JP6147505B2 - 希土類永久磁石の製造方法 - Google Patents

希土類永久磁石の製造方法 Download PDF

Info

Publication number
JP6147505B2
JP6147505B2 JP2013000457A JP2013000457A JP6147505B2 JP 6147505 B2 JP6147505 B2 JP 6147505B2 JP 2013000457 A JP2013000457 A JP 2013000457A JP 2013000457 A JP2013000457 A JP 2013000457A JP 6147505 B2 JP6147505 B2 JP 6147505B2
Authority
JP
Japan
Prior art keywords
permanent magnet
organometallic compound
rare earth
magnet
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013000457A
Other languages
English (en)
Other versions
JP2013219321A (ja
Inventor
啓介 太白
啓介 太白
克也 久米
克也 久米
利昭 奥野
利昭 奥野
出光 尾関
出光 尾関
孝志 尾崎
孝志 尾崎
智弘 大牟礼
智弘 大牟礼
山本 貴士
貴士 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2013000457A priority Critical patent/JP6147505B2/ja
Publication of JP2013219321A publication Critical patent/JP2013219321A/ja
Application granted granted Critical
Publication of JP6147505B2 publication Critical patent/JP6147505B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、希土類永久磁石の製造方法に関する。
近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そして、上記永久磁石モータにおいて小型軽量化、高出力化、高効率化を実現するに当たって、永久磁石モータに埋設される永久磁石について、更なる磁気特性の向上が求められている。尚、永久磁石としてはフェライト磁石、Sm−Co系磁石、Nd−Fe−B系磁石、SmFe17系磁石等があるが、特に残留磁束密度の高いNd−Fe−B系磁石が永久磁石モータ用の永久磁石として用いられる。
ここで、永久磁石の製造方法としては、一般的に粉末焼結法が用いられる。ここで、粉末焼結法は、先ず原材料を粗粉砕し、ジェットミル(乾式粉砕)により微粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd−Fe−B系磁石では800℃〜1150℃)で焼結することにより製造する。
特許第3298219号公報(第4頁、第5頁)
一方、Nd−Fe−B等のNd系磁石は、耐熱温度が低いことが問題であった。従って、Nd系磁石を永久磁石モータに用いる場合には、該モータを連続駆動させると磁石の残留磁束密度が徐々に低下することとなっていた。また、不可逆減磁も生じることとなっていた。そこで、Nd系磁石を永久磁石モータに用いる場合には、Nd系磁石の耐熱性を向上させるために、磁気異方性の高いDy(ジスプロシウム)やTb(テルビウム)を添加し、磁石の保磁力を更に向上させることが図られている。
ここで、DyやTbを添加する方法としては、従来より、焼結磁石の表面にDyやTbを付着させ、拡散させる粒界拡散法と、主相と粒界相に対応する粉末を別々に製造し、混合(ドライブレンド)する2合金法がある。前者は、板状や小片には有効だが、大型の磁石では内部の粒界相までDyやTbの拡散距離を伸ばせない欠点がある。後者は、2つの合金をブレンドしプレスして磁石を作製するため、DyやTbが粒内に拡散してしまい、粒界に偏在させることが出来ない欠点がある。
また、DyやTbは希少金属であり、産出地も限られていることから、Ndに対するDyやTbの使用量は少しでも抑えることが望ましい。更に、DyやTbを多量に添加すると、磁石の強さを示す残留磁束密度が低下してしまう課題もある。そこで、微量のDyやTbを効率よく粒界に偏在させることによって、残留磁束密度を低下させることなく磁石の保磁力を大きく向上させる技術が望まれていた。
また、上記DyやTb以外にも永久磁石の磁気特性を向上させる為に、VやNb等の高融点金属元素やAl、Cu、Nd等を磁石粉末に添加することが行われている。そして、これらの金属についても多量を添加するのではなく、微量の金属を効率よく粒界に偏在させることが望まれていた。
本発明は前記従来における問題点を解消するためになされたものであり、有機金属化合物を磁石粉末に添加することにより、有機金属化合物に含まれる微量のDy等の金属を磁石の粒界に対して効率よく偏在配置することが可能となり、添加するDy等の金属量を減少させつつも磁気特性の向上を十分に図ることが可能な希土類永久磁石の製造方法を提供することを目的とする。
また、請求項に係る希土類永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末にCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、を有することを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項に記載の希土類永久磁石の製造方法において、前記有機金属化合物は、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムであることを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項に記載の希土類永久磁石の製造方法において、前記有機金属化合物は、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属アルキル錯体であることを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項又は請求項に記載の希土類永久磁石の製造方法において、前記有機金属化合物は、シクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体であることを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法において、前記有機金属化合物に含まれる金属が、焼結後に永久磁石の粒界に偏在していることを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法において、前記有機金属化合物に含まれる金属が、特にCu、Al、Ag、Ga、Dy、Tb又はNdであることを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法において、前記磁石粉末を成形体に成形する工程では、前記磁石粉末とバインダーとが混合された混合物を生成し、前記混合物をシート状に成形することにより前記成形体としてグリーンシートを作製することを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法において、前記成形体を焼結した後に、焼結された前記成形体である焼結体を、焼結温度よりも低い温度で熱処理することを特徴とする。
また、請求項に係る希土類永久磁石の製造方法は、請求項に記載の希土類永久磁石の製造方法において、前記熱処理は、前記有機金属化合物に含まれる金属と前記磁石原料に含まれる希土類元素との共晶の融点より高い温度で行うことを特徴とする。
更に、請求項10に係る希土類永久磁石の製造方法は、請求項又は請求項に記載の希土類永久磁石の製造方法において、前記熱処理は、前記焼結体を真空雰囲気下において460℃〜600℃で一定時間保持することを特徴とする。
また、請求項に記載の希土類永久磁石の製造方法によれば、有機金属化合物に含まれるCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを磁石の粒界に対して効率よく偏在させることができる。その結果、永久磁石の磁気性能を向上させることが可能となる。また、Cu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。
また、請求項に記載の希土類永久磁石の製造方法によれば、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムを有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。また、熱分解を行わせることによって磁石内に残存する炭素量を軽減することも可能となる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、請求項に記載の希土類永久磁石の製造方法によれば、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属アルキル錯体を有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。
また、請求項に記載の希土類永久磁石の製造方法によれば、シクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体を有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。
また、請求項に記載の希土類永久磁石の製造方法によれば、高融点金属であるV、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたV、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
また、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。
また、CuやAlが焼結後に磁石の粒界に偏在すれば、リッチ相を均一に分散することができ、保磁力の向上が可能となる。
また、Ndが焼結後に磁石の粒界に偏在すれば、Ndリッチ相を均一に分散することができるとともに、製造過程で希土類元素が酸素や炭素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石中にαFeが生成されることを抑制することが可能となる。
また、Ag、Ga、Co、Bi、Zn又はMgが焼結後に磁石の粒界に偏在することによっても、粒界制御又は粒成長抑制による保磁力向上等の永久磁石の磁気性能を向上させる効果が期待できる。
また、請求項に記載の希土類永久磁石の製造方法によれば、有機金属化合物に含まれる金属を、特にCu、Al、Ag、Ga、Dy、Tb又はNdとすることによって、保磁力向上等の永久磁石の磁気性能を向上させる効果が期待できる。
また、請求項に記載の希土類永久磁石の製造方法によれば、磁石粉末とバインダーとを混合し、成形したグリーンシートを焼結した磁石により永久磁石を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。
また、請求項に記載の希土類永久磁石の製造方法によれば、焼結後に焼結体を焼結温度よりも低い温度で更に熱処理するので、有機金属化合物に含まれる金属との共晶によって低融点化した希土類のリッチ相(例えばNdリッチ相)が熱処理の段階で液相となって粒界に浸透し、均一な希土類のリッチ相を粒界に形成することが可能となる。その結果、希土類永久磁石の保磁力を向上させることが可能となる。また、熱処理を低温で行うので、熱処理の段階で粒成長が生じる虞もない。
また、請求項に記載の希土類永久磁石の製造方法によれば、熱処理は有機金属化合物に含まれる金属と磁石原料に含まれる希土類元素との共晶の融点より高い温度で行うので、希土類のリッチ相とともに液相となった合金(例えばNd−Cu合金)を粒界に浸透させることが可能となる。その結果、有機金属化合物の添加量を少量とした場合であっても、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。
また、請求項10に記載の希土類永久磁石の製造方法によれば、熱処理は焼結体を真空雰囲気下において460℃〜600℃で一定時間保持することにより行うので、粒成長を行わせることなく、希土類のリッチ相(例えばNdリッチ相)を液相として粒界に浸透させることが可能となる。
本発明に係る永久磁石を示した全体図である。 本発明に係る永久磁石の粒界付近を拡大して示した模式図である。 本発明に係る永久磁石の粒界付近を拡大して示した模式図である。 本発明に係る永久磁石の製造工程を示した説明図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの成形工程を示した説明図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの加熱工程及び磁場配向工程を示した説明図である。 グリーンシートの面内垂直方向に磁場を配向する例について示した図である。 熱媒体(シリコーンオイル)を用いた加熱装置について説明した図である。 本発明に係る永久磁石の製造工程の内、特にグリーンシートの加圧焼結工程を示した模式図である。 実施例と比較例の各磁石についての各種測定結果を示した図である。
以下、本発明に係る希土類永久磁石及び希土類永久磁石の製造方法について具体化した一実施形態について以下に図面を参照しつつ詳細に説明する。
[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は扇型形状を備えるが、永久磁石1の形状は打ち抜き形状によって変化する。
本発明に係る永久磁石1はNd−Fe−B系の異方性磁石である。また、永久磁石1を形成する各結晶粒子の界面(粒界)には、永久磁石1の磁気性能を高める為のCu、Al、Dy(ジスプロシウム)、Tb(テルビウム)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)、Zr(ジルコニウム)、Ta(タンタル)、Ti(チタン)又はW(タングステン)が偏在する。尚、各成分の含有量はNd:25〜37wt%、Cu、Al、Dy、Tb、Nb、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mgのいずれか(以下、Nb等という):0.01〜5wt%、B:0.8〜2wt%、Fe(電解鉄):60〜75wt%とする。また、磁気性能向上の為、Si等の他元素を少量含んでも良い。
具体的に、本発明に係る永久磁石1は、図2に示すように永久磁石1を構成するNd結晶粒子(主相)2の結晶粒の表面部分(外殻)において、Ndの一部をNb等で置換した層3(以下、金属偏在層3という)を生成することにより、Nb等をNd結晶粒子2の粒界に対して偏在させる。図2は永久磁石1を構成するNd結晶粒子2を拡大して示した図である。尚、金属偏在層3は、非磁性となることが好ましい。
ここで、本発明ではNb等の置換は、後述のように粉砕された磁石粉末を成形する前にNb等を含む有機金属化合物が添加されることにより行われる。具体的には、Nb等を含む有機金属化合物を添加した磁石粉末を焼結する際に、湿式分散によりNd結晶粒子2の粒子表面に均一付着された該有機金属化合物中のNb等が、Nd結晶粒子2の結晶成長領域へと拡散侵入して置換が行われ、図2に示す金属偏在層3を形成する。尚、Nd結晶粒子2は、例えばNdFe14B金属間化合物から構成され、金属偏在層3は例えばNbFeB金属間化合物や(DyNd1−xFe14B金属間化合物等から構成される。また、粒界には金属偏在層3以外に例えばNdリッチ相等も形成される。
また、本発明では、特に後述のようにNb等やNdを含むとともに酸素原子及び窒素原子を含まない有機金属化合物、より具体的には中心金属がNb等やNdである金属錯体又は水素化ジイソブチルアルミニウム(DIBAL)を有機溶媒に添加し、湿式状態で磁石粉末に混合する。それにより、Nb等やNdを含む有機金属化合物を有機溶媒中で分散させ、Nd結晶粒子2の粒子表面にNb等やNdを含む有機金属化合物を均一付着することが可能となる。
ここで、上記金属錯体としては特に配位子がアルキル基である金属アルキル錯体を用いることが望ましい。特にシクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体であることが望ましい。このような金属錯体としては、例えば、トリス(エチルシクロペンタジエニル)Dy(III)、トリス(イソプロピルシクロペンタジエニル)Tb(III)、ビス(シクロペンタジエニル)Mg(II)、ビス(シクロペンタジエニル)ジベンジルNb(IV)、トリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)、ビス(シクロペンタジエニル)ジメチルTi(IV)、ビス(シクロペンタジエニル)ジメチルZr(IV)、ジヒドリドビス(シクロペンタジエニル)Zr(IV)、トリス(テトラメチルシクロペンタジエニル)Nd(III)、トリオクチルAl(III)、ジフェニルZn(II)、トリフェニルBi(III)、Cu(I)t−ブチルアセチリド、メシチルCu(I)、メシチルAg(I)、トリスシクロペンタジエニルGa(III)、Ag(I)t−ブチルアセチリドがある。そして、本発明では特に永久磁石1の磁気性能を向上させる為に、金属錯体の中心金属としてCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを用いる。
また、有機金属化合物が添加された磁石粉末の成形体を適切な焼成条件で焼成すれば、Nb等がNd結晶粒子2内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Nb等を添加したとしても焼結後に粒界のみにNb等を偏在させることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNdFe14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。
また、一般的に、焼結後の各Nd結晶粒子2が密な状態にあると、各Nd結晶粒子2間で交換相互作用が伝搬することが考えられる。その結果、外部から磁場が加わった場合に各結晶粒子の磁化反転が容易に生じ、仮に焼結後の結晶粒子をそれぞれ単磁区構造とすることができたとしても、保磁力は低下する。しかしながら、本発明では、Nd結晶粒子2の表面にコーティングされた非磁性の金属偏在層3によって、Nd結晶粒子2間での交換相互作用を分断され、外部から磁場が加わった場合でも各結晶粒子の磁化反転を妨げる。
また、金属偏在層3を特に高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbを含む層によって構成すれば、Nd結晶粒子2の表面にコーティングされた金属偏在層3は、永久磁石1の焼結時においてはNd結晶粒子2の平均粒径が増加する所謂粒成長を抑制する手段としても機能する。
一方、金属偏在層3を特に磁気異方性の高いDy又はTbを含む層によって構成すれば、逆磁区の生成を抑制し、保磁力を高める(磁化反転を阻止する)手段としても機能する。
また、金属偏在層3を特にCu又はAlを含む層によって構成すれば、焼結後の永久磁石1中におけるNdリッチ相を均一に分散させ、保磁力を高める手段としても機能する。
また、金属偏在層3を他のAg、Ga、Co、Bi、Zn又はMgを含む層によって構成した場合においても、粒界制御又は粒成長抑制による保磁力向上等の永久磁石の磁気性能を向上させる効果が期待できる。
また、Ndを含む有機金属化合物を添加する構成とすれば、焼結後の永久磁石1においてNdリッチ相を均一に分散することが可能となる。また、製造過程で希土類元素が酸素や炭素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石1中にαFeが生成されることを抑制することが可能となる。
また、Nd結晶粒子2の粒径Dは0.2μm〜1.2μm、好ましくは0.3μm程度とすることが望ましい。また、金属偏在層3の厚さdが2nm程度あれば、金属偏在層3による効果(粒成長抑制、交換相互作用の分断、保磁力向上等)を得ることが可能となる。但し、金属偏在層3の厚さdが大きくなりすぎると、磁性を発現しない非磁性成分の含有率が大きくなるので、残留磁束密度が低下することとなる。
尚、Nb等をNd結晶粒子2の粒界に対して偏在させる構成としては、図3に示すようにNd結晶粒子2の粒界に対してNb等からなる粒4を点在させる構成としても良い。図3に示す構成であっても、同様の効果(粒成長抑制、交換相互作用の分断、保磁力向上等)を得ることが可能となる。尚、Nb等がNd結晶粒子2の粒界に対してどのように偏在しているかは、例えばSEM、FIB/SEMシステム、TEM、3次元アトムプローブ法により確認することができる。
また、金属偏在層3はCu化合物、Al化合物、Dy化合物、Tb化合物、Nb化合物、V化合物、Mo化合物、Zr化合物、Ta化合物、Ti化合物、Ag化合物、Ga化合物、Co化合物、Bi化合物、Zn化合物、Mg化合物又はW化合物(以下、Nb等化合物という)のみから構成される層である必要はなく、Nb等化合物とNd化合物との混合体からなる層であっても良い。その場合には、Nb等化合物とNd化合物との混合体からなる層を形成する。その結果、Nd磁石粉末の焼結時の液相焼結を助長することができる。
ここで、永久磁石1は例えば0.05mm〜10mm(例えば1mm)の厚さを備えた薄膜状の永久磁石である。そして、後述のように圧粉成形により成形された成形体や磁石粉末とバインダーとが混合された混合物(スラリーやコンパウンド)からシート状に成形された成形体(グリーンシート)を焼結することによって作製される。
また、本発明では特にグリーンシート成形により永久磁石1を製造する場合において、磁石粉末に混合されるバインダーは、樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。
更に、バインダーに樹脂を用いる場合には、構造中に酸素原子を含まず、且つ解重合性のあるポリマーを用いるのが好ましい。また、後述のようにホットメルト成形によりグリーンシートを成形する場合には、成形されたグリーンシートを加熱して軟化した状態で磁場配向を行う為に、熱可塑性樹脂が用いられる。具体的には以下の一般式(1)に示されるモノマーから選ばれる1種又は2種以上の重合体又は共重合体からなるポリマーが該当する。
Figure 0006147505
(但し、R1及びR2は、水素原子、低級アルキル基、フェニル基又はビニル基を表す)
上記条件に該当するポリマーとしては、例えばイソブチレンの重合体であるポリイソブチレン(PIB)、イソプレンの重合体であるポリイソプレン(イソプレンゴム、IR)、1,3−ブタジエンの重合体であるポリブタジエン(ブタジエンゴム、BR)、スチレンの重合体であるポリスチレン、スチレンとイソプレンの共重合体であるスチレン−イソプレンブロック共重合体(SIS)、イソブチレンとイソプレンの共重合体であるブチルゴム(IIR)、スチレンとブタジエンの共重合体であるスチレン−ブタジエンブロック共重合体(SBS)、2−メチル−1−ペンテンの重合体である2−メチル−1−ペンテン重合樹脂、2−メチル−1−ブテンの重合体である2−メチル−1−ブテン重合樹脂、α−メチルスチレンの重合体であるα−メチルスチレン重合樹脂等がある。尚、α−メチルスチレン重合樹脂は柔軟性を与えるために低分子量のポリイソブチレンを添加することが望ましい。また、バインダーに用いる樹脂としては、酸素原子を含むモノマーの重合体又は共重合体(例えば、ポリブチルメタクリレートやポリメチルメタクリレート等)を少量含む構成としても良い。更に、上記一般式(1)に該当しないモノマーが一部共重合していても良い。その場合であっても、本願発明の目的を達成することが可能である。
尚、バインダーに用いる樹脂としては、磁場配向を適切に行う為に250℃以下で軟化する熱可塑性樹脂、より具体的にはガラス転移点又は融点が250℃以下の熱可塑性樹脂を用いることが望ましい。
一方、バインダーに長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。具体的には炭素数が18以上である長鎖飽和炭化水素を用いるのが好ましい。そして、後述のようにホットメルト成形により成形されたグリーンシートを磁場配向する際には、グリーンシートを長鎖炭化水素の融点以上で加熱して軟化した状態で磁場配向を行う。
また、バインダーに脂肪酸メチルエステルを用いる場合においても同様に、室温で固体、室温以上で液体であるステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。そして、後述のようにホットメルト成形により成形されたグリーンシートを磁場配向する際には、グリーンシートを脂肪酸メチルエステルの融点以上で加熱して軟化した状態で磁場配向を行う。
グリーンシートを作製する際に磁石粉末に混合されるバインダーとして上記条件を満たすバインダーを用いることによって、磁石内に含有する炭素量及び酸素量を低減させることが可能となる。具体的には、焼結後に磁石に残存する炭素量を2000ppm以下、より好ましくは1000ppm以下とする。また、焼結後に磁石に残存する酸素量を5000ppm以下、より好ましくは2000ppm以下とする。
また、バインダーの添加量は、スラリーや加熱溶融したコンパウンドをシート状に成形する際にシートの厚み精度を向上させる為に、磁石粒子間の空隙を適切に充填する量とする。例えば、磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%とする。
[永久磁石の製造方法]
次に、本発明に係る永久磁石1の製造方法について図4を用いて説明する。図4は本実施形態に係る永久磁石1の製造工程を示した説明図である。
先ず、所定分率のNd−Fe−B(例えばNd:32.7wt%、Fe(電解鉄):65.96wt%、B:1.34wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。それによって、粗粉砕磁石粉末10を得る。
次いで、粗粉砕磁石粉末10をビーズミル11による湿式法又はジェットミルを用いた乾式法等によって微粉砕する。例えば、ビーズミル11による湿式法を用いた微粉砕では有機溶媒中で粗粉砕磁石粉末10を所定範囲の粒径(例えば0.1μm〜5.0μm)に微粉砕するとともに有機溶媒中に磁石粉末を分散させる。また、粉砕に用いる溶媒は有機溶媒であるが、溶媒の種類に特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、酢酸エチル等のエステル類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等が使用できる。尚、好ましくは、溶媒中に酸素原子を含まない炭化水素系溶媒が用いられる。
一方、ジェットミルによる乾式法を用いた微粉砕では、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミルにより微粉砕し、所定範囲の粒径(例えば0.7μm〜5.0μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。
次に、湿式粉砕後の磁石粉末が含まれる有機溶媒に対して有機金属化合物を添加し、混合することにより、磁石粉末の粒子表面に有機金属化合物を付着させる。尚、溶解させる有機金属化合物としては、前記したようにNb等やNdを含むとともに酸素原子及び窒素原子を含まない有機金属化合物、より具体的には中心金属がNb等やNdである金属錯体(例えば、トリス(エチルシクロペンタジエニル)Dy(III)、トリス(イソプロピルシクロペンタジエニル)Tb(III)、ビス(シクロペンタジエニル)Mg(II)、ビス(シクロペンタジエニル)ジベンジルNb(IV)、トリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)、ビス(シクロペンタジエニル)ジメチルTi(IV)、ビス(シクロペンタジエニル)ジメチルZr(IV)、ジヒドリドビス(シクロペンタジエニル)Zr(IV)、トリス(テトラメチルシクロペンタジエニル)Nd(III)、トリオクチルAl(III)、ジフェニルZn(II)、トリフェニルBi(III)、Cu(I)t−ブチルアセチリド、メシチルCu(I)、メシチルAg(I)、トリスシクロペンタジエニルGa(III)、Ag(I)t−ブチルアセチリド等)又はDIBALを用いることが望ましい。また、溶解させる有機金属化合物の量は特に制限されないが、焼結後の磁石に対するNb等の含有量が0.001wt%〜10wt%、好ましくは0.01wt%〜5wt%となる量とするのが好ましい。尚、有機金属化合物の添加は粉砕工程の前に有機溶媒に対して添加し、粉砕と混合を同時に行う構成としても良い。また、ジェットミルによる乾式法を用いる場合には、粉砕後の磁石粉末と有機金属化合物をそれぞれ有機溶媒に添加して混合することにより、磁石粉末の粒子表面に有機金属化合物を付着させる。その後、湿式粉砕後の有機溶媒に含まれる磁石粉末を真空乾燥などで乾燥させ、乾燥した磁石粉末を取り出す。
次に、粒子表面に有機金属化合物が付着された磁石粉末を所望形状に成型する。尚、磁石粉末の成形には、例えば金型を用いて所望の形状へと成形する圧粉成形や、磁石粉末を一旦シート状に成形した後に所望の形状へと打ち抜くグリーンシート成形がある。更に、圧粉成形には、乾燥した微粉末をキャビティに充填する乾式法と、磁石粉末を含むスラリーを乾燥させずにキャビティに充填する湿式法がある。一方、グリーンシート成形は、例えば磁石粉末とバインダーとが混合したコンパウンドをシート状に成形するホットメルト塗工や、磁石粉末とバインダーと有機溶媒とを含むスラリーを基材上に塗工することによりシート状に成形するスラリー塗工等による成形が有る。
以下では、特にホットメルト塗工を用いたグリーンシート成形について説明する。
先ず、磁石粉末にバインダーを混合することにより、磁石粉末とバインダーからなる粉末状の混合物(コンパウンド)12を作製する。ここで、バインダーとしては、上述したように樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。例えば、樹脂を用いる場合には構造中に酸素原子を含まず、且つ解重合性のあるポリマーからなる熱可塑性樹脂を用い、一方、長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。また、脂肪酸メチルエステルを用いる場合には、ステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。また、バインダーの添加量は、上述したように添加後のコンパウンド12における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%となる量とする。尚、バインダーの添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、磁石粉末とバインダーとの混合は、例えば有機溶媒に磁石粉末とバインダーとをそれぞれ投入し、攪拌機で攪拌することにより行う。そして、攪拌後に磁石粉末とバインダーとを含む有機溶媒を加熱して有機溶媒を気化させることにより、コンパウンド12を抽出する。また、磁石粉末とバインダーとの混合は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行うことが望ましい。また、特に磁石粉末を湿式法で粉砕した場合においては、粉砕に用いた有機溶媒から磁石粉末を取り出すことなくバインダーを有機溶媒中に添加して混練し、その後に有機溶媒を揮発させて後述のコンパウンド12を得る構成としても良い。
続いて、コンパウンド12をシート状に成形することによりグリーンシートを作成する。特に、ホットメルト塗工では、コンパウンド12を加熱することによりコンパウンド12を溶融し、流体状にしてからセパレータ等の支持基材13上に塗工する。その後、放熱して凝固させることにより、支持基材13上に長尺シート状のグリーンシート14を形成する。尚、コンパウンド12を加熱溶融する際の温度は、用いるバインダーの種類や量によって異なるが50〜300℃とする。但し、用いるバインダーの融点よりも高い温度とする必要がある。尚、スラリー塗工を用いる場合には、トルエン等の有機溶媒中に磁石粉末とバインダーとを分散させ、スラリーをセパレータ等の支持基材13上に塗工する。その後、乾燥して有機溶媒を揮発させることにより、支持基材13上に長尺シート状のグリーンシート14を形成する。
ここで、溶融したコンパウンド12の塗工方式は、スロットダイ方式やカレンダーロール方式等の層厚制御性に優れる方式を用いることが好ましい。特に、高い厚み精度を実現する為には、特に層厚制御性に優れた(即ち、基材の表面に高精度の厚さの層を塗工できる方式)であるダイ方式やコンマ塗工方式を用いることが望ましい。例えば、スロットダイ方式では、加熱して流体状にしたコンパウンド12をギアポンプにより押し出してダイに挿入することにより塗工を行う。また、カレンダーロール方式では、加熱した2本ロールのギャップにコンパウンド12を一定量仕込み、ロールを回転させつつ支持基材13上にロールの熱で溶融したコンパウンド12を塗工する。また、支持基材13としては、例えばシリコーン処理ポリエステルフィルムを用いる。更に、消泡剤を用いたり、加熱真空脱泡を行うこと等によって展開層中に気泡が残らないよう充分に脱泡処理することが好ましい。また、支持基材13上に塗工するのではなく、押出成型によって溶融したコンパウンド12をシート状に成型するとともに支持基材13上に押し出すことによって、支持基材13上にグリーンシート14を成形する構成としても良い。
以下に、図5を用いて特にスロットダイ方式によるグリーンシート14の形成工程についてより詳細に説明する。図5はスロットダイ方式によるグリーンシート14の形成工程を示した模式図である。
図5に示すようにスロットダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20はギアポンプ(図示せず)等によって構成される塗布液の供給系へと接続されており、キャビティ19には供給口20を介して、計量された流体状のコンパウンド12が定量ポンプ等により供給される。更に、キャビティ19に供給された流体状のコンパウンド12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材13はコーティングロール22の回転に伴って予め設定された速度で連続搬送される。その結果、吐出した流体状のコンパウンド12が支持基材13に対して所定厚さで塗布され、その後、放熱して凝固することにより支持基材13上に長尺シート状のグリーンシート14が成形される。
また、スロットダイ方式によるグリーンシート14の形成工程では、塗工後のグリーンシート14のシート厚みを実測し、実測値に基づいてダイ15と支持基材13間のギャップDをフィードバック制御することが望ましい。また、ダイ15に供給する流体状のコンパウンド12の量の変動は極力低下させ(例えば±0.1%以下の変動に抑える)、更に塗工速度の変動についても極力低下させる(例えば±0.1%以下の変動に抑える)ことが望ましい。それによって、グリーンシート14の厚み精度を更に向上させることが可能である。尚、形成されるグリーンシート14の厚み精度は、設計値(例えば1mm)に対して±10%以内、より好ましくは±3%以内、更に好ましくは±1%以内とする。尚、他方のカレンダーロール方式では、カレンダー条件を同様に実測値に基づいて制御することで、支持基材13へのコンパウンド12の転写膜厚を制御することが可能である。
尚、グリーンシート14の設定厚みは、0.05mm〜20mmの範囲で設定することが望ましい。厚みを0.05mmより薄くすると、多層積層しなければならないので生産性が低下することとなる。
次に、上述したホットメルト塗工によって支持基材13上に形成されたグリーンシート14の磁場配向を行う。具体的には、先ず支持基材13とともに連続搬送されるグリーンシート14を加熱することによりグリーンシート14を軟化させる。尚、グリーンシート14を加熱する際の温度及び時間は、用いるバインダーの種類や量によって異なるが、例えば100〜250℃で0.1〜60分とする。但し、グリーンシート14を軟化させる為に、用いるバインダーのガラス転移点又は融点以上の温度とする必要がある。また、グリーンシート14を加熱する加熱方式としては、例えばホットプレートによる加熱方式や熱媒体(シリコーンオイル)を熱源に用いた加熱方式が有る。次に、加熱により軟化したグリーンシート14の面内方向且つ長さ方向に対して磁場を印加することにより磁場配向を行う。印加する磁場の強さは5000[Oe]〜150000[Oe]、好ましくは、10000[Oe]〜120000[Oe]とする。その結果、グリーンシート14に含まれる磁石結晶のC軸(磁化容易軸)が一方向に配向される。尚、磁場を印加する方向としてはグリーンシート14の面内方向且つ幅方向に対して磁場を印加することとしても良い。また、複数枚のグリーンシート14に対して同時に磁場を配向させる構成としても良い。
更に、グリーンシート14に磁場を印加する際には、加熱工程と同時に磁場を印加する工程を行う構成としても良いし、加熱工程を行った後であってグリーンシートが凝固する前に磁場を印加する工程を行うこととしても良い。また、ホットメルト塗工により塗工されたグリーンシート14が凝固する前に磁場配向する構成としても良い。その場合には、加熱工程は不要となる。
次に、図6を用いてグリーンシート14の加熱工程及び磁場配向工程についてより詳細に説明する。図6はグリーンシート14の加熱工程及び磁場配向工程を示した模式図である。尚、図6に示す例では、加熱工程と同時に磁場配向工程を行う例について説明する。
図6に示すように、上述したスロットダイ方式により塗工されたグリーンシート14に対する加熱及び磁場配向は、ロールによって連続搬送された状態の長尺シート状のグリーンシート14に対して行う。即ち、加熱及び磁場配向を行う為の装置を塗工装置(ダイ等)の下流側に配置し、上述した塗工工程と連続した工程により行う。
具体的には、ダイ15やコーティングロール22の下流側において、搬送される支持基材13及びグリーンシート14がソレノイド25内を通過するようにソレノイド25を配置する。更に、ホットプレート26をソレノイド25内においてグリーンシート14に対して上下一対に配置する。そして、上下一対に配置されたホットプレート26によりグリーンシート14を加熱するとともに、ソレノイド25に電流を流すことによって、長尺シート状のグリーンシート14の面内方向(即ち、グリーンシート14のシート面に平行な方向)で且つ長さ方向に磁場を生じさせる。それによって、連続搬送されるグリーンシート14を加熱により軟化させるとともに、軟化したグリーンシート14の面内方向且つ長さ方向(図6の矢印27方向)に対して磁場を印加し、グリーンシート14に対して適切に均一な磁場を配向させることが可能となる。特に、磁場を印加する方向を面内方向とすることによって、グリーンシート14の表面が逆立つことを防止できる。
また、磁場配向した後に行うグリーンシート14の放熱及び凝固は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
尚、磁場配向をグリーンシート14の面内方向且つ幅方向に対して行う場合には、ソレノイド25の代わりに搬送されるグリーンシート14の左右に一対の磁場コイルを配置するように構成する。そして、各磁場コイルに電流を流すことによって、長尺シート状のグリーンシート14の面内方向で且つ幅方向に磁場を生じさせることが可能となる。
また、磁場配向をグリーンシート14の面内垂直方向とすることも可能である。磁場配向をグリーンシート14の面内垂直方向に対して行う場合には、例えばポールピース等を用いた磁場印加装置により行う。具体的には、図7に示すようにポールピース等を用いた磁場印加装置30は、中心軸が同一になるように平行配置された2つのリング状のコイル部31、32と、コイル部31、32のリング孔にそれぞれ配置された2つの略円柱状のポールピース33、34とを有し、搬送されるグリーンシート14に対して所定間隔離間されて配置される。そして、コイル部31、32に電流を流すことにより、グリーンシート14の面内垂直方向に磁場を生成し、グリーンシート14の磁場配向を行う。尚、磁場配向方向をグリーンシート14の面内垂直方向とする場合には、図7に示すようにグリーンシート14に対して支持基材13が積層された反対側の面にもフィルム35を積層することが好ましい。それによって、グリーンシート14の表面の逆立ちを防止することが可能となる。
また、上述したホットプレート26による加熱方式の代わりに熱媒体(シリコーンオイル)を熱源とした加熱方式を用いても良い。ここで、図8は熱媒体を用いた加熱装置37の一例を示した図である。
図8に示すように、加熱装置37は発熱体となる平板部材38の内部に略U字型の空洞39を形成し、空洞39内に所定温度(例えば100〜300℃)に加熱された熱媒体であるシリコーンオイルを循環させる構成とする。そして、図6に示すホットプレート26の代わりに、加熱装置37をソレノイド25内においてグリーンシート14に対して上下一対に配置する。それによって、連続搬送されるグリーンシート14を、熱媒体により発熱された平板部材38を介して加熱し、軟化させる。尚、平板部材38はグリーンシート14に対して当接させても良いし、所定間隔離間させて配置しても良い。そして、軟化したグリーンシート14の周囲に配置されたソレノイド25によって、グリーンシート14の面内方向且つ長さ方向(図6の矢印27方向)に対して磁場が印加され、グリーンシート14に対して適切に均一な磁場を配向させることが可能となる。尚、図8に示すような熱媒体を用いた加熱装置37では、一般的なホットプレート26のように内部に電熱線を有さないので、磁場中に配置した場合であってもローレンツ力によって電熱線が振動したり切断される虞が無く、適切にグリーンシート14の加熱を行うことが可能となる。また、電流による制御を行う場合には、電源のON又はOFFで電熱線が振動することにより疲労破壊の原因となる問題が有るが、熱媒体を熱源とした加熱装置37を用いることによって、そのような問題を解消することが可能となる。
ここで、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等によりスラリー等の流動性の高い液状物によってグリーンシート14を成形した場合には、磁場の勾配が生じているところにグリーンシート14が搬入されると、磁場が強い方にグリーンシート14に含まれる磁石粉末が引き寄せられることとなり、グリーンシート14を形成するスラリーの液寄り、即ち、グリーンシート14の厚みの偏りが生じる虞がある。それに対して、本発明のようにコンパウンド12をホットメルト成形によりグリーンシート14に成形する場合には、室温付近での粘度は数万〜数十万Pa・sに達し、磁場勾配通過時の磁性粉末の寄りが生じることが無い。更に、均一磁場中に搬送され、加熱されることでバインダーの粘度低下が生じ、均一磁場中の回転トルクのみで、一様なC軸配向が可能となる。
また、ホットメルト成形を用いずに一般的なスロットダイ方式やドクターブレード方式等により有機溶媒を含むスラリー等の流動性の高い液状物によってグリーンシート14を成形した場合には、厚さ1mmを越えるシートを作成しようとすると乾燥時においてスラリー等に含まれる有機溶媒が気化することによる発泡が課題となる。更に、発泡を抑制する為に乾燥時間を長時間化すれば、磁石粉末の沈降が生じ、それに伴って重力方向に対する磁石粉末の密度分布の偏りが生じ、焼成後の反りの原因となる。従って、スラリーからの成形では、厚みの上限値が実質上規制される為、1mm以下の厚みでグリーンシートを成形し、その後に積層する必要がある。しかし、その場合にはバインダー同士の絡まり合いが乏しくなり、その後の脱バインダー工程(仮焼処理)で層間剥離を生じ、それがC軸(磁化容易軸)配向性の低下、即ち残留磁束密度(Br)の低下原因となる。それに対して、本発明のようにコンパウンド12をホットメルト成形によりグリーンシート14に成形する場合には、有機溶媒を含まないので、厚さ1mmを越えるシートを作成した場合でも上述したような発泡の懸念が解消する。そして、バインダーが十分に絡まり合った状態にあるので、脱バインダー工程での層間剥離が生じる虞が無い。
また、複数枚のグリーンシート14に対して同時に磁場を印加させる場合には、例えばグリーンシート14を複数枚(例えば6枚)積層した状態で連続搬送し、積層したグリーンシート14がソレノイド25内を通過するように構成する。それによって生産性を向上させることが可能となる。
その後、磁場配向を行ったグリーンシート14を所望の製品形状(例えば、図1に示す扇形形状)に打ち抜きし、成形体40を成形する。
続いて、成形された成形体40を大気圧、又は大気圧より高い圧力や低い圧力(例えば、1.0Paや1.0MPa)に加圧した非酸化性雰囲気(特に本発明では水素雰囲気又は水素と不活性ガスの混合ガス雰囲気)において有機金属化合物の熱分解温度且つバインダー分解温度で数時間〜数十時間(例えば5時間)保持することにより仮焼処理を行う。水素雰囲気下で行う場合には、例えば仮焼中の水素の供給量は5L/minとする。仮焼処理を行うことによって、バインダー等の有機化合物を解重合反応等によりモノマーに分解し飛散させて除去することが可能となる。また、有機金属化合物を熱分解し、金属元素を粒界に残存させつつ、炭素については除去することが可能となる。即ち、成形体40中の炭素量を低減させる所謂脱カーボンが行われることとなる。また、仮焼処理は、成形体40中の炭素量が2000ppm以下、より好ましくは1000ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。また、上述した仮焼処理を行う際の加圧条件を大気圧より高い圧力で行う場合には、15MPa以下とすることが望ましい。
尚、バインダー分解温度は、バインダー分解生成物および分解残渣の分析結果に基づき決定する。具体的にはバインダーの分解生成物を補集し、モノマー以外の分解生成物が生成せず、かつ残渣の分析においても残留するバインダー成分の副反応による生成物が検出されない温度範囲が選ばれる。バインダーの種類により異なるが200℃〜900℃、より好ましくは400℃〜600℃(例えば450℃)とする。また、有機金属化合物の熱分解温度については、添加する有機金属化合物の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機金属化合物の熱分解についても行うことが可能となる。尚、磁石粉末にバインダーを混合せずに成形(例えば圧粉成形)した場合には、有機金属化合物の熱分解温度で仮焼処理を行う。
また、特に磁石原料を有機溶媒中で湿式粉砕により粉砕した場合には、有機溶媒を構成する有機化合物の熱分解温度且つバインダー分解温度で仮焼処理を行う。それによって、残留した有機溶媒についても除去することが可能となる。有機化合物の熱分解温度については、用いる有機溶媒の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機化合物の熱分解についても行うことが可能となる。
また、仮焼処理によって仮焼された成形体40を続いて真空雰囲気で保持することにより脱水素処理を行っても良い。脱水素処理では、仮焼処理によって生成された成形体40中のNdH(活性度大)を、NdH(活性度大)→NdH(活性度小)へと段階的に変化させることによって、仮焼処理により活性化された成形体40の活性度を低下させる。それによって、仮焼処理によって仮焼された成形体40をその後に大気中へと移動させた場合であっても、Ndが酸素と結び付くことを防止し、残留磁束密度や保磁力を低下させることが無い。また、磁石結晶の構造をNdH等からNdFe14B構造へと戻す効果も期待できる。
続いて、仮焼処理によって仮焼された成形体40を焼結する焼結処理を行う。尚、成形体40の焼結方法としては、一般的な真空焼結以外に成形体40を加圧した状態で焼結する加圧焼結等も用いることが可能である。例えば、真空焼結で焼結を行う場合には、所定の昇温速度で800℃〜1080℃程度の焼成温度まで昇温し、0.1〜2時間程度保持する。この間は真空焼成となるが真空度としては5Pa以下、好ましくは10−2Pa以下とすることが好ましい。その後冷却し、再び300℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
一方、加圧焼結としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等がある。但し、焼結時の磁石粒子の粒成長を抑制するとともに焼結後の磁石に生じる反りを抑える為に、一軸方向に加圧する一軸加圧焼結であって且つ通電焼結により焼結するSPS焼結を用いることが好ましい。尚、SPS焼結で焼結を行う場合には、加圧値を例えば0.01MPa〜100MPaとし、数Pa以下の真空雰囲気で940℃まで10℃/分で上昇させ、その後5分保持することが好ましい。その後冷却し、再び300℃〜1000℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
以下に、図9を用いてSPS焼結による成形体40の加圧焼結工程についてより詳細に説明する。図9はSPS焼結による成形体40の加圧焼結工程を示した模式図である。
図9に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型41に成形体40を設置する。尚、上述した仮焼処理についても成形体40を焼結型41に設置した状態で行っても良い。そして、焼結型41に設置された成形体40を真空チャンバー42内に保持し、同じくグラファイト製の上部パンチ43と下部パンチ44をセットする。そして、上部パンチ43に接続された上部パンチ電極45と下部パンチ44に接続された下部パンチ電極46とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ43及び下部パンチ44に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型41内に設置された成形体40は、加圧されつつ焼結が行われる。また、生産性を向上させる為に、複数(例えば10個)の成形体に対して同時にSPS焼結を行うことが好ましい。尚、複数の成形体40に対して同時にSPS焼結を行う場合には、一の空間に複数の成形体40を配置しても良いし、成形体40毎に異なる空間に配置するようにしても良い。尚、成形体40毎に異なる空間に配置する場合には、空間毎に成形体40を加圧する上部パンチ43や下部パンチ44は各空間の間で一体とする(即ち一体となっている一の上部パンチ43及び下部パンチ44を駆動させることにより各空間にある複数の成形体を同時に加圧できる)ように構成する。
尚、具体的な焼結条件を以下に示す。
加圧値:1MPa
焼結温度:940℃まで10℃/分で上昇させ、5分保持
雰囲気:数Pa以下の真空雰囲気
また、上記焼結処理によって焼結した成形体40(以下焼結体という)に対して、更に熱処理を行う構成としても良い。尚、熱処理は、焼結体を一旦放熱した後に真空雰囲気下で焼結温度よりも低い温度(460℃〜600℃)で一定時間(例えば1時間)加熱することにより行う。
ここで、上記焼結処理後の冷却段階で、焼結体において有機金属化合物に含まれるNb等とNdは共晶を形成する。そして、特に有機金属化合物に含まれるNb等が特定の金属(例えば、Cu、Al、Ag、Ga(以下Cu等という))である場合、共晶はNd単体よりも融点が低くなる。従って、焼結後に有機金属化合物に含まれるCu等とNdとの共晶の融点より高い温度で熱処理を行うこととすれば、有機金属化合物に含まれるCu等との共晶によって低融点化したNdリッチ相が、熱処理の段階で液相となって粒界に浸透し、均一なNdリッチ相を粒界に形成することが可能となる。その結果、永久磁石1の保磁力を向上させることが可能となる。また、熱処理を低温で行うので、熱処理の段階で粒成長が生じる虞もない。
更に、熱処理を有機金属化合物に含まれるCu等とNdとの共晶の融点より高い温度で行うこととすれば、Ndリッチ相とともに液相となったCu等からなる合金(例えばNd−Cu合金)を粒界に浸透させることが可能となる。その結果、有機金属化合物の添加量を少量(例えば0.1wt%)とした場合であっても、有機金属化合物に含まれるCu等を粒界に対して適切に偏在させることが可能となる。
以下に、本発明の実施例について比較例と比較しつつ説明する。
(実施例1)
実施例1のネオジム磁石粉末の合金組成は、wt%でNd/Fe/B=32.7/65.96/1.34とする。また、粉砕したネオジム磁石粉末に有機金属化合物として水素化ジイソブチルアルミニウム(III)(DIBAL)を10wt%添加した。また、仮焼処理は、成形前の磁石粉末を大気圧(尚、本実施例では特に製造時の大気圧が標準大気圧(約0.1MPa)であると仮定する)の水素雰囲気下において450℃で5時間保持することにより行った。そして、仮焼中の水素の供給量は5L/minとする。また、成形された仮焼体の焼結は真空焼結により行った。尚、他の工程は上述した[永久磁石の製造方法]と同様の工程とする。
(実施例2)
有機金属化合物としてトリス(エチルシクロペンタジエニル)Dy(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例3)
有機金属化合物としてトリス(イソプロピルシクロペンタジエニル)Tb(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例4)
有機金属化合物としてビス(シクロペンタジエニル)Mg(II)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例5)
有機金属化合物としてビス(シクロペンタジエニル)ジベンジルNb(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例6)
有機金属化合物としてトリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例7)
有機金属化合物としてビス(シクロペンタジエニル)ジメチルTi(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例8)
有機金属化合物としてビス(シクロペンタジエニル)ジメチルZr(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例9)
有機金属化合物としてジヒドリドビス(シクロペンタジエニル)Zr(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例10)
有機金属化合物としてトリス(テトラメチルシクロペンタジエニル)Nd(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例11)
有機金属化合物としてトリオクチルAl(III)を13wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例12)
有機金属化合物としてジフェニルZn(II)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例13)
有機金属化合物としてトリフェニルBi(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
(実施例14)
有機金属化合物としてCu(I)t−ブチルアセチリドを0.3wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(実施例15)
有機金属化合物としてメシチルCu(I)を0.3wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(実施例16)
有機金属化合物としてメシチルAg(I)を0.2wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(実施例17)
有機金属化合物として水素化ジイソブチルアルミニウム(III)(DIBAL)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において550℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(実施例18)
有機金属化合物としてトリスシクロペンタジエニルGa(III)を0.4wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において550℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(実施例19)
有機金属化合物としてAg(I)t−ブチルアセチリドを0.2wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(比較例1)
添加する有機金属化合物を水素化ジイソブチルアルミニウム(III)(DIBAL)とし、仮焼処理を行わずに焼結した。他の条件は実施例1と同様である。
(比較例2)
有機金属化合物としてトリス(シクロペンタジエニル)Nd(III)を2.4wt%添加し、仮焼処理を行わずに焼結した。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(比較例3)
有機金属化合物としてトリス(シクロペンタジエニル)Nd(III)を4.8wt%添加し、仮焼処理を行わずに焼結した。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
(実施例の元素分析及びSEMの検討)
実施例1〜19の永久磁石についてXMAによる表面分析、SEM−WDXによる組織観察及び元素分析を行った。その結果、実施例1〜9、11〜19の各永久磁石では、粒界相から酸化物又は非酸化物としてのAl、Dy、Tb、Mg、Nb、Ti、Zr、Zn、Bi、Cu、Ag、Ga等が検出された。即ち、実施例1〜9、11〜19の永久磁石では、磁石の粒界にAl、Dy、Tb、Mg、Nb、Ti、Zr、Zn、Bi、Cu、Ag、Ga等が偏在化していることが分かった。また、実施例10の永久磁石について、焼結後のSEM写真を参照すると、Ndを粒界に偏在配置させることによってNdリッチ相について均一に分散され、また、αFe相がほとんど形成されていないことが分かった。
(実施例の示差走査熱量測定の結果)
実施例14の永久磁石について、DSC(示差走査熱量測定)による分析を行った。その結果、NdとCuの共晶の存在を示唆する吸熱ピーク(445℃)が確認できた。即ち、実施例14の永久磁石では、Nd単体より低融点であるCuとNdの共晶が形成されており、焼結後に行った550℃という低温の熱処理によってNdリッチ層を液相とすることが可能であることが分かる。その結果、熱処理の段階で液相となったNdリッチ層を粒界に浸透させ、均一なNdリッチ相を粒界に形成することが可能となる。
(実施例と比較例の磁石特性の比較検討)
実施例1〜19及び比較例1〜3の各磁石内に残存する炭素濃度[ppm] 及び酸素濃度[ppm]を測定した。また、実施例1〜19及び比較例1〜3の各磁石について有機金属化合物を添加せずに作成した永久磁石(以下、基準試料という)と比較した保磁力[kOe]の増減を測定した。図10に測定結果の一覧を示す。
また、実施例1〜19と比較例1〜3の焼結後の各永久磁石の炭素量を比較した。その結果、仮焼処理を行った場合は、仮焼処理を行わない場合と比較して、永久磁石中の炭素量を大きく低減させることができることが分かった。即ち、仮焼処理によって有機金属化合物やバインダーを熱分解させて、永久磁石中の炭素量を低減させる所謂脱カーボンを行うことが可能となることが分かった。その結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。
ここで、実施例1〜19と比較例1〜3の各永久磁石の保磁力を比較すると、同一の有機金属化合物を添加しているのにもかかわらず、仮焼処理を行って製造した永久磁石では、基準試料よりも高い保磁力が測定された。一方、仮焼処理を行わずに製造した永久磁石では、基準試料よりも低い保磁力が測定された。即ち、仮焼処理を行った場合には、Al、Dy、Tb、Mg、Nb、Ti、Zr、Nd、Zn、Bi、Cu、Ag、Ga等を粒界に偏在配置することによる保磁力の向上を図りつつ、永久磁石中の炭素量を低減させることによって保磁力が低下することを防止することが可能となることが分かった。一方、仮焼処理を行わない場合には、Al、Dy、Tb、Mg、Nb、Ti、Zr、Nd、Zn、Bi、Cu、Ag、Ga等を粒界に偏在配置することによる保磁力の向上よりも、永久磁石中の炭素量の増加による弊害が大きく、逆に保磁力が低下することが分かった。
また、焼結後に熱処理を行った実施例14〜19では、有機金属化合物の添加量が少量であるにもかかわらず、熱処理を行わなかった他の実施例と同等以上の保磁力の向上が確認できる。即ち、実施例14〜19では、熱処理の段階で液相となった合金(例えばNd−Cu合金)が粒界に浸透するので、有機金属化合物が少量であっても、有機金属化合物に含まれるAl、Dy、Tb、Mg、Nb、Ti、Zr、Nd、Zn、Bi、Cu、Ag、Ga等が粒界に対して適切に偏在していることが分かる。
以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、粉砕されたネオジム磁石の微粉末に対して、Cu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加し、ネオジム磁石の粒子表面に対して均一に有機金属化合物を付着させる。その後、成形した成形体を水素雰囲気下において200℃〜900℃で数時間〜数十時間保持することにより仮焼処理を行う。その後、真空焼結や加圧焼結を行うことによって永久磁石1を製造する。それにより、従来に比べてNb等やNdの添加する量を少量としたとしても、有機金属化合物に含まれるNb等やNdを磁石の粒界に対して効率よく偏在させることができる。その結果、永久磁石の磁気性能を向上させることが可能となる。また、Nb等やNdの添加量を従来に比べて少量にできるので、残留磁束密度の低下を抑制することができる。
また、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムを有機金属化合物として用いるので、その後の仮焼工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。また、熱分解を行わせることによって磁石内に残存する炭素量を軽減することも可能となる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属アルキル錯体、より具体的には、シクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体を有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解をより容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。
また、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
また、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。
また、CuやAlが焼結後に磁石の粒界に偏在すれば、リッチ相を均一に分散することができ、保磁力の向上が可能となる。
また、Ndが焼結後に磁石の粒界に偏在すれば、Ndリッチ相を均一に分散することができるとともに、製造過程で希土類元素が酸素や炭素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石中にαFeが生成されることを抑制することが可能となる。
また、Ag、Ga、Co、Bi、Zn又はMgが焼結後に磁石の粒界に偏在することによっても、粒界制御又は粒成長抑制による保磁力向上等の永久磁石の磁気性能を向上させる効果が期待できる。
また、磁石粉末とバインダーとを混合し、成形したグリーンシート14を焼結した磁石により永久磁石1を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。
尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
例えば、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件、熱処理条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。また、有機溶媒に磁石粉末やバインダーを混合したスラリーを生成し、その後に生成したスラリーをシート状に成形することによってグリーンシートを作成することとしても良い。その場合にはバインダーとして熱可塑性樹脂以外を用いることも可能である。また、仮焼を行う際の雰囲気は非酸化性雰囲気であれば水素雰囲気以外(例えば窒素雰囲気、He雰囲気等、Ar雰囲気等)で行っても良い。
また、上記実施例では、バインダーとして樹脂や長鎖炭化水素や脂肪酸メチルエステルを用いることとしているが、他の材料を用いても良い。
また、永久磁石はグリーンシート成形以外の成形(例えば圧粉成形)により成形した成形体を仮焼及び焼結することにより製造しても良い。その場合であっても、バインダー以外の成形体中に残存するC含有物(添加した有機金属化合物や、湿式粉砕を行うことにより残存した有機化合物等)に対して、仮焼による脱炭効果が期待できる。更に、上記実施例では、磁石粉末を成形した後に水素雰囲気又は水素と不活性ガスの混合ガス雰囲気において仮焼を行っているが、成形前の磁石粉末に対して仮焼処理を行い、仮焼体である磁石粉末を成形体に成形し、その後に焼結を行うことによって永久磁石を製造することとしても良い。このような構成とすれば、粉末状の磁石粒子に対して仮焼を行うので、成形後の磁石粒子に対して仮焼を行う場合と比較して、仮焼対象となる磁石の表面積を大きくすることができる。即ち、仮焼体中の炭素量をより確実に低減させることが可能となる。但し、グリーンシート成形による成形を行う場合には、バインダーを仮焼処理で熱分解させる為に、成形後に仮焼処理を行うことが望ましい。
また、仮焼処理は省略しても良い。その場合であっても焼結中に有機金属化合物とバインダーが熱分解し、一定の脱炭効果を期待することができる。
また、上記実施例では、グリーンシート14の加熱工程と磁場配向工程とを同時に行うこととしているが、加熱工程を行った後であってグリーンシート14が凝固する前に磁場配向工程を行っても良い。また、塗工されたグリーンシート14が凝固する前(即ち、加熱工程を行わなくてもグリーンシート14が既に軟化された状態)に磁場配向を行う場合には、加熱工程を省略しても良い。
また、上記実施例では、スロットダイ方式による塗工工程と加熱工程と磁場配向工程とを連続した一連の工程により行っているが、連続した工程により行わないように構成しても良い。また、塗工工程までの第1工程と、加熱工程以降の第2工程とに分けて、夫々連続した工程により行うこととしても良い。その場合には、塗工されたグリーンシート14を所定長さに切断し、静止した状態のグリーンシート14に対して加熱及び磁場印加を行うことにより磁場配向を行うように構成することが可能である。
また、上記実施例では磁石粉末に添加する有機金属化合物としてトリス(エチルシクロペンタジエニル)Dy(III)、トリス(イソプロピルシクロペンタジエニル)Tb(III)、ビス(シクロペンタジエニル)Mg(II)、ビス(シクロペンタジエニル)ジベンジルNb(IV)、トリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)、ビス(シクロペンタジエニル)ジメチルTi(IV)、ビス(シクロペンタジエニル)ジメチルZr(IV)、ジヒドリドビス(シクロペンタジエニル)Zr(IV)、トリス(テトラメチルシクロペンタジエニル)Nd(III)、トリオクチルAl(III)、ジフェニルZn(II)、トリフェニルBi(III)、Cu(I)t−ブチルアセチリド、メシチルCu(I)、メシチルAg(I)、トリスシクロペンタジエニルGa(III)、Ag(I)t−ブチルアセチリド、DIBALを用いているが、Cu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物であれば、他の有機金属化合物であっても良い。例えば、金属アルキル錯体以外の金属錯体を用いても良い。また、有機金属化合物は上記金属元素以外の元素(例えばSi等)を含む構成としても良い。
また、本発明ではNd−Fe−B系磁石を例に挙げて説明したが、他の磁石(例えばコバルト磁石、アルニコ磁石、フェライト磁石等)を用いても良い。また、磁石の合金組成は本発明ではNd成分を量論組成より多くしているが、量論組成としても良い。また、異方性磁石だけでなく等方性磁石に対しても本発明を適用することが可能である。その場合には、グリーンシート14に対する磁場配向工程を省略可能である。
1 永久磁石
2 Nd結晶粒子
3 金属偏在層
12 コンパウンド
14 グリーンシート
40 成形体

Claims (10)

  1. 磁石原料を磁石粉末に粉砕する工程と、
    前記粉砕された磁石粉末にCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
    前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、
    前記成形体を焼結する工程と、
    を有することを特徴とする希土類永久磁石の製造方法。
  2. 前記有機金属化合物は、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムであることを特徴とする請求項に記載の希土類永久磁石の製造方法。
  3. 前記有機金属化合物は、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属アルキル錯体であることを特徴とする請求項に記載の希土類永久磁石の製造方法。
  4. 前記有機金属化合物は、シクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体であることを特徴とする請求項又は請求項に記載の希土類永久磁石の製造方法。
  5. 前記有機金属化合物に含まれる金属が、焼結後に永久磁石の粒界に偏在していることを特徴とする請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法。
  6. 前記有機金属化合物に含まれる金属が、特にCu、Al、Ag、Ga、Dy、Tb又はNdであることを特徴とする請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法。
  7. 前記磁石粉末を成形体に成形する工程では、
    前記磁石粉末とバインダーとが混合された混合物を生成し、
    前記混合物をシート状に成形することにより前記成形体としてグリーンシートを作製することを特徴とする請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法。
  8. 前記成形体を焼結した後に、焼結された前記成形体である焼結体を、焼結温度よりも低い温度で熱処理することを特徴とする請求項乃至請求項のいずれかに記載の希土類永久磁石の製造方法。
  9. 前記熱処理は、前記有機金属化合物に含まれる金属と前記磁石原料に含まれる希土類元素との共晶の融点より高い温度で行うことを特徴とする請求項に記載の希土類永久磁石の製造方法。
  10. 前記熱処理は、前記焼結体を真空雰囲気下において460℃〜600℃で一定時間保持することを特徴とする請求項又は請求項に記載の希土類永久磁石の製造方法。
JP2013000457A 2012-03-12 2013-01-07 希土類永久磁石の製造方法 Expired - Fee Related JP6147505B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013000457A JP6147505B2 (ja) 2012-03-12 2013-01-07 希土類永久磁石の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012054693 2012-03-12
JP2012054693 2012-03-12
JP2013000457A JP6147505B2 (ja) 2012-03-12 2013-01-07 希土類永久磁石の製造方法

Publications (2)

Publication Number Publication Date
JP2013219321A JP2013219321A (ja) 2013-10-24
JP6147505B2 true JP6147505B2 (ja) 2017-06-14

Family

ID=49591061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013000457A Expired - Fee Related JP6147505B2 (ja) 2012-03-12 2013-01-07 希土類永久磁石の製造方法

Country Status (1)

Country Link
JP (1) JP6147505B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107424696B (zh) * 2017-06-30 2018-03-02 江苏江淮磁业有限公司 一种钕铁硼永磁材料及其制备方法
CN112397301A (zh) * 2020-11-20 2021-02-23 烟台首钢磁性材料股份有限公司 高稀土含量烧结钕铁硼磁体的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325450A (ja) * 2000-07-24 2005-11-24 Kenichi Machida 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石
CN102549684A (zh) * 2010-03-31 2012-07-04 日东电工株式会社 永久磁铁及永久磁铁的制造方法
JP5298180B2 (ja) * 2011-11-24 2013-09-25 日東電工株式会社 モータ用永久磁石及びモータ用永久磁石の製造方法

Also Published As

Publication number Publication date
JP2013219321A (ja) 2013-10-24

Similar Documents

Publication Publication Date Title
WO2013176116A1 (ja) 永久磁石モータ、永久磁石モータの製造方法及び永久磁石
JP5411956B2 (ja) 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置
JP2013219322A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5103553B1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2013137134A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969781B2 (ja) 希土類永久磁石の製造方法
WO2013137132A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5411957B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
WO2015121915A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203520B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP6147505B2 (ja) 希土類永久磁石の製造方法
JP5969782B2 (ja) 希土類永久磁石の製造方法
WO2015121914A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5926989B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5203522B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2015207687A (ja) 永久磁石及び永久磁石の製造方法
WO2015121916A1 (ja) 永久磁石、永久磁石の製造方法、spmモータ及びspmモータの製造方法
JP2013191610A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191609A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2016032024A (ja) 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法
WO2015121913A1 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP5969783B2 (ja) 希土類永久磁石の製造方法
JP5203521B2 (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191607A (ja) 希土類永久磁石及び希土類永久磁石の製造方法
JP2013191608A (ja) 希土類永久磁石及び希土類永久磁石の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170517

R150 Certificate of patent or registration of utility model

Ref document number: 6147505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees