CN112391840B - 一种核壳空心结构mof材料改性羊毛纤维的方法 - Google Patents

一种核壳空心结构mof材料改性羊毛纤维的方法 Download PDF

Info

Publication number
CN112391840B
CN112391840B CN202011125494.8A CN202011125494A CN112391840B CN 112391840 B CN112391840 B CN 112391840B CN 202011125494 A CN202011125494 A CN 202011125494A CN 112391840 B CN112391840 B CN 112391840B
Authority
CN
China
Prior art keywords
zif
solution
dopamine
deionized water
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011125494.8A
Other languages
English (en)
Other versions
CN112391840A (zh
Inventor
张辉
陈天宇
宽俊玲
李文明
毛宁涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202011125494.8A priority Critical patent/CN112391840B/zh
Publication of CN112391840A publication Critical patent/CN112391840A/zh
Application granted granted Critical
Publication of CN112391840B publication Critical patent/CN112391840B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/30Nature of the water, waste water, sewage or sludge to be treated from the textile industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/10Animal fibres
    • D06M2101/12Keratin fibres or silk

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种核壳空心结构MOF材料改性羊毛纤维的方法,具体包括如下步骤:步骤1,制备ZIF‑8纳米颗粒;步骤2,将步骤1得到的ZIF‑8吸附银离子;步骤3,将步骤2得到的吸附银ZIF‑8包裹多巴胺;步骤4,将步骤3得到的包裹多巴胺ZIF‑8材料浸渍钛酸异丙酯;步骤5,将步骤4得到的材料进行真空煅烧;步骤6,将步骤5得到的核壳中空MOF材料包覆到羊毛纤维表面。本发明采用离子掺杂和半导体复合的方式,制备出具有核壳空心结构的ZnO基MOF材料,然后将其包覆到羊毛纤维表面,用于吸附、光催化降解甲醛气体和染色废水。

Description

一种核壳空心结构MOF材料改性羊毛纤维的方法
技术领域
本发明属于纺织工程技术领域,涉及一种核壳空心结构MOF材料改性羊毛纤维的方法。
背景技术
由于纺织印染废水中通常含有大量的残留染料,使得染色废水的生物降解性差,成分复杂,pH值高,浊度高,色度高,因此被认为是最难处理的工业废水之一。如果这些废水不经过处理直接排放进入环境水体,不仅会危害自然界中的生物体,而且还会对人体健康构成严重威胁。随着新型吸附和光催化材料的不断涌现,光催化降解染料技术不断得到完善,特别是金属有机框架(Metal Organic Framework,MOF)材料在光催化降解有机污染物领域的应用。MOF材料是由有机配体和金属离子或团簇通过配位键自组装形成的具有周期性三维多孔结构的有机-无机杂化晶体材料。在除去客体分子后留下了多孔的空间,获得了极大的比表面积;可变的金属中心及有机配体导致其结构与功能的多样性;经过热或真空处理,小溶剂分子的去除使得不饱和金属位点暴露。因此,MOF材料能够用于催化、吸附和分离等方面。
沸石类咪唑盐骨架(Zeolitic Imidazolate Framework,ZIF)是MOF的一个子类,它结合了沸石和金属有机框架的优点,具有较高的化学稳定性和热稳定性。其中ZIF-8是一种富含氮和碳的多孔类钠盐沸石网状金属有机骨架材料,经过煅烧会生成氧化锌(ZnO)。而ZnO具有高的光催化活性、低的成本以及对环境友好等特性。但是ZnO的光谱响应范围比较窄,光量子效率比较低,因此实际应用收到一定程度的限制。研究表明,离子掺杂可以改善光催化材料的禁带宽度,而利用两种不同带隙的半导体进行复合,可以制备出具有特殊结构的光催化材料,进一步优化物理和化学性质,能够获得比单一半导体更优的光催化效果。
发明内容
本发明的目的是提供一种核壳空心结构MOF材料改性羊毛纤维的方法,该方法采用离子掺杂和半导体复合的方式,制备出具有核壳空心结构的ZnO基MOF材料,然后将其包覆到羊毛纤维表面,用于吸附、光催化降解甲醛气体和染色废水。
本发明所采用的技术方案是,一种核壳空心结构MOF材料改性羊毛纤维的方法,具体包括如下步骤:
步骤1,制备ZIF-8纳米颗粒;
步骤2,将步骤1得到的ZIF-8吸附银离子;
步骤3,将步骤2得到的吸附银ZIF-8包裹多巴胺;
步骤4,将步骤3得到的包裹多巴胺ZIF-8材料浸渍钛酸异丙酯;
步骤5,将步骤4得到的材料进行真空煅烧;
步骤6,将步骤5得到的核壳中空MOF材料包覆到羊毛纤维表面。
本发明的特点还在于,
步骤1的具体过程为:
量取甲醇溶液,按照质量浓度10~15g/L称取硝酸锌,按照质量浓度30~35g/L称取二甲基咪唑,按照质量浓度5~10g/L称取聚乙烯吡咯烷酮;先将硝酸锌、二甲基咪唑和聚乙烯吡咯烷酮依次溶解在4℃~10℃的甲醇溶液中,低温下用40KHz、300W超声振荡处理10~30min,再以200~500r/min速率机械搅拌3~6h;待反应结束后用大于12000r/min速率离心15~30min,得到沉淀物即为ZIF-8;按照浴比1:10~30,用甲醇溶液常温浸泡15~30min,浸泡过程重复3次,最后在60℃~90℃条件下真空干燥8~12h,得ZIF-8纳米颗粒。
步骤2的具体过程为:
步骤2.1,配制硝酸银溶液;
向去离子水中通入氮气以去除去离子水中的溶解氧,按照摩尔浓度0.0002~0.005mol/L称取硝酸银,在避光条件下将硝酸银溶解在去离子水中;
步骤2.2,采用ZIF-8吸附银离子;
按照质量浓度2~5g/L称取ZIF-8,将ZIF-8添加到硝酸银溶液中,在4℃~10℃、避光条件下超声振荡30~60s,再将混合溶液真空抽滤得到吸附银的ZIF-8,用不含溶解氧的去离子水常温洗涤10min,洗涤过程重复3次,最后80℃真空干燥。
步骤3的具体过程为:
步骤3.1,配制多巴胺缓冲溶液;
用去离子水在10℃~20℃条件下,分别配制摩尔浓度为0.1mol/L的三羟甲基氨基甲烷溶液、摩尔浓度为0.1mol/L的盐酸溶液以及摩尔浓度为0.05mol/L的乙二胺四乙酸溶液,按照体积比8~10:1:1,将三羟甲基氨基甲烷、盐酸与乙二胺四乙酸溶液混合均匀,然后用去离子水稀释使得三羟甲基氨基甲烷摩尔浓度为0.05mol/L,并调节溶液pH值为8~9,得混合溶液A;
按照质量浓度1~2g/L,将0.1~0.2g的盐酸多巴胺加入到混合溶液A中,在10℃~20℃条件下搅拌30~60min;
步骤3.2,吸附银ZIF-8包裹多巴胺;
按照质量浓度5~10g/L,将吸附银ZIF-8加入到多巴胺缓冲溶液中,室温下以100~300r/min速率机械搅拌8~12h,然后12000r/min离心,80℃真空干燥1h。
步骤4的具体过程为:
在4℃~10℃条件下,按照3~8mmol用量来配制钛酸异丙酯无水乙醇溶液;按照质量浓度5~10g/L,将包裹多巴胺ZIF-8添加到钛酸异丙酯的无水乙醇溶液中,并以200~400r/min速率机械搅拌4~6h,然后12000r/min离心,最后100℃真空干燥。
步骤5的具体过程为:
将步骤4制备的浸渍钛酸异丙酯ZIF-8粉体,在真空度小于0.06Pa条件下,按照2~8℃/min升温速率加热至400℃,并恒温处理2~4h,然后自然降温,即可得到核壳中空结构的ZIF-8复合材料。
步骤6的具体过程为:
步骤6.1,按照浴比1:30~50,将0.1~0.5g的羊毛纤维依次用无水乙醇和去离子水在40℃~60℃条件下洗涤20~40min,80℃烘干,按照浴比1:80~100,将清洗干净的羊毛纤维浸泡在质量分数88%的甲酸溶液中,在100℃条件下以600~800r/min速率机械搅拌10~30min,然后用去离子水反复清洗直至溶液呈中性,60℃烘干;
步骤6.2,按照质量浓度1~3g/L,将核壳中空结构ZIF-8纳米微球加入到多巴胺缓冲溶液中,超声振荡5~10min,按照浴比1:200~300,加入去鳞片的羊毛纤维,在室温下以100~200r/min机械搅拌12~24h,然后用去离子水清洗1~3次,最后60℃干燥1~3h。
本发明的有益效果如下:
(1)本发明中空核壳结构纳米颗粒展现出良好的性能和较高的研究价值,这种中空球型结构具有较高的量子分离效率、较大的比表面积和较低的表面光散射,且内部的空腔结构也会让材料与污染物有更好的接触,同时捕捉更多的光线产生更多的光诱导载体,从而提高材料的光催化性能。通过真空煅烧,核壳结构能够增大各个组分间界面面积,为光生载流子提供充足的运输通道,有助于光生电子空穴对的分离,从而提高复合材料的光催化活性。在光照下,来自ZnO价带(VB)的电子(e-)被激发到导带(CB),从而在VB中产生空穴(h)。电子空穴对通过与溶剂水或气态氧的一系列氧化还原反应,产生羟基自由基·HO,超氧自由基·O2-,有助于使染料降解。
(2)本发明利用离子掺杂和半导体复合的方法,离子掺杂的目的使其光催化性能提高,通过浸渍负载TiO2,薄薄的负载外表面,通过真空煅烧得到银离子掺杂和氮掺杂的金属有机骨架ZIF-8和氮掺杂的二氧化钛得结合;这样在原有的基础上进一步改善了金属有机骨架ZIF-8和二氧化钛的光催化性能。
(3)本发明利用羊毛纤维的吸附和光催化性能,将其与中空纳米颗粒的结合更加有利于光催化降解染料;优点是可以更好回收,符合可持续发展观策略,对环境没有二次污染;羊毛纤维本身还可以应用于光催化自清洁作用和降解有毒气体,比如甲醛、烟气等。
附图说明
图1(a)~(d)是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得的材料扫描电镜图。
图2是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的能谱图;
图3是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的N2吸附-脱附等温线图;
图4是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的孔径分布曲线;
图5是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的紫外线-可见光漫反射光谱图;
图6是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料吸附亚甲基蓝染料曲线图;
图7是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的可见光光催化降解曲线图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种核壳空心结构MOF材料改性羊毛纤维的方法,具体制备过程为:
步骤1,制备ZIF-8纳米颗粒;
量取100-200ml的甲醇溶液,按照质量浓度10~15g/L称取硝酸锌,按照质量浓度30~35g/L称取二甲基咪唑,按照质量浓度5~10g/L称取聚乙烯吡咯烷酮。先将硝酸锌、二甲基咪唑和聚乙烯吡咯烷酮依次溶解在4℃~10℃的甲醇溶液中,低温下用40KHz、300W超声振荡处理10~30min,再以200~500r/min速率机械搅拌3~6h。待反应结束用大于11000r/min速率离心15~30min,得到沉淀物即为ZIF-8。按照浴比1:10~30,用甲醇溶液常温浸泡15~30min,重复3次,最后在60℃~90℃条件下真空干燥8~12h。
步骤2,将步骤1得到的ZIF-8吸附银离子;
步骤2.1,配制硝酸银溶液
量取100ml的去离子水,通入氮气以去除去离子水中的溶解氧,按照摩尔浓度0.0002~0.005mol/L称取硝酸银,在避光条件下将硝酸银溶解在去离子水中。
步骤2.2,ZIF-8吸附银离子;
按照质量浓度2~5g/L称取ZIF-8,将其添加到硝酸银溶液中,在4℃~10℃、避光条件下超声振荡30~60s,再将混合溶液真空抽滤得到吸附银的ZIF-8,用不含溶解氧的去离子水常温洗涤10min,重复3次,最后80℃真空干燥。
步骤3,将步骤2得到的吸附银ZIF-8包裹多巴胺;
步骤3.1,配制多巴胺缓冲溶液;
用去离子水在10℃~20℃条件下,分别配制摩尔浓度为0.1mol/L的三羟甲基氨基甲烷溶液、摩尔浓度为0.1mol/L的盐酸溶液以及摩尔浓度为0.05mol/L的乙二胺四乙酸溶液。按照体积比8~10:1:1,将三羟甲基氨基甲烷、盐酸与乙二胺四乙酸溶液混合均匀,然后用去离子水稀释使得三羟甲基氨基甲烷摩尔浓度为0.05mol/L,并调节溶液pH值为8~9,得混合溶液A;按照质量浓度1~2g/L,将0.1g~0.2g的盐酸多巴胺加入到上述混合溶液A中,10℃~20℃条件下搅拌30~60min。
步骤3.2,吸附银ZIF-8包裹多巴胺;
按照质量浓度5~10g/L,将吸附银ZIF-8加入到多巴胺缓冲溶液中,室温下以100~300r/min速率机械搅拌8~12h,然后11000r/min离心,80℃真空干燥1h。
步骤4,将步骤3得到的包裹多巴胺ZIF-8材料浸渍钛酸异丙酯;
步骤4的具体过程为:在4℃~10℃条件下,按照3~8mmol用量来配制钛酸异丙酯无水乙醇溶液。按照质量浓度5~10g/L,将包裹多巴胺ZIF-8添加到钛酸异丙酯的无水乙醇溶液中,并以200~400r/min速率机械搅拌4~6h,然后11000r/min离心,最后100℃真空干燥。
步骤5,将步骤4得到的材料进行真空煅烧;
步骤5的具体过程为:将步骤4制备的浸渍钛酸异丙酯ZIF-8粉体,在真空度小于0.06Pa条件下,按照2~8℃/min升温速率加热至400℃,并恒温处理2~4h,然后自然降温,即可得到核壳中空结构的ZIF-8复合材料。
步骤6,将步骤5得到的核壳中空MOF材料包覆到羊毛纤维表面。
步骤6.1:按照浴比1:30~50,将0.1g~0.5g的羊毛纤维依次用无水乙醇和去离子水在40℃~60℃条件下洗涤20~40min,80℃烘干。按照浴比1:80~100,将清洗干净的羊毛纤维浸泡在质量分数88%的甲酸溶液中,在100℃条件下以600~800r/min速率机械搅拌10~30min,然后用去离子水反复清洗直至溶液呈中性,60℃烘干。
步骤6.2:按照质量浓度1~3g/L,将核壳中空结构ZIF-8纳米微球加入到多巴胺缓冲溶液中,超声振荡5~10min。按照浴比1:200~300,加入去鳞片的羊毛纤维,在室温下以100~200r/min机械搅拌12~24h,然后用去离子水清洗1~3次,最后60℃干燥1~3h。
实施例1
将2.94g的硝酸锌溶解在200ml的甲醇中,随后加入6.5g的2-甲基咪唑,超声搅拌10min。随后加入1g的聚乙烯吡咯烷酮,用磁力搅拌器搅拌溶液3h。然后将搅拌后液体离心并用甲醇洗涤2次。最后,将产物在置于70℃烘箱中干燥6h,研磨备用。然后配置浓度为0.001mol/L AgNO3溶液,取0.2g的ZIF-8粉末加入100mL的AgNO3溶液中,超声搅拌30s(避光),混合物真空抽滤,用去离子水(用氮气去除水中氧气)洗涤3次,80℃真空烘箱烘干;随后,将g0.5g的ZIF-8/Ag粉末加入100ml的Dopamine-tris溶液中,超声搅拌反应8h,离心,80℃真空干燥1h。其次,取4mmol的钛酸异丙酯溶液,加入100ml的无水乙醇,超声冷却,加入0.5g的ZIF-8/Ag/DA粉末混合之后搅拌,超声搅拌4h,将产物
离心取出100℃真空烘箱烘干30min,收集样品。最后,将制备好的异质结粉末在真空环境下400℃煅烧3h,升温速率为5℃/min,取出样品备用。将羊毛放入甲酸去鳞片,浴比为1:100,然后在油浴锅中加热,温度100℃,加热搅拌时间为20min。将处理过的试样用不锈钢网筛进行过滤,将所得的羊毛用去离子水反复洗涤3次,60℃烘干备用。称取0.1g的ZIF-8/Ag/DA/TiO2粉末加入60ml的Dopamine-tris溶液中,超声搅拌均匀后加入0.5g去鳞片羊毛放入,在室温下用磁力搅拌器搅拌溶液18h,搅拌过程中适当将羊毛纤维铺展开,处理好的试样用去离子水清洗3次,最后,将产物在置于60℃烘箱中干燥1h,收集样品。
实施例2
将3g的硝酸锌溶解在200ml的甲醇中,随后加入6.8g的2-甲基咪唑,超声搅拌10min。随后加入1g的聚乙烯吡咯烷酮,用磁力搅拌器搅拌溶液3h。然后将搅拌后液体离心并用甲醇洗涤4次。最后,将产物在置于70℃烘箱中干燥6h,研磨备用。然后配置浓度为0.005mol/L AgNO3溶液,取0.2g的ZIF-8粉末加入100mL AgNO3溶液中,超声搅拌30s(避光),混合物真空抽滤,用去离子水(用氮气去除水中氧气)洗涤3次,80℃真空烘箱烘干;随后,将0.6g的ZIF-8/Ag粉末加入100ml的Dopamine-tris溶液中,超声搅拌反应8h,离心,80℃真空干燥1h。其次,取6mmol的钛酸异丙酯溶液,加入100ml的无水乙醇,超声冷却,加入0.5g的ZIF-8/Ag/DA粉末混合之后搅拌,超声搅拌2h,将产物离心取出100℃真空烘箱烘干30min,收集样品。最后,将制备好的异质结粉末在真空环境下400℃煅烧3h,升温速率为5℃/min,取出样品备用。将羊毛放入甲酸去鳞片,浴比为1:80,然后在油浴锅中加热,温度100℃,加热搅拌时间为20min。将处理过的试样用不锈钢网筛进行过滤,将所得的羊毛用去离子水反复洗涤3次,60℃烘干备用。称取0.1g的ZIF-8/Ag/DA/TiO2粉末加入60ml的Dopamine-tris溶液中,超声搅拌均匀后加入0.5g去鳞片羊毛放入,在室温下用磁力搅拌器搅拌溶液15h,搅拌过程中适当将羊毛纤维铺展开,处理好的试样用去离子水清洗3次,最后,将产物在置于60℃烘箱中干燥1h,收集样品。
实施例3
将3g的硝酸锌溶解在200ml的甲醇中,随后加入6.8g的2-甲基咪唑,超声搅拌10min。随后加入2g的聚乙烯吡咯烷酮,用磁力搅拌器搅拌溶液4h。然后将搅拌后液体离心并用甲醇洗涤4次。最后,将产物在置于70℃烘箱中干燥6h,研磨备用。然后配置浓度为0.005mol/L AgNO3溶液,取0.2g的ZIF-8粉末加入100mL的AgNO3溶液中,超声搅拌40s(避光),混合物真空抽滤,用去离子水(用氮气去除水中氧气)洗涤3次,80℃真空烘箱烘干;随后,将1g的ZIF-8/Ag粉末加入100ml的Dopamine-tris溶液中,超声搅拌反应4h,离心,80℃真空干燥1h。其次,取8mmol的钛酸异丙酯溶液,加入100ml的无水乙醇,超声冷却,加入0.5g的ZIF-8/Ag/DA粉末混合之后搅拌,超声搅拌4h,将产物离心取出100℃真空烘箱烘干30min,收集样品。最后,将制备好的异质结粉末在真空环境下400℃煅烧3h,升温速率为6℃/min,取出样品备用。将羊毛放入甲酸去鳞片,浴比为1:100,然后在油浴锅中加热,温度100℃,加热搅拌时间为20min。将处理过的试样用不锈钢网筛进行过滤,将所得的羊毛用去离子水反复洗涤3次,60℃烘干备用。称取0.1g的ZIF-8/Ag/DA/TiO2粉末加入60ml的Dopamine-tris溶液中,超声搅拌均匀后加入0.5g去鳞片羊毛放入,在室温下用磁力搅拌器搅拌溶液15h,搅拌过程中适当将羊毛纤维铺展开,处理好的试样用去离子水清洗3次,最后,将产物在置于60℃烘箱中干燥1h,收集样品。
实施例4
将2.94g的硝酸锌溶解在200ml的甲醇中,随后加入6.5g的2-甲基咪唑,超声搅拌10min。随后加入2g的聚乙烯吡咯烷酮,用磁力搅拌器搅拌溶液2h。然后将搅拌后液体离心并用甲醇洗涤4次。最后,将产物ZIF-8在置于70℃烘箱中干燥6h,研磨备用。然后配置浓度为0.0002mol/L AgNO3溶液,取0.2g的ZIF-8粉末加入100ml的AgNO3溶液中,超声搅拌60s(避光),混合物真空抽滤,用去离子水(用氮气去除水中氧气)洗涤3次,80℃真空烘箱烘干;随后,将0.1g的ZIF-8/Ag粉末加入100ml的Dopamine-tris溶液中,超声搅拌反应2h,离心,80℃真空干燥1h。其次,取3mmol的钛酸异丙酯溶液,加入100ml的无水乙醇,超声冷却,加入0.5g的ZIF-8/Ag/DA粉末混合之后搅拌,超声搅拌4h,将产物离心取出100℃真空烘箱烘干30min,收集样品。最后,将制备好的异质结粉末在真空环境下400℃煅烧3h,升温速率为5℃/min,取出样品备用。将羊毛放入甲酸去鳞片,浴比为1:100,然后在油浴锅中加热,温度100℃,加热搅拌时间为20min。将处理过的试样用不锈钢网筛进行过滤,将所得的羊毛用去离子水反复洗涤3次,60℃烘干备用。称取0.1g的ZIF-8/Ag/DA/TiO2粉末加入60ml的Dopamine-tris溶液中,超声搅拌均匀后加入0.5g去鳞片羊毛放入,在室温下用磁力搅拌器搅拌溶液18h,搅拌过程中适当将羊毛纤维铺展开,处理好的试样用去离子水清洗3次,最后,将产物在置于60℃烘箱中干燥1h,收集样品。
对比例1
将2.94g的硝酸锌溶解在200ml的甲醇中,随后加入6.5g的2-甲基咪唑,超声搅拌10min。随后加入1g的聚乙烯吡咯烷酮,用磁力搅拌器搅拌溶液2h。然后将搅拌后液体离心并用甲醇洗涤4次。最后,将产物在置于70℃烘箱中干燥6h,研磨备用。然后,将0.5g的ZIF-8粉末加入100ml的Dopamine-tris溶液中,超声搅拌反应2h,离心,80℃真空干燥1h。然后配置浓度为0.0002mol/L AgNO3溶液,取0.5g的ZIF-8/DA粉末加入AgNO3溶液中,超声搅拌10s(避光),混合物真空抽滤,用去离子水(用氮气去除水中氧气)洗涤3次,80℃真空烘箱烘干其次,取3mmol的钛酸异丙酯溶液,加入100ml的无水乙醇,超声冷却,加入0.5g的ZIF-8//DA/Ag粉末混合之后搅拌,超声搅拌4h,将产物离心取出100℃真空烘箱烘干30min,收集样品。最后,将制备好的异质结粉末在真空环境下400℃煅烧3h,升温速率为8℃/min,取出样品备用。将羊毛放入甲酸去鳞片,浴比为1:100,然后在油浴锅中加热,温度100℃,加热搅拌时间为20min。将处理过的试样用不锈钢网筛进行过滤,将所得的羊毛用去离子水反复洗涤3次,60℃烘干备用。称取0.1g的ZIF-8//DA/Ag/TiO2粉末加入60ml的Dopamine-tris溶液中,超声搅拌均匀后加入0.6g去鳞片羊毛放入,在室温下用磁力搅拌器搅拌溶液18h,搅拌过程中适当将羊毛纤维铺展开,处理好的试样用去离子水清洗3次,最后,将产物在置于60℃烘箱中干燥1h,收集样品。
本发明选择在可见光下光催化降解亚甲基蓝染料来评价所制备的中空核壳结构异质结材料光催化性能,使用仪器型号为CEL-PCRD300-12光化学反应仪测试,具体过程为:配置60ml的多巴胺Tris溶液,称取0.1g粉末加进去超声溶解5min,取2g去鳞片羊毛纤维加入其中,在黑暗条件下搅拌18h。随后将样品取出烘干,放入配置好的10mg/L的亚甲基蓝溶液中,将其放在黑暗中搅拌吸附120min,在可见光照射之前达到吸附解吸平衡。在辐照期间,取出5mL悬浮液并离心(11,000rpm,10分钟)以除去光催化剂,然后进行测量。通过以30分钟为间隔测量UV-Vis吸收率来监测MB的浓度变化。根据亚甲基蓝染料溶液标准工作曲线(At=0.0107+0.01767Ct,R2=0.99)计算染料的浓度。根据光催化反应一级反应动力学方程满足公式(1),计算染料降解表观速率常数,光催化氧化表观速率常数越大,光催化活性越高。
1n Ct/C0=k·t (1);
式中:C0是吸附饱和后甲基橙溶液的起始浓度,Ct是照射一定时间后甲基橙溶液的浓度,t为辐照时间。k为光催化氧化表观速率常数。
测试结果为:本发明实施例1所得羊毛纤维-ZIF-8/银/多巴胺/二氧化钛中空复合材料在可见光辐照150min后表观速率常数为4.22×10-3min-1(R2=0.96)。本发明实施例2所得羊毛纤维-ZIF-8/银/多巴胺/二氧化钛中空复合材料在可见光辐照150min后表观速率常数为3.98×10-3min-1(R2=0.97)。本发明实施例3所得羊毛纤维-ZIF-8/银/多巴胺/二氧化钛中空复合材料在可见光辐照150min后表观速率常数为3.67×10-3min-1(R2=0.98)。
本发明实施例4所得羊毛纤维-ZIF-8/银/多巴胺/二氧化钛中空复合材料在可见光辐照150min后表观速率常数为5.36×10-3min-1(R2=0.98)。本发明对比例1所得羊毛纤维-ZIF-8/银/多巴胺/二氧化钛中空复合材料在可见光辐照150min后表观速率常数为4.75×10-3min-1(R2=0.98)。所以,实例4所得复合材料光催化活性最高。
图1(a)是本发明实施例4所得ZIF-8粉末扫描电镜图;(b)ZIF-8/Ag/DA/TiO2复合材料扫描电镜图;(c)羊毛@ZIF-8/Ag/DA/TiO2复合材料;(d)ZIF-8/Ag/DA/TiO2ZIF-8粉末透射电镜照片。可以从图(a)看出ZIF-8金属有机骨架为多边形,大小为50~500nm左右,可以从图(b)看出核壳中空MOF材料有孔洞,从图(c)羊毛纤维表面通过扫描电镜照片可以看出,表面有异质结MOF纳米颗粒。从透射电镜图(d)中看出制备的异质结材料是中空结构,外部包裹着二氧化钛。
图2是本发明实施例4所得核壳中空MOF材料的能谱图。含有C、N、O、Zn、Ag和Ti元素。
图3是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的N2吸附-脱附等温线图;可以看出,合成的纳米异质结颗粒的吸附等温线属于国际纯粹与应用化学联合会(IUPAC)分类中的II型等温线,为典型微孔材料的吸附曲线。ZIF-8/Ag/DA/TiO2纳米颗粒的比表面积为26.4760m2/g。
图4是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的孔径分布曲线,从图中看出,孔径分布大小主要分布在500nm~1500nm之间,较大的比表面积有利于对入射光的多次反射,促进光生载流子的迁移,产生一定的光催化性能。
图5是本发明所得复合材料的紫外线–可见光漫反射光谱图,作出(ɑhv)2/n与禁带宽度Eg函数关系图。根据Kubelka-Munk函数(公式2)可以得到(ɑhv)2/n与Eg函数关系。计算得到羊毛纤维和羊毛纤维/ZIF-8/银/多巴胺/二氧化钛的禁带宽度分别为2.68eV和1.93eV。当羊毛纤维被包裹中空核壳异质结材料之后,禁带宽度变窄,意味着电子跃迁所需能量变小,因此将会有更多的电子被激发到导带中,光催化活性会进一步提高。
αhv=A(h-Eg)n/2 (2);
式中,α是材料的吸收系数,h是普朗克常数,ν是光的频率,Eg是禁带宽度,A是常数,间接半导体,n=4,是直接半导体,n=1。
图6是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料吸附亚甲基蓝染料曲线图;在吸附150min内,羊毛纤维/ZIF-8/银/多巴胺/二氧化钛复合材料吸附效果较好,未改性的羊毛吸附效果明显较弱。
图7是本发明一种核壳空心结构MOF材料改性羊毛纤维的方法实施例4所得核壳中空MOF材料的可见光光催化降解曲线图。可以看出,120min吸附-解析平衡后,可见光辐照150min后,羊毛纤维表观速率常数为0.83×10-3min-1(R2=0.98),对应的降解率为14.9%羊毛纤维/ZIF-8/银/多巴胺/二氧化钛表观速率常数为5.36×10-3min-1(R2=0.98),对应的降解率为84.3%。因此,羊毛纤维/ZIF-8/银/多巴胺/二氧化钛复合材料在可见光辐照下,其光催化降解亚甲基蓝染料性能有较好得效果。

Claims (1)

1.一种核壳空心结构MOF材料改性羊毛纤维的方法,其特征在于:具体包括如下步骤:
步骤1,制备ZIF-8纳米颗粒;
所述步骤1的具体过程为:
量取甲醇溶液,按照质量浓度10~15g/L称取硝酸锌,按照质量浓度30~35g/L称取二甲基咪唑,按照质量浓度5~10g/L称取聚乙烯吡咯烷酮;先将硝酸锌、二甲基咪唑和聚乙烯吡咯烷酮依次溶解在4℃~10℃的甲醇溶液中,低温下用40KHz、300W超声振荡处理10~30min,再以200~500r/min速率机械搅拌3~6h;待反应结束后用大于12000r/min速率离心15~30min,得到沉淀物即为ZIF-8;按照浴比1:10~30,用甲醇溶液常温浸泡15~30min,浸泡过程重复3次,最后在60℃~90℃条件下真空干燥8~12h,得ZIF-8纳米颗粒;
步骤2,将步骤1得到的ZIF-8吸附银离子;
所述步骤2的具体过程为:
步骤2.1,配制硝酸银溶液;
向去离子水中通入氮气以去除去离子水中的溶解氧,按照摩尔浓度0.0002~0.005mol/L称取硝酸银,在避光条件下将硝酸银溶解在去离子水中;
步骤2.2,采用ZIF-8吸附银离子;
按照质量浓度2~5g/L称取ZIF-8,将ZIF-8添加到硝酸银溶液中,在4℃~10℃、避光条件下超声振荡30~60s,再将混合溶液真空抽滤得到吸附银的ZIF-8,用不含溶解氧的去离子水常温洗涤10min,洗涤过程重复3次,最后80℃真空干燥;
步骤3,将步骤2得到的吸附银ZIF-8包裹多巴胺;
所述步骤3的具体过程为:
步骤3.1,配制多巴胺缓冲溶液;
用去离子水在10℃~20℃条件下,分别配制摩尔浓度为0.1mol/L的三羟甲基氨基甲烷溶液、摩尔浓度为0.1mol/L的盐酸溶液以及摩尔浓度为0.05mol/L的乙二胺四乙酸溶液,按照体积比8~10:1:1,将三羟甲基氨基甲烷、盐酸与乙二胺四乙酸溶液混合均匀,然后用去离子水稀释使得三羟甲基氨基甲烷摩尔浓度为0.05mol/L,并调节溶液pH值为8~9,得混合溶液A;
按照质量浓度1~2g/L,将0.1~0.2g的盐酸多巴胺加入到混合溶液A中,在10℃~20℃条件下搅拌30~60min;
步骤3.2,吸附银ZIF-8包裹多巴胺;
按照质量浓度5~10g/L,将吸附银ZIF-8加入到多巴胺缓冲溶液中,室温下以100~300r/min速率机械搅拌8~12h,然后12000r/min离心,80℃真空干燥1h;
步骤4,将步骤3得到的包裹多巴胺ZIF-8材料浸渍钛酸异丙酯;
所述步骤4的具体过程为:
在4℃~10℃条件下,按照3~8mmol用量来配制钛酸异丙酯无水乙醇溶液;按照质量浓度5~10g/L,将包裹多巴胺ZIF-8添加到钛酸异丙酯的无水乙醇溶液中,并以200~400r/min速率机械搅拌4~6h,然后12000r/min离心,最后100℃真空干燥;
步骤5,将步骤4得到的材料进行真空煅烧;
所述步骤5的具体过程为:
将步骤4制备的浸渍钛酸异丙酯ZIF-8粉体,在真空度小于0.06Pa条件下,按照2~8℃/min升温速率加热至400℃,并恒温处理2~4h,然后自然降温,即可得到核壳中空结构的ZIF-8复合材料;
步骤6,将步骤5得到的核壳中空MOF材料包覆到羊毛纤维表面;
所述步骤6的具体过程为:
步骤6.1,按照浴比1:30~50,将0.1~0.5g的羊毛纤维依次用无水乙醇和去离子水在40℃~60℃条件下洗涤20~40min,80℃烘干,按照浴比1:80~100,将清洗干净的羊毛纤维浸泡在质量分数88%的甲酸溶液中,在100℃条件下以600~800r/min速率机械搅拌10~30min,然后用去离子水反复清洗直至溶液呈中性,60℃烘干;
步骤6.2,按照质量浓度1~3g/L,将核壳中空结构ZIF-8纳米微球加入到多巴胺缓冲溶液中,超声振荡5~10min,按照浴比1:200~300,加入去鳞片的羊毛纤维,在室温下以100~200r/min机械搅拌12~24h,然后用去离子水清洗1~3次,最后60℃干燥1~3h。
CN202011125494.8A 2020-10-20 2020-10-20 一种核壳空心结构mof材料改性羊毛纤维的方法 Active CN112391840B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011125494.8A CN112391840B (zh) 2020-10-20 2020-10-20 一种核壳空心结构mof材料改性羊毛纤维的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011125494.8A CN112391840B (zh) 2020-10-20 2020-10-20 一种核壳空心结构mof材料改性羊毛纤维的方法

Publications (2)

Publication Number Publication Date
CN112391840A CN112391840A (zh) 2021-02-23
CN112391840B true CN112391840B (zh) 2023-02-24

Family

ID=74596040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011125494.8A Active CN112391840B (zh) 2020-10-20 2020-10-20 一种核壳空心结构mof材料改性羊毛纤维的方法

Country Status (1)

Country Link
CN (1) CN112391840B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113087013B (zh) * 2021-03-19 2022-06-17 浙江理工大学 一种二氧化钛及其制备方法
CN113713776A (zh) * 2021-09-10 2021-11-30 天津工业大学 一种负载zif-67的羊毛织物的制备方法及其在印染废水中的应用
CN116731554B (zh) * 2023-07-17 2024-08-16 碳衡(重庆)生物质新材料有限公司 一种墨色生物基结构单色发光油墨复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324762A (zh) * 2014-10-09 2015-02-04 济南大学 一种三元复合材料制备方法和应用
CN105506957A (zh) * 2016-01-27 2016-04-20 西安工程大学 一种二氧化钛改性羊毛纤维的制备方法
CN105879919A (zh) * 2016-04-26 2016-08-24 福州大学 Au/ZIF-8-TiO2催化剂及其制备方法与应用
CN207452544U (zh) * 2017-08-03 2018-06-05 东华大学 一种具有光催化除甲醛效果的功能化羊毛纤维

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324762A (zh) * 2014-10-09 2015-02-04 济南大学 一种三元复合材料制备方法和应用
CN105506957A (zh) * 2016-01-27 2016-04-20 西安工程大学 一种二氧化钛改性羊毛纤维的制备方法
CN105879919A (zh) * 2016-04-26 2016-08-24 福州大学 Au/ZIF-8-TiO2催化剂及其制备方法与应用
CN207452544U (zh) * 2017-08-03 2018-06-05 东华大学 一种具有光催化除甲醛效果的功能化羊毛纤维

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Adsorption-assisted photocatalytic degradation of methyl orange dye by zeolite-imidazole-framework-derived nanoparticles;V.A. Tran et al.;《Journal of Alloys and Compounds》;20200504;第835卷;1-10 *
ZnO/C/TiO2复合纳米材料制备及其光催化性能;谢桂香等;《过程工程学报》;20161031;第18卷(第5期);1068-1074 *

Also Published As

Publication number Publication date
CN112391840A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
CN112391840B (zh) 一种核壳空心结构mof材料改性羊毛纤维的方法
CN106238100B (zh) 二氧化钛纳米片负载MIL-100(Fe)复合光催化材料的制备及应用方法
CN107020142B (zh) 泡沫镍负载碳氮/还原石墨烯光催化剂的制备方法
CN108927188B (zh) 一种碳酸氧铋光催化剂及其制备方法
CN103240130A (zh) 光催化分解水用TiO2/MIL-101复合催化剂及制备方法和应用
CN112675894B (zh) 一种空心环状氮化碳光催化剂及其制备方法
CN107754785A (zh) 一种用于低温催化氧化甲醛的石墨烯‑氧化锰复合催化剂及其制备方法
CN109603910B (zh) 一种光热增强降解化学战剂模拟物的纳米核壳复合物及其复合纤维膜的制备方法与应用
CN109433190B (zh) 负载铂纳米粒子的介孔氧化锆纳米管复合材料及其制备方法与在持续处理有机废气中的应用
CN109647529A (zh) 一种基于ZIF-8合成ZnO/ZIF-CN/Ag纳米复合材料的方法
CN111822055A (zh) 一种BiOBr/COF复合光催化剂的制备方法及应用
CN115301225A (zh) 一种中空微球结构的铋/二氧化钛光催化降解材料的制备方法及其应用
CN110479315B (zh) 一种多孔硫化铟/球形二硫化钼复合材料及其制备方法和应用
CN109060912A (zh) 一种铜石墨烯量子点共负载卟啉纳米管修饰电极的制备方法
CN115646514A (zh) 一种富含氧空位钨酸银/溴氧化铋纳米光催化剂制备方法
CN110813360A (zh) 一种氮、硫掺杂黑色二氧化钛/石墨相氮化碳复合光催化剂及其制备方法和应用
Yuan et al. Ce-MOF modified Ceria-based photocatalyst for enhancing the photocatalytic performance
Li et al. Encapsulation of in-situ generated g-CNQDs with up-conversion effect in Zr/Ti-based porphyrin MOFs for efficient photocatalytic hydrogen production and NO removal
Wang et al. Encapsulating low-coordinated Pt clusters within a metal–organic framework induces spatial charge separation boosting photocatalytic hydrogen evolution
CN116212966B (zh) 一种间接z型多组分铋基mof异质结及其制备方法和应用
CN115025783B (zh) 一种多铌氧簇/zif-67衍生物复合材料的合成方法及应用
CN114522731B (zh) 二氧化铈-金属有机骨架用于光催化降解活性蓝19的应用
CN110841686A (zh) 一种碳包覆亚氧化钛复合氮化碳复合材料及其制法和应用
CN106582617A (zh) 一种锰掺杂纳米钨酸铋催化剂及其制备方法和应用
CN114308015A (zh) 一种硅负载钨酸铋复合光催化剂的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant