CN100506527C - 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法 - Google Patents

金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法 Download PDF

Info

Publication number
CN100506527C
CN100506527C CN 200710028834 CN200710028834A CN100506527C CN 100506527 C CN100506527 C CN 100506527C CN 200710028834 CN200710028834 CN 200710028834 CN 200710028834 A CN200710028834 A CN 200710028834A CN 100506527 C CN100506527 C CN 100506527C
Authority
CN
China
Prior art keywords
metal
layer
dlc
throughput
nanometer multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200710028834
Other languages
English (en)
Other versions
CN101081557A (zh
Inventor
林松盛
代明江
李洪武
朱霞高
侯惠君
林凯生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of New Materials of Guangdong Academy of Sciences
Original Assignee
Guangzhou Research Institute of Non Ferrous Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Research Institute of Non Ferrous Metals filed Critical Guangzhou Research Institute of Non Ferrous Metals
Priority to CN 200710028834 priority Critical patent/CN100506527C/zh
Publication of CN101081557A publication Critical patent/CN101081557A/zh
Application granted granted Critical
Publication of CN100506527C publication Critical patent/CN100506527C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/343Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法。纳米多层膜材料依次由基材(1)、过渡层I和纳米多层膜层II构成,过渡层I由金属层(2)、金属氮化物层(3)和金属碳氮化物层(4)构成,纳米多层膜层II由交替的金属碳化物层(5)和类金刚石层(6)构成。其制备方法:采用Ti、Cr、Zr或W靶,依次轰击清洗基材;沉积金属层;金属氮化物层;金属碳氮化物层;交替沉积金属碳化物/类金刚石纳米层。本发明提供的MeC/DLC纳米多层膜材料的显微硬度较高,达到HV2000~4500,摩擦系数低至0.05~0.25,附着力≥60N。且易于低温及大面积(D600mm×600mm)制备,具有生产效率高,成本低等优点。可显著改善金属材质工模具、零部件的表面性能,提高其使用寿命及加工精度。

Description

金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法
技术领域
本发明涉及一种多层膜材料及其制备方法,特别涉及一种金属碳化物/类金刚石(MeC/DLC)多层膜材料及其制备方法。
背景技术
随着科学技术的进步和生产发展的要求,纳米新材料和表面工程技术在制造业中得到了广泛的应用。从上世纪八十年代以来,采用气相沉积技术在工模具、零部件表面制备TiN、TiCN、TiAlN等高硬、耐磨涂层,可大幅提高其使用性能和寿命,获得了成功的商业应用。但这些单层涂层仍存在硬度不够高、摩擦系数大(0.4~0.8)等不足之处,在一些应用领域尚不能满足工模具和零部件工况高要求的需要。
类金刚石膜(Diamond-like Carbon,简写为DLC)是一种含有金刚石结构的非晶碳膜,由于它具有一系列与金刚石膜相似的优异性能,如较高的硬度、极低的摩擦系数,良好的导热性、耐磨、耐蚀性,以及可实现低温大面积沉积,在光学、电子、声学、医学、机械等领域具有广泛的应用前景,成为近年来研究的热点。目前DLC薄膜的沉积方法主要有离子束、磁控溅射、电弧离子镀等。用离子源离化碳氢化合物(如甲烷、乙炔气等)制备的DLC膜,膜层细腻、硬度高,但与基体结合力差、内应力大,膜厚超过500nm后沉积速率慢,且易剥落。用磁控溅射(石墨源)技术制备的DLC膜,膜层表面光洁、细腻,沉积速率适中,但膜层硬度偏低。用阴极电弧离子镀(石墨源)制备的DLC膜,膜层硬度高,沉积速率快,但膜层表面不够光洁细腻,存在较大颗粒,内应力大,难以在工模具及零部件上获得应用。这些研究表明,提高DLC膜与基体的结合力,降低膜层内应力,实现DLC膜的低温、大面积均匀沉积是实现DLC膜商业应用的关键所在。
发明内容
本发明的目的是克服现有DLC膜技术存在的缺点和不足,提供一种MeC/DLC纳米多层膜材料,该多层膜材料具有较高的显微硬度、低的摩擦系数、牢固的附着力等性能。
本发明的另一个目的是提供一种MeC/DLC纳米多层膜材料的制备方法,该方法满足低温及大面积制备的要求,具有生产效率高,成本低等优点。
本发明是通过以下技术方案实现的:金属碳化物/类金刚石纳米多层膜材料依次由基材1、过渡层I和纳米多层膜层II构成,过渡层I由金属层2、金属氮化物层3和金属碳氮化物层4构成,纳米多层膜层II由交替的金属碳化物层5和类金刚石层6构成。
所述的金属碳化物/类金刚石纳米多层膜材料的基材1为钢铁、钛合金或硬质合金。
所述的金属碳化物/类金刚石纳米多层膜材料的金属为Ti、Cr、Zr或W。
金属碳化物/类金刚石纳米多层膜材料的制备方法是采用Ti、Cr、Zr或W靶,在本底真空:5.0×10-3Pa,温度:150℃,工件架转速:2~10rpm条件下,依次包括以下步骤:
①离子源轰击清洗基材:炉内压强:0.2~1.0Pa,Ar气流量:150sccm,离子源:2kw,偏压:50~1000V,时间:30min;
②制备金属层:炉内压强:0.2~0.4Pa,Ar气流量:150sccm,磁控功率:2.0~10kw,离子源:0.5kw,偏压:50~150V,时间:5~15min;
③制备金属氮化物层:炉内压强:0.3~0.6Pa,Ar气流量:120~150sccm,N2:40~50sccm,磁控功率:5.0~10kw,离子源:0.5kw,偏压:50~150V,时间:15~30min;
④制备金属碳氮化物层:炉内压强:0.4~0.8Pa,Ar气流量:100~150sccm,CH4或C2H2气流量:30~50sccm,N2:5~30sccm,磁控功率:5.0~6.0kw,离子源:0.5kw,偏压:50~150V,时间:15~30min;
⑤制备金属碳化物和类金刚石层:炉内压强:0.6~1.0Pa,Ar气流量:100sccm,CH4或C2H2气流量:50~150sccm,磁控功率:1.0~3.0kw,离子源:2kw,偏压:50~150V,时间:100~150min。
本发明首先采用气体离子源离化氩气在高偏压下对材料表面进行离子轰击清洗。离子束溅射清洗的优点是能量可控范围广,解决了常规辉光放电偏压清洗能量弱,以及电弧离子清洗能量过高易导致材料表面“打弧”和“发蒙”等缺点,能够在维持材料温度足够低的情况下,彻底清除表面杂质异物层。同时抛光表面,改善材料表面微粗糙度,显著提高后续膜层与基体材料的界面结合力。
本发明所述的过渡层包括起粘附作用的金属层Me,起硬度梯度过渡作用的金属氮化物层MeN和金属碳氮化物层MeCN。沉积金属层采用Cr、Ti、Zr等,是因为它们与钢铁、钛合金、硬质合金等材料的结合力好;沉积金属氮化物层TiN、CrN、ZrN等和金属碳氮化物层TiCN、CrCN、ZrCN等,是为了在基材和MeC/DLC多层膜之间建立硬度梯度过渡,降低膜层内应力,提高膜/基结合力及膜层的韧性。
本发明所述的MeC/DLC纳米多层膜是分别利用了物理气相沉积中的磁控溅射技术和离子束技术,利用矩形气体离子源离化碳氢化合物(甲烷、乙炔等)制备DLC膜,同时在含碳气氛下开启磁控溅射金属靶制备MeC膜,通过工件旋转使基材依次停留在离子源和磁控溅射靶前,交替沉积出纳米尺度的MeC膜和DLC膜,由几百到几千个MeC和DLC交替叠加而成。通过控制气体流量、工件转速、离子源及磁控靶功率来控制MeC/DLC多层膜中的单层厚度及调制周期,MeC膜单层厚度为1~5nm,DLC膜单层厚度为2~10nm。借助于材料的纳米尺寸效应,获得的MeC/DLC纳米多层膜克服了单层DLC膜内应力大,难以在材料表面沉积较厚的缺点,其硬度更高,膜/基结合力好,抗冲击性、耐磨损性均比单层DLC膜有大幅提高。
图1为本发明MeC/DLC纳米多层膜结构示意图。图中基材1;过渡层I,包括金属层2、金属氮化物层3、金属碳氮化物层4;金属碳化物/类金刚石多层膜II,包括金属碳化物层5和类金刚石层6。
具体实施方式
实施例1
采用双Ti靶,气体为高纯Ar、N2和CH4,基材为Cr12MoV模具钢。
按表1所列工艺流程和参数依次操作。磁控溅射沉积过渡层Ti/TiN/TiCN的厚度分别为0.2、0.4、0.3μm;磁控溅射和离子束交替沉积的TiC单层膜厚度为1nm,DLC单层膜厚度为3nm,多层膜厚度为3.0μm。膜层总厚度为3.9μm,硬度值为HV2500,膜/基结合力为60N,膜层的摩擦系数为0.12。
表1  实施例1具体工艺流程表
实施例2
采用双Cr靶,气体为高纯Ar、N2和C2H2,基材为Ti6Al4V钛合金。
按表2所列工艺流程和参数依次操作。磁控溅射沉积过渡层Cr/CrN/CrCN,厚度分别为0.1、0.3、0.3μm;磁控溅射和离子束交替沉积多层膜CrC/DLC,沉积的CrC单层膜厚度为1nm,DLC单层膜厚度为2nm,多层膜厚度为2.4μm。膜层总厚度为3.1μm,硬度值为HV2700,膜/基结合力为80N,膜层的摩擦系数为0.1。
表2   实施例2具体工艺流程表
Figure C200710028834D00071
实施例3
采用Cr和W靶,气体为高纯Ar、N2和C2H2,基材为YT5硬质合金。
按表3所列工艺流程和参数依次操作。磁控溅射沉积过渡层Cr/CrN/CrCN,厚度分别为0.2、0.3、0.3μm;磁控溅射和离子束交替沉积多层膜WC/DLC,沉积的WC单层膜厚度为1.5nm,DLC单层膜厚度为3nm,多层膜厚度为2.7μm。膜层总厚度为3.5μm,硬度值为HV4300,膜/基结合力为65N,膜层的摩擦系数为0.12。
表3  实施例3具体工艺流程表
Figure C200710028834D00072
实施例4
采用Cr和Zr靶,气体为高纯Ar、N2和CH4,基材为YG6硬质合金。
按表4所列工艺流程和参数依次操作。磁控溅射沉积过渡层Cr/ZrN/ZrCN,厚度分别为0.1、0.3、0.2μm;磁控溅射和离子束交替沉积多层膜ZrC/DLC,沉积的ZrC单层膜厚度为2nm,DLC单层膜厚度为3nm,多层膜厚度为2.5μm。膜层总厚度为3.1μm,硬度值为HV2400,膜/基结合力为65N,膜层的摩擦系数为0.14。
表4   实施例4具体工艺流程表
Figure C200710028834D00081
注:①膜层厚度采用横截面金相法测量;
②膜层硬度采用维氏显微硬度计测量:载荷10g,加载时间15秒,测三点硬度取平均值;
③膜/基结合力采用薄膜结合强度划痕试验仪测量:加载速度为100N/min,划行速度为4mm/min,划行时间为1分钟;
④膜层摩擦系数采用球-盘式摩擦磨损试验机测量,对磨件材质为GCr15,线速度为0.5m/s,载荷为0.98N。
本发明提供的MeC/DLC纳米多层膜材料的显微硬度较高,达到HV2000~4500,摩擦系数低至0.05~0.25,附着力≥60N,具有优良的性能,且易于低温及大面积(D600mm×600mm)制备,具有生产效率高,成本低等优点。可显著改善金属材质工模具、零部件的表面性能,提高其使用寿命及加工精度。

Claims (4)

1、一种金属碳化物/类金刚石纳米多层膜材料,其特征是依此由基材(1)、过渡层I和纳米多层膜层II构成,过渡层I由金属层(2)、金属氮化物层(3)和金属碳氮化物层(4)构成,纳米多层膜层II由交替的金属碳化物层(5)和类金刚石层(6)构成。
2、根据权利要求1所述的金属碳化物/类金刚石纳米多层膜材料,其特征是所述的基材(1)为钢铁、钛合金或硬质合金。
3、根据权利要求1所述的金属碳化物/类金刚石纳米多层膜材料,其特征是所述的金属为Ti、Cr、Zr或W。
4、一种权利要求1所述的金属碳化物/类金刚石纳米多层膜材料的制备方法,其特征是采用Ti、Cr、Zr或W靶,在本底真空:5.0×10-3Pa,温度:150℃,工件架转速:2~10rpm条件下,依次包括以下步骤:
①离子源轰击清洗基材:炉内压强:0.2~1.0Pa,Ar气流量:150sccm,离子源:2kw,偏压:50~1000V,时间:30min;
②制备金属层:炉内压强:0.2~0.4Pa,Ar气流量:150sccm,磁控功率:2.0~10kw,离子源:0.5kw,偏压:50~150V,时间:5~15min;
③制备金属氮化物层:炉内压强:0.3~0.6Pa,Ar气流量:120~150sccm,N2:40~50sccm,磁控功率:5.0~10kw,离子源:0.5kw,偏压:50~150V,时间:15~30min;
④制备金属碳氮化物层:炉内压强:0.4~0.8Pa,Ar气流量:100~150sccm,CH4或C2H2气流量:30~50sccm,N2:5~30sccm,磁控功率:5.0~6.0kw,离子源:0.5kw,偏压:50~150V,时间:15~30min;
⑤制备金属碳化物和类金刚石层:炉内压强:0.6~1.0Pa,Ar气流量:100sccm,CH4或C2H2气流量:50~150sccm,磁控功率:1.0~3.0kw,离子源:2kw,偏压:50~150V,时间:100~150min。
CN 200710028834 2007-06-26 2007-06-26 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法 Expired - Fee Related CN100506527C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710028834 CN100506527C (zh) 2007-06-26 2007-06-26 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710028834 CN100506527C (zh) 2007-06-26 2007-06-26 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101081557A CN101081557A (zh) 2007-12-05
CN100506527C true CN100506527C (zh) 2009-07-01

Family

ID=38911444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710028834 Expired - Fee Related CN100506527C (zh) 2007-06-26 2007-06-26 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN100506527C (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101768724B (zh) * 2008-12-29 2011-08-03 中国科学院兰州化学物理研究所 在不锈钢上制备薄膜的方法
SG176232A1 (en) * 2009-06-02 2011-12-29 Agency Science Tech & Res Multilayer barrier film
CN102002684B (zh) * 2009-08-31 2014-07-30 日立金属株式会社 滑动部件
WO2011122662A1 (ja) * 2010-03-30 2011-10-06 Ntn株式会社 転がり軸受
CN101823353A (zh) * 2010-04-30 2010-09-08 广州有色金属研究院 一种金属-类金刚石(Me-DLC)纳米复合膜及其制备方法
CN102286723A (zh) * 2011-07-21 2011-12-21 中国第一汽车股份有限公司 一种应用于汽车高合金钢运动摩擦副表面耐磨涂层
CN103160793B (zh) * 2011-12-16 2016-05-25 中国科学院兰州化学物理研究所 超厚TiN-TiCN多层复合薄膜材料的制备方法
CN102626525A (zh) * 2012-03-27 2012-08-08 广州有色金属研究院 一种人工髋关节摩擦副表面膜层及其制备方法
CN102825305A (zh) * 2012-09-18 2012-12-19 上海壳瑞微材料科技有限公司 一种硬质合金基体纳米复合涂层印刷线路板微钻及其制备方法
EP3022327A2 (en) * 2013-07-19 2016-05-25 Oerlikon Surface Solutions AG, Trübbach Coatings for forming tools
CN103510046A (zh) * 2013-09-29 2014-01-15 星弧涂层新材料科技(苏州)股份有限公司 含金属掺杂的类金刚石厚膜及其制备方法
CN105132863A (zh) * 2015-09-11 2015-12-09 兰州空间技术物理研究所 一种缓解复合材料表面金属涂层微裂纹扩展的方法
CN105385999B (zh) * 2015-11-25 2018-03-30 哈尔滨工业大学 延长镜头模具钢循环使用寿命的方法
CN106191794A (zh) * 2016-06-30 2016-12-07 上海材料研究所 钛合金表面超硬减摩耐磨复合膜层的覆层方法及钛合金材料
CN106521493B (zh) * 2016-10-27 2018-11-02 广州今泰科技股份有限公司 一种梯度结构类金刚石薄膜及其制备方法
CN106835040B (zh) * 2017-01-04 2019-01-15 西安交通大学 一种掺金属的类金刚石涂层的制备方法
CN106868504B (zh) * 2017-01-04 2019-02-19 兰州空间技术物理研究所 一种柴油发动机零件表面多层耐磨减摩薄膜及其制备方法
CN107314559B (zh) * 2017-06-14 2019-05-21 常州大成绿色镀膜科技有限公司 光热转换涂层及其制备方法
CN107287571B (zh) * 2017-07-17 2019-11-12 维达力实业(深圳)有限公司 类金刚石薄膜
RU2020108294A (ru) * 2017-08-04 2021-09-07 Эрликон Серфис Сольюшнс Аг, Пфеффикон Компонент трубопроводной арматуры с коррозионно-стойким покрытием поверхностей скольжения
CN107881468B (zh) * 2017-12-06 2018-12-25 周口师范学院 一种印刷电路板加工用涂层微钻刀及其制备方法
CN108070857A (zh) * 2018-02-06 2018-05-25 苏州涂冠镀膜科技有限公司 超厚dlc涂层
CN110760798A (zh) * 2018-07-27 2020-02-07 比亚迪股份有限公司 电子产品壳体及其制备方法
CN109023243B (zh) * 2018-09-18 2020-09-01 岭南师范学院 一种超强韧、低摩擦碳基刀具涂层及其制备方法
CN111305755B (zh) * 2018-12-12 2022-03-08 中国石油化工股份有限公司 一种高温磨料射流钻井系统及钻井方法
CN109609919A (zh) * 2018-12-27 2019-04-12 广东省新材料研究所 一种复合类金刚石薄膜及其制备方法
CN111575660B (zh) * 2019-02-18 2022-01-25 中国石油化工股份有限公司 一种纳米多层膜及其制备方法
SG11202109137XA (en) * 2019-03-15 2021-09-29 Nanofilm Tech International Limited Improved coating processes
CN110777341B (zh) * 2019-07-22 2021-06-15 浙江工业大学 一种DLC/CNx/MeN/CNx纳米多层膜及其制备方法
CN111057995A (zh) * 2019-12-25 2020-04-24 上海子创镀膜技术有限公司 一种取代金靶的玫瑰金色系调试镀膜技术
CN111020513B (zh) * 2019-12-30 2022-01-07 西安理工大学 一种提高纳米金属多层膜韧性的方法
CN111850484B (zh) * 2020-07-24 2022-05-17 太原理工大学 一种制备强韧化非晶碳基多相杂化薄膜的装置及方法
CN111910151A (zh) * 2020-08-14 2020-11-10 广东省新材料研究所 一种子弹体、其制备方法及医疗器械
CN112361972B (zh) * 2020-11-18 2022-11-01 华侨大学 一种多层膜厚度及光学特性检测方法
CN114686829B (zh) * 2020-12-29 2024-08-09 苏州吉恒纳米科技有限公司 一种耐磨耐疲劳和反复冲击的涂层及生产工艺
CN113529051B (zh) * 2021-07-16 2023-05-23 长鑫存储技术有限公司 在机台零件上形成纳米涂层的方法及纳米涂层
CN113718252A (zh) * 2021-09-03 2021-11-30 科汇纳米技术(深圳)有限公司 Tc4材料表面镀制类金刚石保护层的方法、tc4材料及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
类金刚石膜的性能及其在模具上的应用. 代明江,林松盛,候惠君,李洪武.模具制造技术,第9期. 2005
类金刚石膜的性能及其在模具上的应用. 代明江,林松盛,候惠君,李洪武.模具制造技术,第9期. 2005 *

Also Published As

Publication number Publication date
CN101081557A (zh) 2007-12-05

Similar Documents

Publication Publication Date Title
CN100506527C (zh) 金属碳化物/类金刚石(MeC/DLC)纳米多层膜材料及其制备方法
Khadem et al. Tribology of multilayer coatings for wear reduction: A review
Ou et al. Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering
Nordin et al. Mechanical and tribological properties of multilayered PVD TiN/CrN
Wei et al. Effects of pulsed bias duty ratio on microstructure and mechanical properties of TiN/TiAlN multilayer coatings
JP7507766B2 (ja) 耐食性カーボンコーティング
CN104087898B (zh) 一种具有超高硬度、低摩擦系数的TiSiCN纳米复合涂层及制备方法
CN111183269B (zh) 具有耐蚀滑动面的涂覆阀门部件
Hong et al. Effects of Cr interlayer on mechanical and tribological properties of Cr-Al-Si-N nanocomposite coating
Luo et al. Tribological properties of unbalanced magnetron sputtered nano-scale multilayer coatings TiAlN/VN and TiAlCrYN deposited on plasma nitrided steels
CN102080207A (zh) 一种DLC/TiAlN/CrN/Cr多层超硬膜涂层及其制备方法
Zhang et al. Improving the mechanical and anti-wear properties of AlTiN coatings by the hybrid arc and sputtering deposition
JP7382124B2 (ja) 改良されたコーティングプロセス
CN108728802B (zh) 多层耐高温Ti/Zr共掺杂类金刚石涂层及其制备方法
CN107937873A (zh) 碳掺杂的过渡金属硼化物涂层、碳‑过渡金属硼化物复合涂层、制备方法及应用和切削工具
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
CN107058943A (zh) TiCN/CrCN纳米多层膜及其制备方法
CN111500982A (zh) 一种四面体非晶碳复合涂层及其制备方法
Kolawole et al. The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study
CN103009697B (zh) 一种自润滑梯度复合超硬膜及其制备方法
Naghashzadeh et al. Nanoindentation and tribological behavior of TiN-TiCN-TiAlN multilayer coatings on AISI D3 tool steel
US20240093344A1 (en) Hard carbon coatings with improved adhesion strength by means of hipims and method thereof
Liu et al. Effect of duty cycle on microstructure and mechanical properties of AlCrN coatings deposited by HiPIMS
JP2007277663A (ja) 摺動材
CN109930108A (zh) 一种高温耐磨自润滑TiB2基涂层及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180124

Address after: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No.

Patentee after: GUANGDONG INSTITUTE OF NEW MATERIALS

Address before: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No.

Patentee before: GUANGZHOU Research Institute OF NON FERROUS METALS

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No.

Patentee after: Institute of new materials, Guangdong Academy of Sciences

Address before: 510651 Changxin Road, Guangzhou, Guangdong, No. 363, No.

Patentee before: GUANGDONG INSTITUTE OF NEW MATERIALS

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090701