二步烧结温度范围为720℃~850℃,保温时间为15~60分钟。
进一步地,步骤(S2)中第一步烧结温度比步骤(S3)中第二步烧结温度高10℃及以上。
有益效果:本发明针对稀土含量较高的钕铁硼磁体,首先在低于传统烧结温度下,对毛坯进行第一步烧结达到一定的密度后,再在一定温度和压力范围内,进行第二步烧结。通过此种方式既能避免在烧结过程中因温度过高而导致的局部颗粒异常长大的问题,又能使磁体更加致密化。同时还有助于主相颗粒之间晶界相的形成。
本发明通过进行两步烧结,第一步无压低温烧结,抑制晶粒异常长大。第二步在加热的同时,施加外部压力,获得足够的烧结推动力,此时,物质传输的推动力是表面张力和外部施加压力两部分之和,这种额外的施加外部应力的应力强化烧结,是一种有效的促进烧结速率,达到烧结致密化的手段。同时,第一步低温烧结后,使得毛坯密度在合适的范围内,从而在第二步烧结的加压加热条件下,有助于位于三角区位置的富钕成分沿晶界进行扩散,最终使得晶界处有高稀土含量非铁磁性物质的存在,起到较好的磁交换耦合作用,矫顽力得到提高。本发明所述方法,只在关键步骤中短时间施加较小的压力,便可起到明显的效果,具有较高的性价比。而第二步施加的压力远小于热压磁体方法中的压力,二者机理完全不同,从而可以避免热压法中产生的磁体组织不均匀的问题。
附图说明
图1是本发明实施例一制备样品的背散射电子图像;
图2是本发明实施例二制备样品的背散射电子图像;
图3是本发明实施例三制备样品的背散射电子图像;
图4是本发明对比例一制备样品的背散射电子图像;
图5是本发明对比例二制备样品的背散射电子图像;
图6是本发明对比例三制备样品的背散射电子图像。
具体实施方式
以下结合附图1至附图6对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
准备原材料,以质量百分比核算,其种类和含量如下所述:PrNd含量为33.0~37.0%,B含量为0.95%,Co含量为1.0%,Al含量为0.55%,Cu含量为0.10%,Ga含量为0.40%,Ti含量为0.10%,余量为Fe及不可避免的杂质进行配料。具体地:
实施例一
(S1)按照质量百分比PrNd含量为35.0%,B含量为0.95%,Co含量为1.0%,Al含量为0.55%,Cu含量为0.10%,Ga含量为0.40%,Ti含量为0.10%,余量为Fe及不可避免的杂质进行配料,使用真空甩带炉制成薄带合金片,经过氢处理、磨粉、成型和取向、等静压等工艺得到生坯;
(S2)将生坯放入真空烧结炉进行第一步烧结,真空度在5×10-1Pa以下,烧结温度为830℃,保温10小时后降至室温。
(S3)在真空气氛下,对第一步烧结完成的毛坯进行再烧结,加热温度为820℃,保温的同时沿毛坯取向方向施加1Mpa的压力,加热和保温的时间为30分钟,保温和加压结束后,卸掉压力并降至室温。
(S4)升温至500℃进行时效处理,并保温2小时。
为了验证产品性能,分别测试两步烧结后的毛坯密度,并测试最终磁体的磁性能;使用扫描电镜拍摄磁体的背散射电子图像。
实施例二
(S1)按照质量百分比PrNd含量为33.0%,B含量为0.95%,Co含量为1.0%,Al含量为0.55%,Cu含量为0.10%,Ga含量为0.40%,Ti含量为0.10%,余量为Fe及不可避免的杂质进行配料,使用真空甩带炉制成薄带合金片,经过氢处理、磨粉、成型和取向、等静压等工艺得到生坯;
(S2)将生坯放入真空烧结炉进行第一步烧结,真空度在5×10-1Pa以下,烧结温度为880℃,保温2小时后降至室温。
(S3)在真空气氛下,对第一步烧结完成的毛坯进行再烧结,加热温度为720℃,保温的同时沿毛坯取向方向施加5Mpa的压力,加热和保温的时间为60分钟,保温和加压结束后,卸掉压力并降至室温。
(S4)升温至500℃进行时效处理,并保温2小时。
为了验证产品性能,分别测试两步烧结后的毛坯密度,并测试最终磁体的磁性能;使用扫描电镜拍摄磁体的背散射电子图像。
实施例三
(S1)按照质量百分比PrNd含量为37.0%,B含量为0.95%,Co含量为1.0%,Al含量为0.55%,Cu含量为0.10%,Ga含量为0.40%,Ti含量为0.10%,余量为Fe及不可避免的杂质进行配料,使用真空甩带炉制成薄带合金片,经过氢处理、磨粉、成型和取向、等静压等工艺得到生坯;
(S2)将生坯放入真空烧结炉进行烧结,真空度在5×10-1Pa以下,烧结温度为865℃,保温6小时后降至室温。
(S3)在真空气氛下,对第一步烧结完成的毛坯进行再烧结,加热温度为850℃,保温的同时沿毛坯取向方向施加3Mpa的压力,加热和保温的时间为15分钟,保温和加压结束后,卸掉压力并降至室温。
(S4)升温至500℃进行时效处理,保温2小时。
为了验证产品性能,分别测试两步烧结后的毛坯密度,并测试最终磁体的磁性能;使用扫描电镜拍摄磁体的背散射电子图像。
为了更加明显的凸出使用本发明所述的方法制得的钕铁硼磁体性能,设计了如下三个对比例。
对比例一
按照质量百分比PrNd含量为35.0%,B含量为0.95%,Co含量为1.0%,Al含量为0.55%,Cu含量为0.10%,Ga含量为0.40%,Ti含量为0.10%,余量为Fe及不可避免的杂质进行配料,使用真空甩带炉制成薄带合金片,经过氢处理、磨粉、成型和取向、等静压等工艺得到生坯;将生坯放入真空烧结炉进行第一步烧结,真空度在5×10-1Pa以下,烧结温度为830℃,保温10h小时后降至室温。将烧结后的磁体升温至500℃保温2小时。测试烧结后的毛坯密度,并测试最终磁体的磁性能;使用扫描电镜拍摄磁体的背散射电子图像。
对比例二
按照质量百分比PrNd含量为35.0%,B含量为0.95%,Co含量为1.0%,Al含量为0.55%,Cu含量为0.10%,Ga含量为0.40%,Ti含量为0.10%,余量为Fe及不可避免的杂质进行配料,使用真空甩带炉制成薄带合金片,经过氢处理、磨粉、成型和取向、等静压等工艺得到生坯;将生坯放入真空烧结炉进行第一步烧结,真空度在5×10-1Pa以下,烧结温度为930℃,保温2小时后降至室温。将烧结后的磁体升温至500℃保温2小时。测试烧结后的毛坯密度,并测试最终磁体的磁性能;使用扫描电镜拍摄磁体的背散射电子图像。
对比例三
按照质量百分比PrNd含量为35.0%,B含量为0.95%,Co含量为1.0%,Al含量为0.55%,Cu含量为0.10%,Ga含量为0.40%,Ti含量为0.10%,余量为Fe及不可避免的杂质进行配料,使用真空甩带炉制成薄带合金片,经过氢处理、磨粉、成型和取向、等静压等工艺得到生坯;将生坯放入真空烧结炉进行第一步烧结,真空度在5×10-1Pa以下,烧结温度为830℃,保温10小时后降至室温。在真空气氛下,对第一步烧结完成的毛坯进行再烧结,加热温度为700℃,保温的同时沿毛坯取向方向施加0.5Mpa的压力,加热和保温的时间为30分钟,保温和加压结束后,卸掉压力并降至室温。再升温至500℃保温2小时。分别测试两步烧结后的毛坯密度,并测试最终磁体的磁性能;使用扫描电镜拍摄磁体的背散射电子图像。
将实施例一至实施例三、对比例一至对比例三的工艺参数汇总如表1所示。
表1各个实施例和各个对比例实验参数
Figure BDA0002790467610000071
将实施例一至实施例三、对比例一至对比例三的得到的相关产品参数汇总至表2所示。
Figure BDA0002790467610000072
Figure BDA0002790467610000081
通过实施例1、2、3的测试结果可以看出,使用本发明的方法,第一步烧结后磁体的密度较低,当进行第二步低温加压烧结以后,磁体的密度显著提高均可达到7.43及以上,使得磁体能够具有较高的剩余磁化强度(Br)。
参照附图可以看出,实施例比对比例磁体更为致密,且主相颗粒之间存在较清晰的晶界相,使得磁体具有较高的矫顽力。对比例1只进行了第一步烧结,未实施第二步的低温加压烧结,磁体密度较低,从背散射图像可以看出磁体致密性较差,该样品的剩余磁化强度和矫顽力均较低。对比例2在930℃按照传统工艺进行烧结,由于成分中稀土总量较高,对于高总量的钕铁硼磁体很容易在烧结过程中产生局部过烧现象,从图5中可以看到局部区域出现了异常长大的晶粒,虽然密度达到了7.41g/cm3,但局部颗粒的异常长大使得剩磁和矫顽力均低于相同成分的实施例1中的磁体。对比例3中虽然也使用了本专利提出的两步烧结的工艺,但其第二步烧结工艺中的加压压强和温度低于本发明的要求范围,使得第二步烧结后的磁体密度低于实施例中的磁体。同时,从图6可以看出,对比例3制备磁体的微观结构中,主相颗粒之间的晶界相分布不如实施例磁体中的明显。这是其矫顽力低于实施例中磁体矫顽力的主要原因。
由此可以证明,使用本发明提供的方法可以有效改善高稀土含量烧结钕铁硼磁体的致密化程度,优化微观结构和性能。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种高稀土含量烧结钕铁硼磁体的制备方法,其特征在于,包括以下步骤:
(S1)将含有稀土元素的原材料进行配料,将配好的原材料使用真空甩带炉制成薄带合金片,至少经过氢处理、磨粉、成型、取向、等静压工艺得到生坯;
(S2)将由步骤(S1)得到的生坯放入真空烧结炉中进行第一步烧结;
(S3)在真空环境下,对步骤(S2)烧结完成的毛坯进行第二步烧结,并在烧结的同时施加压力;
(S4)对步骤(S3)得到的产品进行时效处理。
2.根据权利要求1所述的高稀土含量烧结钕铁硼磁体的制备方法,其特征在于:步骤(S1)所述薄带合金片中,稀土元素质量百分比为33.0%~37.0%。
3.根据权利要求1所述的高稀土含量烧结钕铁硼磁体的制备方法,其特征在于:步骤(S2)中的第一步烧结温度范围为830℃~880℃,烧结时间为2~10小时,真空度在5×10-1Pa以下。
4.根据权利要求1所述的高稀土含量烧结钕铁硼磁体的制备方法,其特征在于:步骤(S2)得到的产品密度范围为7.08~7.37g/cm3
5.根据权利要求1所述的高稀土含量烧结钕铁硼磁体的制备方法,其特征在于:步骤(S3)中施加压力的方式为沿取向方向单轴加压,加压压强1Mpa~5Mpa。
6.根据权利要求1所述的高稀土含量烧结钕铁硼磁体的制备方法,其特征在于:步骤(S3)中的第二步烧结温度范围为720℃~850℃,保温时间为15~60分钟。
7.根据权利要求1所述的高稀土含量烧结钕铁硼磁体的制备方法,其特征在于:步骤(S2)中第一步烧结温度比步骤(S3)中第二步烧结温度高10℃及以上。
CN202011313137.4A 2020-11-20 2020-11-20 高稀土含量烧结钕铁硼磁体的制备方法 Pending CN112397301A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011313137.4A CN112397301A (zh) 2020-11-20 2020-11-20 高稀土含量烧结钕铁硼磁体的制备方法
JP2021157000A JP7211690B2 (ja) 2020-11-20 2021-09-27 Nd-Fe-B系焼結磁性体の製造方法
EP21208954.4A EP4002398A1 (en) 2020-11-20 2021-11-18 A method for preparing sintered ndfeb magnets
US17/531,809 US11776719B2 (en) 2020-11-20 2021-11-22 Method for preparing sintered NdFeB magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011313137.4A CN112397301A (zh) 2020-11-20 2020-11-20 高稀土含量烧结钕铁硼磁体的制备方法

Publications (1)

Publication Number Publication Date
CN112397301A true CN112397301A (zh) 2021-02-23

Family

ID=74606931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011313137.4A Pending CN112397301A (zh) 2020-11-20 2020-11-20 高稀土含量烧结钕铁硼磁体的制备方法

Country Status (4)

Country Link
US (1) US11776719B2 (zh)
EP (1) EP4002398A1 (zh)
JP (1) JP7211690B2 (zh)
CN (1) CN112397301A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274242A (zh) * 2022-08-30 2022-11-01 烟台东星磁性材料股份有限公司 铈添加re-t-b-m系烧结钕铁硼磁体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352301A (en) * 1992-11-20 1994-10-04 General Motors Corporation Hot pressed magnets formed from anisotropic powders
CN103123843A (zh) * 2011-11-21 2013-05-29 中国科学院宁波材料技术与工程研究所 一种细晶粒各向异性致密化钕铁硼永磁体的制备方法
CN105489334A (zh) * 2016-01-14 2016-04-13 北京科技大学 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN106128672A (zh) * 2016-06-20 2016-11-16 钢铁研究总院 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
CN106373688A (zh) * 2016-08-31 2017-02-01 浙江东阳东磁稀土有限公司 一种制备稀土永磁材料的方法
CN111952032A (zh) * 2020-08-15 2020-11-17 赣州嘉通新材料有限公司 一种低硼低重稀土高矫顽力烧结钕铁硼系永磁体的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264115A (ja) 2002-03-11 2003-09-19 Hitachi Powdered Metals Co Ltd 希土類含有バルク磁石の製造方法
JP5504832B2 (ja) 2009-11-06 2014-05-28 トヨタ自動車株式会社 ナノコンポジット磁石の製造方法
JP6147505B2 (ja) 2012-03-12 2017-06-14 日東電工株式会社 希土類永久磁石の製造方法
CN103310933B (zh) 2013-05-10 2016-05-11 安徽大地熊新材料股份有限公司 一种高压制备烧结钕铁硼的方法
CN103680918B (zh) 2013-12-11 2016-08-17 烟台正海磁性材料股份有限公司 一种制备高矫顽力磁体的方法
CN103981337B (zh) 2014-05-26 2016-03-16 上海交通大学 一种烧结钕铁硼的热处理工艺
CN105469973B (zh) * 2014-12-19 2017-07-18 北京中科三环高技术股份有限公司 一种r‑t‑b永磁体的制备方法
JP6463293B2 (ja) * 2016-04-04 2019-01-30 ミネベアミツミ株式会社 希土類永久磁石及び希土類永久磁石の製造方法
CN107275024B (zh) * 2016-04-08 2018-11-23 沈阳中北通磁科技股份有限公司 一种含有氮化物相的高性能钕铁硼永磁铁及制造方法
TWI719259B (zh) * 2016-09-23 2021-02-21 日商日東電工股份有限公司 稀土類燒結磁石形成用燒結體及其製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352301A (en) * 1992-11-20 1994-10-04 General Motors Corporation Hot pressed magnets formed from anisotropic powders
CN103123843A (zh) * 2011-11-21 2013-05-29 中国科学院宁波材料技术与工程研究所 一种细晶粒各向异性致密化钕铁硼永磁体的制备方法
CN105489334A (zh) * 2016-01-14 2016-04-13 北京科技大学 一种晶界扩散获得高磁性烧结钕铁硼的方法
CN106128672A (zh) * 2016-06-20 2016-11-16 钢铁研究总院 一种扩散烧结连续化RE‑Fe‑B磁体及其制备方法
CN106373688A (zh) * 2016-08-31 2017-02-01 浙江东阳东磁稀土有限公司 一种制备稀土永磁材料的方法
CN111952032A (zh) * 2020-08-15 2020-11-17 赣州嘉通新材料有限公司 一种低硼低重稀土高矫顽力烧结钕铁硼系永磁体的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274242A (zh) * 2022-08-30 2022-11-01 烟台东星磁性材料股份有限公司 铈添加re-t-b-m系烧结钕铁硼磁体

Also Published As

Publication number Publication date
US11776719B2 (en) 2023-10-03
JP7211690B2 (ja) 2023-01-24
JP2022082429A (ja) 2022-06-01
EP4002398A1 (en) 2022-05-25
US20220165461A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
CN102436890B (zh) 提高纳米晶钕铁硼永磁材料性能的方法
CN111243806B (zh) 一种高性能烧结钕铁硼磁体的制备方法
CN112863848B (zh) 高矫顽力烧结钕铁硼磁体的制备方法
US20160086704A1 (en) Method of manufacturing anisotropic hot-deformed magnet using hot-deformation process and hot-deformed magnet manufactured thereby
WO2021169888A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
JP2018505540A (ja) 非磁性合金を含む熱間加圧変形磁石及びその製造方法
CN103123843A (zh) 一种细晶粒各向异性致密化钕铁硼永磁体的制备方法
CN105321645A (zh) 高矫顽力纳米晶热变形稀土永磁材料及其制备方法
KR20150033528A (ko) 비자성 합금을 포함하는 열간가압변형 자석 및 이의 제조방법
WO2023124688A1 (zh) 钕铁硼磁体及其制备方法和应用
CN113223849A (zh) 一种高性能高丰度稀土铁硼永磁材料及其制备方法
CN112086255A (zh) 一种高矫顽力、耐高温烧结钕铁硼磁体及其制备方法
CN111613403A (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN111599565A (zh) 钕铁硼磁体材料、原料组合物及其制备方法和应用
CN113571281B (zh) 钕铁硼磁体的制备方法及提高晶界扩散效果的方法
CN108878090B (zh) 一种无重稀土的钕铁硼烧结磁体及其制备方法
CN114334416A (zh) 一种固液相分离扩散工艺制备高性能钕铁硼磁体的方法
CN112397301A (zh) 高稀土含量烧结钕铁硼磁体的制备方法
CN111755237B (zh) 一种钕铁硼磁体和调控钕铁硼磁体粗晶层晶粒尺寸及粒径分布的方法
EP4152348B1 (en) Preparation method for heavy rare earth-free high-performance neodymium-iron-boron permanent magnet material
JP2021077883A (ja) 希土類異方性ボンド磁性粉の作製方法
CN113517104B (zh) 主辅相合金钐钴磁体材料、烧结体用材料、其制备方法和应用
CN112216500B (zh) 一种添加钇元素的钕磁铁加工方法
CN114171276A (zh) 一种静磁耦合高强复合钕铁硼磁体及其制备方法
CN114255951A (zh) 高性能烧结钕铁硼磁体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210223

RJ01 Rejection of invention patent application after publication