JP6147505B2 - 希土類永久磁石の製造方法 - Google Patents
希土類永久磁石の製造方法 Download PDFInfo
- Publication number
- JP6147505B2 JP6147505B2 JP2013000457A JP2013000457A JP6147505B2 JP 6147505 B2 JP6147505 B2 JP 6147505B2 JP 2013000457 A JP2013000457 A JP 2013000457A JP 2013000457 A JP2013000457 A JP 2013000457A JP 6147505 B2 JP6147505 B2 JP 6147505B2
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- organometallic compound
- rare earth
- magnet
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
また、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。
また、CuやAlが焼結後に磁石の粒界に偏在すれば、リッチ相を均一に分散することができ、保磁力の向上が可能となる。
また、Ndが焼結後に磁石の粒界に偏在すれば、Ndリッチ相を均一に分散することができるとともに、製造過程で希土類元素が酸素や炭素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石中にαFeが生成されることを抑制することが可能となる。
また、Ag、Ga、Co、Bi、Zn又はMgが焼結後に磁石の粒界に偏在することによっても、粒界制御又は粒成長抑制による保磁力向上等の永久磁石の磁気性能を向上させる効果が期待できる。
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は扇型形状を備えるが、永久磁石1の形状は打ち抜き形状によって変化する。
本発明に係る永久磁石1はNd−Fe−B系の異方性磁石である。また、永久磁石1を形成する各結晶粒子の界面(粒界)には、永久磁石1の磁気性能を高める為のCu、Al、Dy(ジスプロシウム)、Tb(テルビウム)、Nb(ニオブ)、V(バナジウム)、Mo(モリブデン)、Zr(ジルコニウム)、Ta(タンタル)、Ti(チタン)又はW(タングステン)が偏在する。尚、各成分の含有量はNd:25〜37wt%、Cu、Al、Dy、Tb、Nb、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mgのいずれか(以下、Nb等という):0.01〜5wt%、B:0.8〜2wt%、Fe(電解鉄):60〜75wt%とする。また、磁気性能向上の為、Si等の他元素を少量含んでも良い。
更に、バインダーに樹脂を用いる場合には、構造中に酸素原子を含まず、且つ解重合性のあるポリマーを用いるのが好ましい。また、後述のようにホットメルト成形によりグリーンシートを成形する場合には、成形されたグリーンシートを加熱して軟化した状態で磁場配向を行う為に、熱可塑性樹脂が用いられる。具体的には以下の一般式(1)に示されるモノマーから選ばれる1種又は2種以上の重合体又は共重合体からなるポリマーが該当する。
尚、バインダーに用いる樹脂としては、磁場配向を適切に行う為に250℃以下で軟化する熱可塑性樹脂、より具体的にはガラス転移点又は融点が250℃以下の熱可塑性樹脂を用いることが望ましい。
次に、本発明に係る永久磁石1の製造方法について図4を用いて説明する。図4は本実施形態に係る永久磁石1の製造工程を示した説明図である。
先ず、磁石粉末にバインダーを混合することにより、磁石粉末とバインダーからなる粉末状の混合物(コンパウンド)12を作製する。ここで、バインダーとしては、上述したように樹脂や長鎖炭化水素や脂肪酸メチルエステルやそれらの混合物等が用いられる。例えば、樹脂を用いる場合には構造中に酸素原子を含まず、且つ解重合性のあるポリマーからなる熱可塑性樹脂を用い、一方、長鎖炭化水素を用いる場合には、室温で固体、室温以上で液体である長鎖飽和炭化水素(長鎖アルカン)を用いるのが好ましい。また、脂肪酸メチルエステルを用いる場合には、ステアリン酸メチルやドコサン酸メチル等を用いるのが好ましい。また、バインダーの添加量は、上述したように添加後のコンパウンド12における磁石粉末とバインダーの合計量に対するバインダーの比率が、1wt%〜40wt%、より好ましくは2wt%〜30wt%、更に好ましくは3wt%〜20wt%となる量とする。尚、バインダーの添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。尚、磁石粉末とバインダーとの混合は、例えば有機溶媒に磁石粉末とバインダーとをそれぞれ投入し、攪拌機で攪拌することにより行う。そして、攪拌後に磁石粉末とバインダーとを含む有機溶媒を加熱して有機溶媒を気化させることにより、コンパウンド12を抽出する。また、磁石粉末とバインダーとの混合は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行うことが望ましい。また、特に磁石粉末を湿式法で粉砕した場合においては、粉砕に用いた有機溶媒から磁石粉末を取り出すことなくバインダーを有機溶媒中に添加して混練し、その後に有機溶媒を揮発させて後述のコンパウンド12を得る構成としても良い。
図5に示すようにスロットダイ方式に用いられるダイ15は、ブロック16、17を互いに重ね合わせることにより形成されており、ブロック16、17との間の間隙によってスリット18やキャビティ(液溜まり)19を形成する。キャビティ19はブロック17に設けられた供給口20に連通される。そして、供給口20はギアポンプ(図示せず)等によって構成される塗布液の供給系へと接続されており、キャビティ19には供給口20を介して、計量された流体状のコンパウンド12が定量ポンプ等により供給される。更に、キャビティ19に供給された流体状のコンパウンド12はスリット18へ送液されて単位時間一定量で幅方向に均一な圧力でスリット18の吐出口21から予め設定された塗布幅により吐出される。一方で、支持基材13はコーティングロール22の回転に伴って予め設定された速度で連続搬送される。その結果、吐出した流体状のコンパウンド12が支持基材13に対して所定厚さで塗布され、その後、放熱して凝固することにより支持基材13上に長尺シート状のグリーンシート14が成形される。
また、磁場配向した後に行うグリーンシート14の放熱及び凝固は、搬送状態で行うことが好ましい。それによって、製造工程をより効率化することが可能となる。
図8に示すように、加熱装置37は発熱体となる平板部材38の内部に略U字型の空洞39を形成し、空洞39内に所定温度(例えば100〜300℃)に加熱された熱媒体であるシリコーンオイルを循環させる構成とする。そして、図6に示すホットプレート26の代わりに、加熱装置37をソレノイド25内においてグリーンシート14に対して上下一対に配置する。それによって、連続搬送されるグリーンシート14を、熱媒体により発熱された平板部材38を介して加熱し、軟化させる。尚、平板部材38はグリーンシート14に対して当接させても良いし、所定間隔離間させて配置しても良い。そして、軟化したグリーンシート14の周囲に配置されたソレノイド25によって、グリーンシート14の面内方向且つ長さ方向(図6の矢印27方向)に対して磁場が印加され、グリーンシート14に対して適切に均一な磁場を配向させることが可能となる。尚、図8に示すような熱媒体を用いた加熱装置37では、一般的なホットプレート26のように内部に電熱線を有さないので、磁場中に配置した場合であってもローレンツ力によって電熱線が振動したり切断される虞が無く、適切にグリーンシート14の加熱を行うことが可能となる。また、電流による制御を行う場合には、電源のON又はOFFで電熱線が振動することにより疲労破壊の原因となる問題が有るが、熱媒体を熱源とした加熱装置37を用いることによって、そのような問題を解消することが可能となる。
また、特に磁石原料を有機溶媒中で湿式粉砕により粉砕した場合には、有機溶媒を構成する有機化合物の熱分解温度且つバインダー分解温度で仮焼処理を行う。それによって、残留した有機溶媒についても除去することが可能となる。有機化合物の熱分解温度については、用いる有機溶媒の種類によって決定されるが、上記バインダー分解温度であれば基本的に有機化合物の熱分解についても行うことが可能となる。
図9に示すようにSPS焼結を行う場合には、先ず、グラファイト製の焼結型41に成形体40を設置する。尚、上述した仮焼処理についても成形体40を焼結型41に設置した状態で行っても良い。そして、焼結型41に設置された成形体40を真空チャンバー42内に保持し、同じくグラファイト製の上部パンチ43と下部パンチ44をセットする。そして、上部パンチ43に接続された上部パンチ電極45と下部パンチ44に接続された下部パンチ電極46とを用いて、低電圧且つ高電流の直流パルス電圧・電流を印加する。それと同時に、上部パンチ43及び下部パンチ44に対して加圧機構(図示せず)を用いて夫々上下方向から荷重を付加する。その結果、焼結型41内に設置された成形体40は、加圧されつつ焼結が行われる。また、生産性を向上させる為に、複数(例えば10個)の成形体に対して同時にSPS焼結を行うことが好ましい。尚、複数の成形体40に対して同時にSPS焼結を行う場合には、一の空間に複数の成形体40を配置しても良いし、成形体40毎に異なる空間に配置するようにしても良い。尚、成形体40毎に異なる空間に配置する場合には、空間毎に成形体40を加圧する上部パンチ43や下部パンチ44は各空間の間で一体とする(即ち一体となっている一の上部パンチ43及び下部パンチ44を駆動させることにより各空間にある複数の成形体を同時に加圧できる)ように構成する。
尚、具体的な焼結条件を以下に示す。
加圧値:1MPa
焼結温度:940℃まで10℃/分で上昇させ、5分保持
雰囲気:数Pa以下の真空雰囲気
(実施例1)
実施例1のネオジム磁石粉末の合金組成は、wt%でNd/Fe/B=32.7/65.96/1.34とする。また、粉砕したネオジム磁石粉末に有機金属化合物として水素化ジイソブチルアルミニウム(III)(DIBAL)を10wt%添加した。また、仮焼処理は、成形前の磁石粉末を大気圧(尚、本実施例では特に製造時の大気圧が標準大気圧(約0.1MPa)であると仮定する)の水素雰囲気下において450℃で5時間保持することにより行った。そして、仮焼中の水素の供給量は5L/minとする。また、成形された仮焼体の焼結は真空焼結により行った。尚、他の工程は上述した[永久磁石の製造方法]と同様の工程とする。
有機金属化合物としてトリス(エチルシクロペンタジエニル)Dy(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてトリス(イソプロピルシクロペンタジエニル)Tb(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてビス(シクロペンタジエニル)Mg(II)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてビス(シクロペンタジエニル)ジベンジルNb(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてトリヒドリドビス(ペンタメチルジシクロペンタジエニル)Nb(V)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてビス(シクロペンタジエニル)ジメチルTi(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてビス(シクロペンタジエニル)ジメチルZr(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてジヒドリドビス(シクロペンタジエニル)Zr(IV)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてトリス(テトラメチルシクロペンタジエニル)Nd(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてトリオクチルAl(III)を13wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてジフェニルZn(II)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてトリフェニルBi(III)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。他の条件は実施例1と同様である。
有機金属化合物としてCu(I)t−ブチルアセチリドを0.3wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
有機金属化合物としてメシチルCu(I)を0.3wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
有機金属化合物としてメシチルAg(I)を0.2wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
有機金属化合物として水素化ジイソブチルアルミニウム(III)(DIBAL)を5wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において550℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
有機金属化合物としてトリスシクロペンタジエニルGa(III)を0.4wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において550℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
有機金属化合物としてAg(I)t−ブチルアセチリドを0.2wt%添加し、仮焼処理を大気圧(0.1MPa)の水素雰囲気下で行った。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
添加する有機金属化合物を水素化ジイソブチルアルミニウム(III)(DIBAL)とし、仮焼処理を行わずに焼結した。他の条件は実施例1と同様である。
有機金属化合物としてトリス(シクロペンタジエニル)Nd(III)を2.4wt%添加し、仮焼処理を行わずに焼結した。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
有機金属化合物としてトリス(シクロペンタジエニル)Nd(III)を4.8wt%添加し、仮焼処理を行わずに焼結した。また、焼結後の焼結体に対して真空雰囲気下において500℃で1時間保持することにより熱処理を行った。他の条件は実施例1と同様である。
実施例1〜19の永久磁石についてXMAによる表面分析、SEM−WDXによる組織観察及び元素分析を行った。その結果、実施例1〜9、11〜19の各永久磁石では、粒界相から酸化物又は非酸化物としてのAl、Dy、Tb、Mg、Nb、Ti、Zr、Zn、Bi、Cu、Ag、Ga等が検出された。即ち、実施例1〜9、11〜19の永久磁石では、磁石の粒界にAl、Dy、Tb、Mg、Nb、Ti、Zr、Zn、Bi、Cu、Ag、Ga等が偏在化していることが分かった。また、実施例10の永久磁石について、焼結後のSEM写真を参照すると、Ndを粒界に偏在配置させることによってNdリッチ相について均一に分散され、また、αFe相がほとんど形成されていないことが分かった。
実施例14の永久磁石について、DSC(示差走査熱量測定)による分析を行った。その結果、NdとCuの共晶の存在を示唆する吸熱ピーク(445℃)が確認できた。即ち、実施例14の永久磁石では、Nd単体より低融点であるCuとNdの共晶が形成されており、焼結後に行った550℃という低温の熱処理によってNdリッチ層を液相とすることが可能であることが分かる。その結果、熱処理の段階で液相となったNdリッチ層を粒界に浸透させ、均一なNdリッチ相を粒界に形成することが可能となる。
実施例1〜19及び比較例1〜3の各磁石内に残存する炭素濃度[ppm] 及び酸素濃度[ppm]を測定した。また、実施例1〜19及び比較例1〜3の各磁石について有機金属化合物を添加せずに作成した永久磁石(以下、基準試料という)と比較した保磁力[kOe]の増減を測定した。図10に測定結果の一覧を示す。
また、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムを有機金属化合物として用いるので、その後の仮焼工程において有機金属化合物の熱分解を容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。また、熱分解を行わせることによって磁石内に残存する炭素量を軽減することも可能となる。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが多数析出することなく、磁石特性を大きく低下させることがない。
また、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属アルキル錯体、より具体的には、シクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体を有機金属化合物として用いるので、その後の加熱工程において有機金属化合物の熱分解をより容易に行うことができ、有機金属化合物に含まれる金属を粒界に対して適切に偏在させることが可能となる。
また、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における磁石粒子間での交換相互作用を分断することによって各磁石粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
また、磁気異方性の高いDyやTbが焼結後に磁石の粒界に偏在すれば、粒界に偏在されたDyやTbが粒界の逆磁区の生成を抑制することで、保磁力の向上が可能となる。
また、CuやAlが焼結後に磁石の粒界に偏在すれば、リッチ相を均一に分散することができ、保磁力の向上が可能となる。
また、Ndが焼結後に磁石の粒界に偏在すれば、Ndリッチ相を均一に分散することができるとともに、製造過程で希土類元素が酸素や炭素と結び付いたとしても、化学量論組成に対して希土類元素が不足することなく、焼結後の永久磁石中にαFeが生成されることを抑制することが可能となる。
また、Ag、Ga、Co、Bi、Zn又はMgが焼結後に磁石の粒界に偏在することによっても、粒界制御又は粒成長抑制による保磁力向上等の永久磁石の磁気性能を向上させる効果が期待できる。
また、磁石粉末とバインダーとを混合し、成形したグリーンシート14を焼結した磁石により永久磁石1を構成するので、焼結による収縮が均一となることにより焼結後の反りや凹みなどの変形が生じず、また、プレス時の圧力むらが無くなることから、従来行っていた焼結後の修正加工をする必要がなく、製造工程を簡略化することができる。それにより、高い寸法精度で永久磁石を成形可能となる。
例えば、磁石粉末の粉砕条件、混練条件、仮焼条件、焼結条件、熱処理条件などは上記実施例に記載した条件に限られるものではない。例えば、上記実施例では、スロットダイ方式によりグリーンシートを形成しているが、他の方式(例えばカレンダーロール方式、コンマ塗工方式、押出成型、射出成型、金型成型、ドクターブレード方式等)を用いてグリーンシートを形成しても良い。また、有機溶媒に磁石粉末やバインダーを混合したスラリーを生成し、その後に生成したスラリーをシート状に成形することによってグリーンシートを作成することとしても良い。その場合にはバインダーとして熱可塑性樹脂以外を用いることも可能である。また、仮焼を行う際の雰囲気は非酸化性雰囲気であれば水素雰囲気以外(例えば窒素雰囲気、He雰囲気等、Ar雰囲気等)で行っても良い。
2 Nd結晶粒子
3 金属偏在層
12 コンパウンド
14 グリーンシート
40 成形体
Claims (10)
- 磁石原料を磁石粉末に粉砕する工程と、
前記粉砕された磁石粉末にCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbを含むとともに酸素原子及び窒素原子を含まない有機金属化合物を添加することにより、前記磁石粉末の粒子表面に前記有機金属化合物を付着させる工程と、
前記有機金属化合物が粒子表面に付着された前記磁石粉末を成形することにより成形体を形成する工程と、
前記成形体を焼結する工程と、
を有することを特徴とする希土類永久磁石の製造方法。 - 前記有機金属化合物は、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属錯体、或いは水素化ジイソブチルアルミニウムであることを特徴とする請求項1に記載の希土類永久磁石の製造方法。
- 前記有機金属化合物は、中心金属がCu、Al、Dy、Tb、Nd、V、Mo、Zr、Ta、Ti、W、Ag、Ga、Co、Bi、Zn、Mg又はNbである金属アルキル錯体であることを特徴とする請求項2に記載の希土類永久磁石の製造方法。
- 前記有機金属化合物は、シクロペンタジエニル基、メチル基、ベンジル基、イソブチル基、フェニル基、オクチル基、エチルシクロペンタジエニル基、イソプロピルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基又はペンタメチルシクロペンタジエニル基を含む金属錯体、或いは金属アセチリド錯体であることを特徴とする請求項2又は請求項3に記載の希土類永久磁石の製造方法。
- 前記有機金属化合物に含まれる金属が、焼結後に永久磁石の粒界に偏在していることを特徴とする請求項1乃至請求項4のいずれかに記載の希土類永久磁石の製造方法。
- 前記有機金属化合物に含まれる金属が、特にCu、Al、Ag、Ga、Dy、Tb又はNdであることを特徴とする請求項1乃至請求項5のいずれかに記載の希土類永久磁石の製造方法。
- 前記磁石粉末を成形体に成形する工程では、
前記磁石粉末とバインダーとが混合された混合物を生成し、
前記混合物をシート状に成形することにより前記成形体としてグリーンシートを作製することを特徴とする請求項1乃至請求項6のいずれかに記載の希土類永久磁石の製造方法。 - 前記成形体を焼結した後に、焼結された前記成形体である焼結体を、焼結温度よりも低い温度で熱処理することを特徴とする請求項1乃至請求項7のいずれかに記載の希土類永久磁石の製造方法。
- 前記熱処理は、前記有機金属化合物に含まれる金属と前記磁石原料に含まれる希土類元素との共晶の融点より高い温度で行うことを特徴とする請求項8に記載の希土類永久磁石の製造方法。
- 前記熱処理は、前記焼結体を真空雰囲気下において460℃〜600℃で一定時間保持することを特徴とする請求項8又は請求項9に記載の希土類永久磁石の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013000457A JP6147505B2 (ja) | 2012-03-12 | 2013-01-07 | 希土類永久磁石の製造方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012054693 | 2012-03-12 | ||
JP2012054693 | 2012-03-12 | ||
JP2013000457A JP6147505B2 (ja) | 2012-03-12 | 2013-01-07 | 希土類永久磁石の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013219321A JP2013219321A (ja) | 2013-10-24 |
JP6147505B2 true JP6147505B2 (ja) | 2017-06-14 |
Family
ID=49591061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013000457A Expired - Fee Related JP6147505B2 (ja) | 2012-03-12 | 2013-01-07 | 希土類永久磁石の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6147505B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107424696B (zh) * | 2017-06-30 | 2018-03-02 | 江苏江淮磁业有限公司 | 一种钕铁硼永磁材料及其制备方法 |
CN112397301A (zh) * | 2020-11-20 | 2021-02-23 | 烟台首钢磁性材料股份有限公司 | 高稀土含量烧结钕铁硼磁体的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005325450A (ja) * | 2000-07-24 | 2005-11-24 | Kenichi Machida | 磁性材料の製造方法、防錆層付き磁性材料粉末及びそれを用いたボンド磁石 |
CN102549684A (zh) * | 2010-03-31 | 2012-07-04 | 日东电工株式会社 | 永久磁铁及永久磁铁的制造方法 |
JP5298180B2 (ja) * | 2011-11-24 | 2013-09-25 | 日東電工株式会社 | モータ用永久磁石及びモータ用永久磁石の製造方法 |
-
2013
- 2013-01-07 JP JP2013000457A patent/JP6147505B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013219321A (ja) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013176116A1 (ja) | 永久磁石モータ、永久磁石モータの製造方法及び永久磁石 | |
JP5411956B2 (ja) | 希土類永久磁石、希土類永久磁石の製造方法及び希土類永久磁石の製造装置 | |
JP2013219322A (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP5103553B1 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
WO2013137134A1 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP5969781B2 (ja) | 希土類永久磁石の製造方法 | |
WO2013137132A1 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP5411957B2 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
WO2015121915A1 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP5203520B2 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP6147505B2 (ja) | 希土類永久磁石の製造方法 | |
JP5969782B2 (ja) | 希土類永久磁石の製造方法 | |
WO2015121914A1 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP5926989B2 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP5203522B2 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP2015207687A (ja) | 永久磁石及び永久磁石の製造方法 | |
WO2015121916A1 (ja) | 永久磁石、永久磁石の製造方法、spmモータ及びspmモータの製造方法 | |
JP2013191610A (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP2013191609A (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP2016032024A (ja) | 永久磁石、永久磁石の製造方法、回転電機及び回転電機の製造方法 | |
WO2015121913A1 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP5969783B2 (ja) | 希土類永久磁石の製造方法 | |
JP5203521B2 (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP2013191607A (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 | |
JP2013191608A (ja) | 希土類永久磁石及び希土類永久磁石の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151023 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170517 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6147505 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |