CN112361973B - 一种金刚石薄膜厚度及光学常数检测方法 - Google Patents
一种金刚石薄膜厚度及光学常数检测方法 Download PDFInfo
- Publication number
- CN112361973B CN112361973B CN202011296380.XA CN202011296380A CN112361973B CN 112361973 B CN112361973 B CN 112361973B CN 202011296380 A CN202011296380 A CN 202011296380A CN 112361973 B CN112361973 B CN 112361973B
- Authority
- CN
- China
- Prior art keywords
- diamond film
- film
- thickness
- model
- spectrum data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0625—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0616—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
- G01B11/0641—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/211—Ellipsometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/21—Polarisation-affecting properties
- G01N21/211—Ellipsometry
- G01N2021/213—Spectrometric ellipsometry
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种金刚石薄膜厚度及光学常数检测方法,先依据椭偏光谱数据及吸收光谱数据判断金刚石薄膜是单晶金刚石薄膜或多晶金刚石薄膜,再依据光谱数据分别选择不同计算方式以获光学常数和薄膜厚度,一方面不仅能获折射率和薄膜厚度,而且还能获消光系数,另一方面,单晶金刚石薄膜采用Cauchy模型计算以获光学常数和薄膜厚度,多晶金刚石薄膜则选择波段并依据振子模型和评价函数MSE计算以获光学常数和薄膜厚度,因此可检测单晶及多晶金刚石薄膜,能获光学常数折射率、消光系数和厚度,检测精度高、测量时间短。
Description
技术领域
本发明涉及光学检测技术领域,尤其涉及一种金刚石薄膜厚度及光学常数检测方法。
背景技术
现有的光学薄膜超宽带光学常数测试方法,如CN06706521A,其包括:S1:首先将预设厚度的光学薄膜沉积在硅基底上;S2:测量所沉积光学薄膜紫外到近红外波段椭圆偏振光谱、红外波段的透射光谱;S3:根据光学薄膜的光谱数据,选择一段薄膜的透明区,采用Cauchy模型计算得到该波段范围的薄膜折射率n和厚度d1;S4:建立光学常数从紫外到红外宽光谱范围的光学常数模型,在吸收光谱区添加介电常数振子模型,振子的中心频率为吸收的位置,振子的幅度和宽度根据光谱数据进行调整;S5:将紫外到近红外波段椭圆偏振光谱和红外波段的透射光谱作为复合目标,对薄膜光学常数从紫外到红外全光谱范围内进行反演运算,其中厚度的初始值设定为d1,预设评价函数MSE,MSE是测量值与理论模型计算值的均方差,对MSE进行拟合,使MSE越小越好;S6:根据MSE拟合结果,得到介电常数模型的各个参数,进而得到紫外到红外超宽带光谱范围内薄膜的光学常数,包括折射率n、消光系数k和薄膜物理厚度d。上述测试方法一方面,只能未区分单晶金刚石薄膜或多晶金刚石薄膜,所获参数不精确,另一方面无法获得消光系数。
发明内容
本发明提供了一种金刚石薄膜厚度及光学常数检测方法,其克服了背景技术中光学薄膜超宽带光学常数测试方法所存在的不足。
本发明解决其技术问题的所采用的技术方案是:一种金刚石薄膜厚度及光学常数检测方法,包括:
S1,将金刚石薄膜沉积在衬底上;
S2,测量金刚石薄膜的椭偏光谱数据及吸收光谱数据;
S3,根据测量所获的椭偏光谱数据及吸收光谱数据,判断金刚石薄膜是单晶金刚石薄膜或多晶金刚石薄膜,如为单晶金刚石薄膜则执行S41,如为多晶金刚石薄膜则执行S42;
S41,采用Cauchy模型计算以获全波段的薄膜光学常数和薄膜厚度d,该薄膜光学常数至少包括光学常数n、k,n为折射率,k为消光系数;
S42,从多晶金刚石薄膜中选择一段薄膜的透明区,采用Cauchy模型计算得到该波段范围的薄膜光学常数和薄膜厚度;
S5,在多晶金刚石薄膜的吸收光谱数据添加介电常数振子模型,根据椭偏光谱数据以至少调整振子的幅度和薄膜宽度;
S6,利用评价函数MSE评判实验值和拟合值之间的差距以确定金刚石薄膜的薄膜光学常数n、k和薄膜厚度d。
一实施例之中:该S3中,依据吸收差异判断金刚石薄膜是单晶金刚石薄膜或多晶金刚石薄膜。
一实施例之中:该S42中,Cauchy模型计算公式为:
An、Bn和Cn为Cauchy模型参数,λ为波长,消光系数k由Ak、Bk和Eb三个参数描述,Eb=1240/λb,Eb与衬底材料相关。
一实施例之中:该S5中,该介电常数振子模型为Lorentz振子,该Lorentz振子计算公式为:
式中,A为模型参数的幅度,En为模型参数的中心位置,Br为模型参数的半波宽度。
一实施例之中:该S6中,该评价函数MSE计算公式为:
式中mod为拟合值,exp为测量值,δ为测量误差,N为椭偏仪同时测量的ψ、Δ的总对数,M为所选取拟合参数的对数。
一实施例之中:该S1中的衬底为Si、Al2O3或金刚石衬底。
本技术方案与背景技术相比,它具有如下优点:
先依据椭偏光谱数据及吸收光谱数据判断金刚石薄膜是单晶金刚石薄膜或多晶金刚石薄膜,再依据光谱数据分别选择不同计算方式以获光学常数和薄膜厚度,一方面不仅能获折射率和薄膜厚度,而且还能获消光系数,另一方面,单晶金刚石薄膜采用Cauchy模型计算以获光学常数和薄膜厚度,多晶金刚石薄膜则选择波段并依据振子模型和评价函数MSE计算以获光学常数和薄膜厚度,因此可检测单晶及多晶金刚石薄膜,能获光学常数折射率、消光系数和厚度,检测精度高、测量时间短。
具体实施方式
一种金刚石薄膜厚度及光学常数检测方法,包括:
S1,将金刚石薄膜沉积在衬底上,该衬底如为Si、Al2O3或金刚石衬底,但并不以此为限,根据需要也可选择其它衬底;
S2,测量金刚石薄膜的椭偏光谱数据及吸收光谱数据,如通过椭偏仪测量测量获得;
S3,根据测量所获的椭偏光谱数据及吸收光谱数据,判断金刚石薄膜是单晶金刚石薄膜或多晶金刚石薄膜,如为单晶金刚石薄膜则执行S41,如为多晶金刚石薄膜则执行S42;如依据吸收差异判断金刚石薄膜是单晶金刚石薄膜或多晶金刚石薄膜,具体如依据吸收系数k变化,无吸收k为0则为单晶金刚石薄膜,有吸收k为曲线则为多晶金刚石薄膜;
S41,采用Cauchy模型计算以获全波段的薄膜光学常数和薄膜厚度d,该薄膜光学常数至少包括光学常数n、k,n为折射率,k为消光系数;
S42,从多晶金刚石薄膜中选择一段薄膜的透明区,采用Cauchy模型(柯西模型)计算得到该波段范围的薄膜光学常数和薄膜厚度;
Cauchy模型计算公式为:
An、Bn和Cn为Cauchy模型参数,λ为波长,消光系数k由Ak、Bk和Eb三个参数描述,Eb=1240/λb,Eb与衬底材料相关;
S5,在多晶金刚石薄膜的吸收光谱数据添加介电常数振子模型,根据椭偏光谱数据以至少调整振子的幅度和薄膜宽度;
该介电常数振子模型为Lorentz振子,该Lorentz振子计算公式为:
式中,A为模型参数的幅度,En为模型参数的中心位置,Br为模型参数的半波宽度;
S6,利用评价函数MSE评判实验值和拟合值之间的差距以确定金刚石薄膜的薄膜光学常数n、k和薄膜厚度d,MSE越小则拟合效果越好;
该评价函数MSE计算公式为:
式中mod为拟合值,exp为测量值,δ为测量误差,N为椭偏仪同时测量的ψ、Δ的总对数,M为所选取拟合参数的对数。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
Claims (4)
1.一种金刚石薄膜厚度及光学常数检测方法,其特征在于:包括:
S1,将金刚石薄膜沉积在衬底上;
S2,测量金刚石薄膜的椭偏光谱数据及吸收光谱数据;
S3,根据测量所获的椭偏光谱数据及吸收光谱数据,依据吸收差异判断金刚石薄膜是单晶金刚石薄膜或多晶金刚石薄膜,如为单晶金刚石薄膜则执行S41,如为多晶金刚石薄膜则执行S42;
S41,采用Cauchy模型计算以获全波段的薄膜光学常数和薄膜厚度d,该薄膜光学常数至少包括光学常数n、k,n为折射率,k为消光系数;
S42,从多晶金刚石薄膜中选择一段薄膜的透明区,采用Cauchy模型计算得到该波段范围的薄膜光学常数和薄膜厚度;Cauchy模型计算公式为:
An、Bn和Cn为Cauchy模型参数,λ为波长,消光系数k由Ak、Bk和Eb三个参数描述,Eb=1240/λb,Eb与衬底材料相关;
S5,在多晶金刚石薄膜的吸收光谱数据添加介电常数振子模型,根据椭偏光谱数据以至少调整振子的幅度和薄膜宽度;
S6,利用评价函数MSE评判实验值和拟合值之间的差距以确定金刚石薄膜的薄膜光学常数n、k和薄膜厚度d。
4.根据权利要求1所述的一种金刚石薄膜厚度及光学常数检测方法,其特征在于:该S1中的衬底为Si、Al2O3或金刚石衬底。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011296380.XA CN112361973B (zh) | 2020-11-18 | 2020-11-18 | 一种金刚石薄膜厚度及光学常数检测方法 |
PCT/CN2021/103742 WO2022105244A1 (zh) | 2020-11-18 | 2021-06-30 | 一种金刚石薄膜厚度及光学常数检测方法 |
JP2023524482A JP7468959B2 (ja) | 2020-11-18 | 2021-06-30 | ダイヤモンド薄膜の厚さ及び光学定数の検出方法 |
US18/129,922 US20230236007A1 (en) | 2020-11-18 | 2023-04-03 | Method for measuring thickness and optical constants of diamond film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011296380.XA CN112361973B (zh) | 2020-11-18 | 2020-11-18 | 一种金刚石薄膜厚度及光学常数检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112361973A CN112361973A (zh) | 2021-02-12 |
CN112361973B true CN112361973B (zh) | 2022-07-29 |
Family
ID=74532969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011296380.XA Active CN112361973B (zh) | 2020-11-18 | 2020-11-18 | 一种金刚石薄膜厚度及光学常数检测方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230236007A1 (zh) |
JP (1) | JP7468959B2 (zh) |
CN (1) | CN112361973B (zh) |
WO (1) | WO2022105244A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112361972B (zh) | 2020-11-18 | 2022-11-01 | 华侨大学 | 一种多层膜厚度及光学特性检测方法 |
CN112361973B (zh) * | 2020-11-18 | 2022-07-29 | 华侨大学 | 一种金刚石薄膜厚度及光学常数检测方法 |
CN114136896B (zh) * | 2021-11-25 | 2023-07-21 | 天津津航技术物理研究所 | 一种光学薄膜光学常数工艺相关性的实验方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0822268A1 (en) * | 1996-07-29 | 1998-02-04 | Michigan State University | Process for depositing adherent diamond thin films |
WO2011086164A1 (en) * | 2010-01-18 | 2011-07-21 | Element Six Limited | Cvd single crystal diamond material |
CN109752321A (zh) * | 2019-01-29 | 2019-05-14 | 华侨大学 | 一种抛光碳化硅衬底变质层厚度和光学常数椭偏检测方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000352506A (ja) * | 1999-06-11 | 2000-12-19 | Sony Corp | 膜厚測定装置およびその方法および薄膜製造装置およびその方法 |
TW200622226A (en) * | 2004-12-28 | 2006-07-01 | Grace Semiconductor Mfg Corp | Optical method for detecting the surface structure on thin film of nano crystal |
CN103575663B (zh) | 2012-08-07 | 2016-06-29 | 中国科学院大连化学物理研究所 | 一种金属及半导体薄膜材料光学常数的标定方法 |
CN106706521B (zh) * | 2016-12-12 | 2019-08-16 | 天津津航技术物理研究所 | 一种光学薄膜超宽带光学常数测试方法 |
CN107462530B (zh) | 2017-07-14 | 2020-07-28 | 天津津航技术物理研究所 | 含氢类金刚石薄膜的全光谱段光学常数表征方法 |
CN209116974U (zh) * | 2018-11-01 | 2019-07-16 | 上海市计量测试技术研究院 | 一种测量SiO2薄膜厚度用的等效物理结构模型 |
CN110823098B (zh) * | 2019-12-17 | 2024-09-27 | 上海昌润极锐超硬材料有限公司 | 一种单晶金刚石生长过程的监测方法及监测设备 |
CN112361972B (zh) | 2020-11-18 | 2022-11-01 | 华侨大学 | 一种多层膜厚度及光学特性检测方法 |
CN112361973B (zh) * | 2020-11-18 | 2022-07-29 | 华侨大学 | 一种金刚石薄膜厚度及光学常数检测方法 |
-
2020
- 2020-11-18 CN CN202011296380.XA patent/CN112361973B/zh active Active
-
2021
- 2021-06-30 JP JP2023524482A patent/JP7468959B2/ja active Active
- 2021-06-30 WO PCT/CN2021/103742 patent/WO2022105244A1/zh active Application Filing
-
2023
- 2023-04-03 US US18/129,922 patent/US20230236007A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0822268A1 (en) * | 1996-07-29 | 1998-02-04 | Michigan State University | Process for depositing adherent diamond thin films |
WO2011086164A1 (en) * | 2010-01-18 | 2011-07-21 | Element Six Limited | Cvd single crystal diamond material |
CN109752321A (zh) * | 2019-01-29 | 2019-05-14 | 华侨大学 | 一种抛光碳化硅衬底变质层厚度和光学常数椭偏检测方法 |
Non-Patent Citations (4)
Title |
---|
单晶金刚石膜与多晶金刚石膜的制备工艺及性能;李嘉等;《硅酸盐学报》;19920826(第04期);全文 * |
微波等离子体化学气相沉积金刚石薄膜形貌分析;方莉俐等;《高压物理学报》;19910925(第03期);全文 * |
气相外延生长单晶金刚石薄膜;张战等;《中国科学A辑》(第09期);全文 * |
沉积工艺条件对金刚石薄膜红外椭偏光学性质的影响;苏青峰等;《物理学报》;20061012(第10期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
US20230236007A1 (en) | 2023-07-27 |
WO2022105244A1 (zh) | 2022-05-27 |
CN112361973A (zh) | 2021-02-12 |
JP2023546457A (ja) | 2023-11-02 |
JP7468959B2 (ja) | 2024-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112361973B (zh) | 一种金刚石薄膜厚度及光学常数检测方法 | |
CN106706521B (zh) | 一种光学薄膜超宽带光学常数测试方法 | |
CN112595673B (zh) | 一种单晶金刚石衬底光学常数测量方法 | |
US8119991B2 (en) | Method and apparatus for accurate calibration of VUV reflectometer | |
WO2022105223A1 (zh) | 一种多层膜厚度及光学特性检测方法 | |
CN104458589A (zh) | 一种光学薄膜可见光波段光学常数精确标定的方法 | |
CN104406773A (zh) | 一种Ge1-xCx薄膜红外光谱区光学常数的测量方法 | |
US11835447B1 (en) | Method for measuring characteristic of thin film | |
CN109470154A (zh) | 一种适用于光谱椭偏仪的薄膜厚度初值测量方法 | |
US7399975B2 (en) | Method and apparatus for performing highly accurate thin film measurements | |
CN107462530B (zh) | 含氢类金刚石薄膜的全光谱段光学常数表征方法 | |
CN111076668B (zh) | 用于纳米厚度SiO2厚度的差分反射光谱测量方法 | |
CN103674892B (zh) | 一种基于全内反射偏振位相差测量来监控薄膜生长的方法 | |
Urban III et al. | Numerical ellipsometry: Analysis of thin metal layers using n–k plane methods with multiple incidence angles | |
US6731386B2 (en) | Measurement technique for ultra-thin oxides | |
CN109001122B (zh) | 梯度或渐变折射率薄膜的光学常数测量装置及方法 | |
CN114384017A (zh) | 一种基于椭偏仪的光谱匹配校准方法 | |
JPH1038694A (ja) | エリプソメーター | |
US20120320377A1 (en) | Optical System Polarizer Calibration | |
JP2003315257A (ja) | 分光エリプソメータを用いた多結晶化合物半導体の組成決定方法 | |
JP3007944B2 (ja) | 薄膜の光学的性質を求める方法 | |
CN112362593A (zh) | 金刚石衬底随温度变化的测量方法 | |
Yang et al. | Characterizing optical properties of red, green, and blue color filters for automated film-thickness measurement | |
JP3744003B2 (ja) | 光学素子の膜厚測定方法及び光学素子の製造方法 | |
CN117368114A (zh) | 一种快照式椭偏测量方法及设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |