CN112361972B - 一种多层膜厚度及光学特性检测方法 - Google Patents

一种多层膜厚度及光学特性检测方法 Download PDF

Info

Publication number
CN112361972B
CN112361972B CN202011296374.4A CN202011296374A CN112361972B CN 112361972 B CN112361972 B CN 112361972B CN 202011296374 A CN202011296374 A CN 202011296374A CN 112361972 B CN112361972 B CN 112361972B
Authority
CN
China
Prior art keywords
film
diamond
multilayer film
thickness
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011296374.4A
Other languages
English (en)
Other versions
CN112361972A (zh
Inventor
崔长彩
李子清
陆静
胡中伟
徐西鹏
黄辉
黄国钦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN202011296374.4A priority Critical patent/CN112361972B/zh
Publication of CN112361972A publication Critical patent/CN112361972A/zh
Priority to JP2023524480A priority patent/JP7519142B2/ja
Priority to PCT/CN2021/100838 priority patent/WO2022105223A1/zh
Application granted granted Critical
Publication of CN112361972B publication Critical patent/CN112361972B/zh
Priority to US18/130,716 priority patent/US20230304788A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0641Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of polarization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • G01N2021/213Spectrometric ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8438Mutilayers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/87Investigating jewels

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种多层膜厚度及光学特性检测方法,包括:S1,依序在衬底上沉积薄膜以形成多层膜,该多层膜的薄膜分类金刚石薄膜和金刚石薄膜;S2,测量多层膜的椭偏光谱;S3,判断薄膜是金刚石薄膜或类金刚石薄膜,如为金刚石薄膜则执行S41,如为类金刚石薄膜则执行S42;S41,采用Cauchy模型计算以获全波段的薄膜光学常数和薄膜厚度;S42,选择一段薄膜的透明区,采用Cauchy模型计算以获该波段范围的薄膜光学常数和厚度;S5,在类金刚石薄膜的吸收光谱区添加介电常数振子模型,根据椭偏光谱调整振子的幅度和宽度;S6,利用评价函数MSE评判实验值和拟合值之间的差距,以此确定多层膜的结构以及每一层薄膜的光学常数和薄膜厚度,光学常数包括折射率和消光系数。

Description

一种多层膜厚度及光学特性检测方法
技术领域
本发明涉及光学检测领域,尤其涉及一种类金刚石和金刚石的多层膜厚度及光学特性检测方法。
背景技术
类金刚石薄膜具有良好的光学透过性(中波红外3~5μm,长波红外8~12μm)、抗腐蚀等特性,且折射率在2~3之间可调,是极佳的红外增透功能的薄膜。但类金刚石薄膜在成膜的过程中易产生极高的内应力,这会限制沉积的厚度以及使用寿命、性能。金刚石薄膜以其高机械强度,高热导率,较好的耐磨、耐蚀性能以及高的红外透过率广泛应用于红外窗口等光学器件,可在摩擦或风沙等极端恶劣环境下起到有力的防护作用。所以类金刚石和金刚石的多层膜是一种兼具折射率匹配、高透过性、高硬度等优异性能的薄膜材料。
类金刚石和金刚石多层薄膜具有多层结构,根据应用不同对薄膜厚度以及表面粗糙的要求会有所不同。层数的增加以及每一层的粗糙度大小,会直接影响整个薄膜的透射率,从而影响光学器件的使用。在生长过程中,每个膜层的折射率受制备工艺参数影响很大,难免会产生缺陷或不均匀性,对每一层折射率的有效检测可以防止因工艺偏差导致的膜层折射率偏差,从而保证器件的光学性能。
在现有的多层膜的测量系统中,大多聚焦于膜层厚度的检测,如中国专利数据库公开的CN208140036U,一种多层膜在线测厚系统,通过激光三角法测量不透明基底的厚度和红外测量透明涂层的厚度,两个模块的测量区域被限定在同一位置处,该系统能够实现多层膜同一区域厚度参数的同时、高精度、在线测量,但是没有涉及表面粗糙度以及光学特性的测量。
发明内容
本发明提供了一种多层膜厚度及光学特性检测方法,其克服了背景技术中多层膜在线测厚系统所存在的不足。
本发明解决其技术问题的所采用的技术方案是:一种多层膜厚度及光学特性检测方法,包括:
S1,依序在衬底上沉积薄膜以形成多层膜,该多层膜的薄膜分类金刚石薄膜和金刚石薄膜;
S2,测量多层膜的椭偏光谱;
S3,判断薄膜是金刚石薄膜或类金刚石薄膜,如为金刚石薄膜则执行S41,如为类金刚石薄膜则执行S42;
S41,采用Cauchy模型计算以获全波段的薄膜光学常数和薄膜厚度;
S42,选择一段薄膜的透明区,采用Cauchy模型计算以获该波段范围的薄膜光学常数和厚度;
S5,在类金刚石薄膜的吸收光谱区添加介电常数振子模型,根据椭偏光谱调整振子的幅度和宽度;
S6,利用评价函数MSE评判实验值和拟合值之间的差距,以此确定多层膜的结构以及每一层薄膜的光学常数和薄膜厚度,该光学常数包括折射率和消光系数。
一实施例之中:该S42中,Cauchy模型计算公式为:
Figure BDA0002785536420000021
Figure BDA0002785536420000022
An、Bn和Cn为Cauchy模型参数,λ为波长,消光系数k由Ak、Bk和Eb三个参数描述,Eb=1240/λb,Eb与衬底材料相关。
一实施例之中:该S5中,该介电常数振子模型为Lorentz振子,该Lorentz振子计算公式为:
Figure BDA0002785536420000031
式中,A为模型参数的幅度,En为模型参数的中心位置,Br为模型参数的半波宽度。
一实施例之中:该S6中,该评价函数MSE计算公式为:
Figure BDA0002785536420000032
式中mod为拟合值,exp为测量值,δ为测量误差,N为椭偏仪同时测量的ψ、Δ的总对数,M为所选取拟合参数的对数。
一实施例之中:该多层膜中最下层为基底,该基底为类金刚石薄膜或金刚石薄膜,最上层为金刚石薄膜,介于最下层和最上层之间的为中间层,该中间层包括类金刚石薄膜或折射率可调的其他薄膜,该其他薄膜和金刚石薄膜、类金刚石薄膜不同。
一实施例之中:该多层膜的层数至少有三层。
一实施例之中:该S3中,根据材料特性判断薄膜是金刚石薄膜或类金刚石薄膜。
一实施例之中:该衬底为金刚石衬底、Si或Ge玻璃。
一实施例之中:该多层膜适用于红外窗口、探测器或玻璃保护膜。
本技术方案与背景技术相比,它具有如下优点:
先测量多层膜的椭偏光谱,接着依据金刚石和类金刚石选择合适光学模型进行拟合,最后结合MSE拟合结果,得到多层膜结构整体及每一层的厚度和光学特性。它不局限于金刚石衬底,而且可适用于所有有镀膜需求的衬底,且类金刚石和金刚石多层膜适用于红外窗口、探测器、玻璃保护膜等,可根据需求调整折射率,增加透光性。
附图说明
图1为具体实施方式测量方法的流程图;
图2为具体实施方式测量系统示意图;
图3为具体实施方式测量的多层膜结构示意图。
图中标号为:
11-宽光谱光源、12-准直透镜、13-起偏器、14-补偿器、15-待测多层膜样品、16-准直透镜组、17-补偿器、18-检偏器、19-探测器。
具体实施方式
为了能进一步解释本发明的目的、技术方案及特色,下面结合附图和具体实施例子对多层膜厚度及光学特性检测方法进一步详细说明。
一种多层膜厚度及光学特性检测方法,包括:
S1,依序在衬底上沉积薄膜以形成多层膜,该多层膜的薄膜分类金刚石薄膜和金刚石薄膜;其中:该衬底为金刚石衬底、Si或Ge玻璃,根据需要也可选择其它衬底;该多层膜的层数至少有三层,且,如图3所示,该多层膜中最下层为基底,该基底为类金刚石薄膜或金刚石薄膜,最上层为金刚石薄膜以用作为保护层,介于最下层和最上层之间的为中间层,该中间层包括类金刚石薄膜或折射率可调的其他薄膜,该其他薄膜和金刚石薄膜、类金刚石薄膜不同;
S2,测量多层膜的椭偏光谱;
S3,根据材料特性判断薄膜是金刚石薄膜或类金刚石薄膜,如为金刚石薄膜则执行S41,如为类金刚石薄膜则执行S42,判断薄膜是金刚石薄膜或类金刚石薄膜以选择合适的光学模型,即建立光学模型;其中:金刚石薄膜或类金刚石薄膜的材料组分(sp2、sp3等)不同,这会导致吸收(材料特性)有所差异,依据吸收差异结合椭偏光谱进行判断;
S41,采用Cauchy模型计算以获全波段的薄膜光学常数和薄膜厚度;
S42,选择一段薄膜的透明区,采用Cauchy模型(柯西模型)计算以获该波段范围的薄膜光学常数和厚度;
S5,在类金刚石薄膜的吸收光谱区添加介电常数振子模型,根据椭偏光谱调整振子的幅度和宽度;
S6,利用评价函数MSE评判实验值和拟合值之间的差距,以此确定多层膜的结构以及每一层薄膜的光学常数和薄膜厚度,该光学常数包括折射率和消光系数,其中MSE越小则拟合效果越好。
该S42中,Cauchy模型计算公式为:
Figure BDA0002785536420000051
Figure BDA0002785536420000052
An、Bn和Cn为Cauchy模型参数,λ为波长,消光系数k由Ak、Bk和Eb三个参数描述,Eb=1240/λb,Eb与衬底材料相关。
该S5中,该介电常数振子模型为Lorentz振子,该Lorentz振子计算公式为:
Figure BDA0002785536420000053
式中,A为模型参数的幅度,En为模型参数的中心位置,Br为模型参数的半波宽度。
该S6中,该评价函数MSE计算公式为:
Figure BDA0002785536420000061
式中mod为拟合值,exp为测量值,δ为测量误差,N为椭偏仪同时测量的ψ、Δ的总对数,M为所选取拟合参数的对数。
本具体实施方式的多层膜适用于红外窗口、探测器或玻璃保护膜等,以可根据需求调整折射率,增加透光性。
采用测试系统测量多层膜的椭偏光谱,该测试系统包括为宽光谱椭偏仪,如图2所示,宽光谱椭偏仪包括宽光谱光源11、准直透镜12、起偏器13、补偿器14、待测多层膜样品15、准直透镜组16、补偿器17、检偏器18和探测器19,该宽光谱光源11发出的光线经准直透镜12、起偏器13和补偿器14照射在待测多层膜样品15,反射后经准直透镜组16、补偿器17、检偏器18至探测器19。该宽光谱椭偏仪光谱范围覆盖紫外、可见及近红外。
以上所述,仅为本发明较佳的具体实施方式,但本发明的设计构思并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,利用此构思对本发明进行非实质性的改动,均属于侵犯本发明保护范围的行为。

Claims (7)

1.一种多层膜厚度及光学特性检测方法,其特征在于:包括:
S1,依序在衬底上沉积薄膜以形成多层膜,该多层膜的薄膜分类金刚石薄膜和金刚石薄膜;该多层膜中最下层为基底,该基底为类金刚石薄膜或金刚石薄膜,最上层为金刚石薄膜,介于最下层和最上层之间的为中间层,该中间层包括类金刚石薄膜或折射率可调的其他薄膜,该其他薄膜和金刚石薄膜、类金刚石薄膜不同;
S2,测量多层膜的椭偏光谱;
S3,根据材料特性判断薄膜是金刚石薄膜或类金刚石薄膜,如为金刚石薄膜则执行S41,如为类金刚石薄膜则执行S42;
S41,采用Cauchy模型计算以获全波段的薄膜光学常数和薄膜厚度;
S42,选择一段薄膜的透明区,采用Cauchy模型计算以获该波段范围的薄膜光学常数和厚度;
S5,在类金刚石薄膜的吸收光谱区添加介电常数振子模型,根据椭偏光谱调整振子的幅度和宽度;
S6,利用评价函数MSE评判实验值和拟合值之间的差距,以此确定多层膜的结构以及每一层薄膜的光学常数和薄膜厚度,该光学常数包括折射率和消光系数。
2.根据权利要求1所述的一种多层膜厚度及光学特性检测方法,其特征在于:该S42中,Cauchy模型计算公式为:
Figure FDA0003590265010000011
Figure FDA0003590265010000012
An、Bn和Cn为Cauchy模型参数,λ为波长,消光系数k由Ak、Bk和Eb三个参数描述,Eb=1240/λb,Eb与衬底材料相关。
3.根据权利要求1所述的一种多层膜厚度及光学特性检测方法,其特征在于:该S5中,该介电常数振子模型为Lorentz振子,该Lorentz振子计算公式为:
Figure FDA0003590265010000021
式中,A为模型参数的幅度,En为模型参数的中心位置,Br为模型参数的半波宽度。
4.根据权利要求1所述的一种多层膜厚度及光学特性检测方法,其特征在于:该S6中,该评价函数MSE计算公式为:
Figure FDA0003590265010000022
式中mod为拟合值,exp为测量值,δ为测量误差,N为椭偏仪同时测量的ψ、Δ的总对数,M为所选取拟合参数的对数。
5.根据权利要求1所述的一种多层膜厚度及光学特性检测方法,其特征在于:该多层膜的层数至少有三层;采用测试系统测量多层膜的椭偏光谱,该测试系统包括为宽光谱椭偏仪,宽光谱椭偏仪包括宽光谱光源、准直透镜、起偏器、补偿器、待测多层膜样品、准直透镜组、补偿器、检偏器和探测器,该宽光谱光源发出的光线经准直透镜、起偏器和补偿器照射在待测多层膜样品,反射后经准直透镜组、补偿器、检偏器至探测器。
6.根据权利要求1所述的一种多层膜厚度及光学特性检测方法,其特征在于:该衬底为金刚石衬底、Si或Ge玻璃。
7.根据权利要求1所述的一种多层膜厚度及光学特性检测方法,其特征在于:该多层膜适用于红外窗口、探测器或玻璃保护膜。
CN202011296374.4A 2020-11-18 2020-11-18 一种多层膜厚度及光学特性检测方法 Active CN112361972B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202011296374.4A CN112361972B (zh) 2020-11-18 2020-11-18 一种多层膜厚度及光学特性检测方法
JP2023524480A JP7519142B2 (ja) 2020-11-18 2021-06-18 多層膜の膜厚および光学特性の検出方法
PCT/CN2021/100838 WO2022105223A1 (zh) 2020-11-18 2021-06-18 一种多层膜厚度及光学特性检测方法
US18/130,716 US20230304788A1 (en) 2020-11-18 2023-04-04 Method for measuring thickness and optical properties of multi-layer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011296374.4A CN112361972B (zh) 2020-11-18 2020-11-18 一种多层膜厚度及光学特性检测方法

Publications (2)

Publication Number Publication Date
CN112361972A CN112361972A (zh) 2021-02-12
CN112361972B true CN112361972B (zh) 2022-11-01

Family

ID=74532876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011296374.4A Active CN112361972B (zh) 2020-11-18 2020-11-18 一种多层膜厚度及光学特性检测方法

Country Status (4)

Country Link
US (1) US20230304788A1 (zh)
JP (1) JP7519142B2 (zh)
CN (1) CN112361972B (zh)
WO (1) WO2022105223A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112361972B (zh) * 2020-11-18 2022-11-01 华侨大学 一种多层膜厚度及光学特性检测方法
CN112361973B (zh) * 2020-11-18 2022-07-29 华侨大学 一种金刚石薄膜厚度及光学常数检测方法
CN114136896B (zh) * 2021-11-25 2023-07-21 天津津航技术物理研究所 一种光学薄膜光学常数工艺相关性的实验方法
CN118329892A (zh) * 2024-05-10 2024-07-12 重庆颖锋兴瑞光电科技有限公司 一种基于数据分析的光学膜检测方法、系统及存储介质
CN118600386A (zh) * 2024-08-06 2024-09-06 长沙韶光芯材科技有限公司 一种玻璃基板多层膜成膜过程优化方法及系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069703A (en) * 1998-05-28 2000-05-30 Active Impulse Systems, Inc. Method and device for simultaneously measuring the thickness of multiple thin metal films in a multilayer structure
JP3928714B2 (ja) * 2002-09-02 2007-06-13 株式会社堀場製作所 分光エリプソメータを用いた薄膜複数層構造の解析方法
ATE300129T1 (de) * 2002-02-15 2005-08-15 Schleifring Und Appbau Gmbh Optischer drehübertrager mit freiem innendurchmesser
JP4136740B2 (ja) * 2003-03-19 2008-08-20 株式会社堀場製作所 分光エリプソメータを用いた薄膜3層構造の解析方法
US7463355B1 (en) * 2003-06-12 2008-12-09 Scientific Computing International Nondestructive optical technique for simultaneously measuring optical constants and thickness of thin films
CN101051022B (zh) * 2007-04-06 2011-02-09 华南师范大学 一种椭偏测量装置
CN100506527C (zh) * 2007-06-26 2009-07-01 广州有色金属研究院 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法
CN101957502A (zh) * 2010-08-31 2011-01-26 吉林大学 个性化角膜接触镜的设计方法
CN101972135A (zh) * 2010-11-02 2011-02-16 吉林大学 一种个性化晶状体面形数据的检测方法
CN103787585B (zh) * 2014-02-10 2016-01-13 北京美顺达技术开发有限公司 在石英基片上沉积金刚石膜的方法
CN104458589A (zh) * 2014-12-02 2015-03-25 中国航天科工集团第三研究院第八三五八研究所 一种光学薄膜可见光波段光学常数精确标定的方法
CN107504907A (zh) * 2016-06-14 2017-12-22 中国科学院上海光学精密机械研究所 超薄薄膜厚度和光学常数的测量装置和测量方法
CN106706521B (zh) * 2016-12-12 2019-08-16 天津津航技术物理研究所 一种光学薄膜超宽带光学常数测试方法
CN107462530B (zh) * 2017-07-14 2020-07-28 天津津航技术物理研究所 含氢类金刚石薄膜的全光谱段光学常数表征方法
CN108089244A (zh) * 2017-11-20 2018-05-29 天津津航技术物理研究所 一种宽带大角度减反射红外光学多层膜
CN109141259B (zh) * 2018-08-06 2020-06-30 华中科技大学 一种薄吸收膜的光学常数与厚度的测量装置及方法
CN109001122B (zh) * 2018-09-29 2023-05-26 西安工业大学 梯度或渐变折射率薄膜的光学常数测量装置及方法
CN112361972B (zh) * 2020-11-18 2022-11-01 华侨大学 一种多层膜厚度及光学特性检测方法
CN112361973B (zh) 2020-11-18 2022-07-29 华侨大学 一种金刚石薄膜厚度及光学常数检测方法

Also Published As

Publication number Publication date
JP7519142B2 (ja) 2024-07-19
WO2022105223A1 (zh) 2022-05-27
US20230304788A1 (en) 2023-09-28
JP2023546250A (ja) 2023-11-01
CN112361972A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN112361972B (zh) 一种多层膜厚度及光学特性检测方法
US6091485A (en) Method and apparatus for optically determining physical parameters of underlayers
US6392756B1 (en) Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
CN103323403B (zh) 一种低辐射镀膜玻璃的光学参数检测方法
Jellison Jr et al. Sample depolarization effects from thin films of ZnS on GaAs as measured by spectroscopic ellipsometry
CN112881341B (zh) 一种确定有机薄膜光学常数和厚度的方法
US11835447B1 (en) Method for measuring characteristic of thin film
CN112361973B (zh) 一种金刚石薄膜厚度及光学常数检测方法
CN112595673A (zh) 一种单晶金刚石衬底光学常数测量方法
US5717490A (en) Method for identifying order skipping in spectroreflective film measurement equipment
CN111076668A (zh) 用于纳米厚度SiO2厚度的差分反射光谱测量方法
Pustelny et al. Optical investigations on layered metalphthalocyanine nanostructures affected by NO2 applying the surface plasmon resonance method
JPH0712714A (ja) 磁気記録媒体のカーボン保護膜の評価方法
CN103674892B (zh) 一种基于全内反射偏振位相差测量来监控薄膜生长的方法
Hilfiker et al. Using interference enhancement to increase the information content of spectroscopic ellipsometry measurements
CN109596532A (zh) 一种光学基底材料光学常数的测试方法
CN106324740B (zh) 一种宽带吸收薄膜及其制备方法
CN113607658A (zh) 一种基于油膜灰度值获取油膜衰减系数的方法
CN112285063B (zh) 一种超薄金属薄膜红外光学常数的表征方法
RU2772310C1 (ru) Способ определения коэффициентов поглощения прозрачных пленкообразующих материалов
Nikonenko et al. Measurement of the thickness of thin polymer layers by infrared frustrated total internal reflection spectroscopy
RU2694167C1 (ru) Устройство для измерения толщины и диэлектрической проницаемости тонких пленок
Yen et al. Method of Determining Optical Constants of Thin Films Using an Infrared Ellipsometer
SU855448A1 (ru) Способ определени толщины сло и его показателей преломлени и поглощени
Sopinskyy et al. Determination of scattering and Urbach absorption contributions to the light extinction in PTFE films by using graphical representation technique and numerical solution of the inverse problem

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant