CN1123583C - 人工关节用超高分子量聚乙烯成形物及其制造方法 - Google Patents

人工关节用超高分子量聚乙烯成形物及其制造方法 Download PDF

Info

Publication number
CN1123583C
CN1123583C CN95190923A CN95190923A CN1123583C CN 1123583 C CN1123583 C CN 1123583C CN 95190923 A CN95190923 A CN 95190923A CN 95190923 A CN95190923 A CN 95190923A CN 1123583 C CN1123583 C CN 1123583C
Authority
CN
China
Prior art keywords
uhmwpe
weight polyethylene
molecular weight
shaping thing
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95190923A
Other languages
English (en)
Other versions
CN1135762A (zh
Inventor
玄丞烋
冈正典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMG Inc
Original Assignee
BMG Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMG Inc filed Critical BMG Inc
Publication of CN1135762A publication Critical patent/CN1135762A/zh
Application granted granted Critical
Publication of CN1123583C publication Critical patent/CN1123583C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/085Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/16Forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0087Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及具有分子取向或结晶取向的人工关节用超高分子量聚乙烯成形物及其制造方法,用低剂量的放射线照射超高分子量聚乙烯以便在其分子链中导入很微量的交联点,然后在其熔点附近的高温将其熔融并使其压缩变形,然后将其冷却固化,从而获得在低摩擦性和耐磨损性方面优良的聚乙烯成形物。

Description

人工关节用超高分子量聚乙烯 成形物及其制造方法
技术领域
本发明涉及具有分子取向和结晶取向的,适合人工关节使用的超高分子量聚乙烯成形物及其制造方法。
背景技术:
人工关节,自其开发并临床应用于为关节疾病而苦恼的患者以来,至今已经过了30年以上的岁月。在这段期间内,许多卧床的慢性关节风湿病患者重新能够步行,从而复归社会,人工关节在社会福利方面所带来的恩惠是十分巨大的。然而,另一方面,由于人工关节手术的并发症,特别是人工关节的“松弛”的高发生率和伴随着人工关节周围的骨破坏,产生了必须再次进行手术的深刻问题。
人工关节是指:人工股关节、人工膝关节和人工肘关节、人工指关节、人工肩关节等。在这些人工关节中,人工股关节和人工膝关节要承受数倍于体重的重力,因此要求具有高的力学强度。因此,现在的人工关节材料都是由金属制或陶瓷制的硬质材料和超高分子量聚乙烯(UHMWPE)的软质臼(ソケツト)构成。虽然构成这种臼的UHMWPE与聚四氟乙烯及聚碳酸酯等高分子材料相比,其耐磨损性优良,但是,在生物机体的关节软骨本身所具有的低磨损性、对冲击负荷的应力缓和等特性方面,其性能低劣,另外,由于UHMWPE制的人工臼的磨损粉末而会导致巨噬细胞的增生,由此产生的不良肉芽组织而引起骨吸收,从而成为所谓异物反应的深刻问题。
自从人工关节开发以来,关于硬质材料,例如无粘结剂的人工关节等,在材质和设计等方面也有一些改进,然而关于软质的人工臼部分,除了采用UHMWPE之外,与30年前相比,没有多大的进步。因此,这些人工关节经过长期的连续使用,由于金属等硬质材料与人工臼的UHMWPE之间的摩擦而产生无数的聚乙烯磨损粉末。如果考虑到这种磨损粉末引起的异物肉芽组织所造成的骨破坏,则必须进一步提高其耐磨损性。试图降低UHMWPE的磨损,可以考虑从硬质材料的选择和UHMWPE的改良入手。为了改良UHMWPE,有人尝试用超高剂量的γ射线照射,但结果表明,其磨损系数上升,磨损量没有减少。另外,由于在进一步提高UHMWPE的分子量等方面的改良,现在已能够将UHMWPE的重均分子量提高至500万~800万,在此以上的超高分子量聚合物的制造是困难的,而且,即使能够合成例如1000万重均分子量的聚合物,要想飞跃地提高其力学性质的希望也是很微小的。这样,如果考虑到通过UHMWPE的化学改性法来提高其力学性质已经达到了极限,那末,要想获得更耐磨损的低磨擦的UHMWPE成形物将被认为是困难的。
1930年代,杜邦的卡洛札斯(加-ザス)在世界上首先开发了作为合成纤维的尼龙,在工业上做出了重大的贡献,这是公知的事实。作为用于提高这种合成纤维的力学特性的手段,在工业上可以采用沿纤维轴向的单轴延伸法。另外,为了提高薄膜或薄板的强度,在工业上可以采用双轴延伸法或压延法。这些方法可以使分子或结晶进行单轴取向或双轴取向,是一种可以显著地提高其力学性质的方法。
因此,为了提高力学性质,可以考虑使结构中的分子或结晶进行取向,然而,要使块状的大块成形物中的分子或结晶进行取向,按现在的技术完全是不可能的,因此可以认为,这种方法是不容易实现的。
因此,本发明者们不是通过化学改性法而是通过物理改性法向最终成形物中导入分子取向或结晶取向,试图借此获得低摩擦的成形物和提高其耐磨损性。
不用说在日本国内,就连在国外也全然没有做过这种尝试,因此,在人工关节聚乙烯成形物中赋予分子取向和结晶取向的这种构思是有独创性的,如果按本发明实施,则适用于全世界的人工关节这一点是确实无疑的。另外,过去30年间成为问题的缺点已获得改进,这种改进已成为革命性的技术改革。
发明内容
本发明涉及一种具有分子取向或结晶取向的人工关节用超高分子量聚乙烯(UHMWPE)成形物及由该UHMWPE成形物构成的人工关节,该UHMWPE成形物具有结晶取向或高分子链在压缩方向上垂直取向的分子取向,是通过交联分子量200万~800万的超高分子量聚乙烯块料,将该块料在受热下进行压力处理使该块料变形,然后冷却该块料制成的。
这种具有分子取向或结晶取向的UHMWPE成形物的制备方法包括下列步骤:用剂量为0.01~5MR的高能射线照射分子量为200万~800万的超高分子量聚乙烯成形物,借此向其分子链中导入极微量的交联点以使其微量交联,然后将该交联的超高分子量聚乙烯成形物加热至能发生压缩变形的温度以使其压缩变形,在保持该变形状态下将其冷却。
本发明的具有分子取向或结晶取向的UHMWPE成形物(以下称为“取向UHMWPE成形物”)是一种低摩擦的物质,而且其耐磨性获得了明显的提高,而由取向UHMWPE成形物构成的人工关节具有光滑性,是一种减低了磨损量的人工关节。
以下叙述用于实施本发明的最佳实施方案。
本发明的取向UHMWPE成形物是一种在其成形物内具有分子取向或结晶取向的物质。所谓在成形物内具有分子取向是指其高分子链按照垂直于压缩方向,也就是按照分子链的流动方向进行取向,而所谓具有结晶取向是指聚乙烯结晶的(200)面和(110)面等按照平行于压缩面的方向进行取向,也就是结晶面取向。另外,具有这些取向的这一事实可通过双折射测定、红外线吸收光谱和X射线衍射而得知。由于具有这些取向,因此使得成形物的摩擦系数变小,而且磨损量降低。另外,其他的机械性质,例如抗拉强度和拉伸系数得以提高,密度和热性质(熔点、熔融性)等也得以提高。
如上所述,本发明的取向UHMWPE成形物是通过用高能射线照射原料UHMWPE,加热使其压缩成形,然后将其冷却固化而制得。
作为原料UHMWPE,可以合用重均分子量为200万~800万,优选500万~700万的物质。该物质的熔点约为136~139℃。所用的原料UHMWPE通常为块状,但也可以是棒状。
作为照射用的高能射线,可以举出以γ射线和X射线等放射线为首,以及电子射线、中子射线等所有的高能射线,但从照射装置的通用性和通过材料的穿透性这两点来考虑,优选是γ射线。这种高能射线的照射可在UHMWPE的分子链中造成交联点,从而在分子间形成交联键。交联密度以能够保证较大的弹性变形,同时又不妨碍结晶化程度的极微量的交联点为住,例如,优先是在每一分子中有0.1~10个,特别优选有1~2个交联点。
照射气氛中如果存在氧气,则会引起分解(断裂),因此不好,所以优选是在真空中或N2或氩等惰性气氛中进行。气氛的湿度可以是室温,但也可以是结晶转变点(80℃)以上的高温。
射线的剂量(能量)非常重要。如果照射剂量过高,则交联密度过大,从而使得在后续工序中的变形量增大并使交联结构破坏。因此,即使在熔融状态下,如果不能赋予为了获得所需分子取向或结晶取向所必要程度的弹性变形,则其结果是必定使变形的程度减小,因此在成形物的分子链中不能达到必要的分子取向或结晶取向。另一方面,如果照射剂量过低或者是不照射,则在熔融状态下使UHMWPE成形物变形时,由于粘性流动的作用而使分子链在尚未伸开的状态下就已结束了流动和塑性变形,其结果是不能获得分子取向或结晶取向。优选的照射剂量(能量)是可获得上述交联密度的剂量,该照射剂量为0.01~5.0MR,优选为0.1~3MR。
通过高能射线照射而达到微量交联的UHMWPE成形物,由于交联作用而使其重均分子量达到无限大,其熔点没有太大变化,为136~139℃。
然后将该微量交联的UHMWPE成形物加热至可能发生压缩变形的温度。所谓可能发生压缩变形的温度是指在交联的UHMWPE的熔点附近或熔点以上的温度,具体地说是从熔点下50℃至熔点上80℃。优选是加热至熔点以上,特别是加热至160~220℃,更优先是180~200℃,但最合适是加热至使其完全熔化。然而,即使在熔点附近,例如在100~130℃下也能赋予压缩变形。一旦完全熔化则交联的UHMWPE成形物成为橡胶状态并具有橡胶弹性,因此容易发生压缩变形。
压缩变形可以在根据用途而不同的金属模型中进行,也可以使用热压机,一边加热至上述的温度,一边在30~200kgf/cm2,通常在50~100kgf/cm2的压力下进行。压缩的程度,在块状成形物的情况下,以压缩到原来厚度的1/3~1/10即已足够。本发明中的交联UHMWPE成形物的变形,由于在分子链中具有微量的交联因此呈现橡胶弹性变形,如果在其分子链伸开并获得必要分子取向的状态下冷却使其结晶化,就可获得结晶取向。另一方面,对于未交联,也就是未照射的UHMWPE成形物来说,一旦加热压缩至其熔点以上的温度就已结束了流动变形,因此不能获得分子取向或结晶取向。
然后,如上所述,把通过压缩变形而获得了分子取向或结晶取向的UHMWPE成形物在保持其变形状态下冷却固化。如果在其固化之前即解除其变形状态,则由于是熔融压缩变形,所以使伸开的分子链获得应力缓和,恢复了原来的状态。结果,UHMWPE成形物中原分子取向或结晶取向立即减缓。因此,在固化之前不要解除其变形状态。
作为冷却方法,除了自然放冷之外,还有水冷和空冷等急冷方法,将其冷却至室温,优选是冷却至20~40℃附近。另外,冷却速度对最终所获成形物的结晶性,特别是对其结晶化度有大的影响,为了获得优良的力学性质,可以按照10℃/分,优选是按1℃/分的条件等速地冷却。另外,固化的结束可以通过压力表数值的减小(因结晶化结束后体积会收缩)来确认。
另外,不要把经过压缩变形的UHMWPE成形物立即冷却,而是在保持其变形状态下,在100~130℃,优选在110~120℃附近进行1~20小时,优选5~10小时的等温结晶化,然后可以将其冷却至室温,优选冷却至40℃,从而使其固化。进行等温结晶化的优点是可以增大结晶化度并提高其力学性质。等温结晶化后的冷却沿有特别限定,但优选是按照1℃/分的速度冷却。
冷却固化后获得的,具有分子取向或结晶取向的UHMWPE成形物的熔点为135~155℃。
可以用按照以上方法获得的压缩成形物通过切削等加工而成形为人工关节用的臼,但也可以使用凸形和凹形这种形状的金属模通过压缩变形来进行金属模成形。另外,还可以对通过切削压缩变形成形物所获得的人工关节用UHMWPE成形物注入钛、锆、铁、钼、铝和/钴等金属离子,以进一步提高其表面硬度。
以下举出制造例和实施例来具体地解释本发明。
具体实施方式
制造例1~3
将一种重均分子量约为600万,熔点为138℃的UHMWPE块体(厚3cm、宽5cm、长5cm)放入玻璃瓶中,在真空下减压(10-2~10-3mmHg),然后将该玻璃瓶密封。将该玻璃瓶在25℃下用钴-60的γ射线照射0.5MR。然后,将该经过放射线照射的UHMWPE块体(熔点:138℃,重均分子量:无限大)从玻璃瓶中取出,用热压机在200℃下使该UHMWPE完全熔融,然后对其施加50Kgf/cm2的压力以将其压缩至原来厚度的1/3、1/4.5和1/6,并在保持该变形状态的条件下通过自然放冷而使其冷却至室温。
比较制造例1~3
把在制造例1~3中使用的原料UHMWPE块体按照未照射的原本状态,同样地用一台热压机在200℃下使其完全熔融,以此将其压缩至原来厚度的1/3、1/4.5和1/6,在保持该变形状态的条件下通过自然放冷而使其冷却至室温。
制造例4~6
除了将制造例1中的γ射线的照射剂量改变为1.0MR、1.5MR和2.0MR之外,同样地将其压缩变形至原来厚度的1/3,将其放冷,从而获得经照射的UHMWPE成形物。1.0MR照射物、1.5MR照射物和2.0MR照射物的重均分子量均为无限大,它们的熔点几乎恒定为138℃。
制造例7
在制造例1中进行γ射线照射(0.5MR)后,除了加热至130℃和在200Kgf/cm2的压力下保持5分钟以将其压缩变形至1/3之外,其他按同样的操作,获得了照射的UHMWPE成形物。
制造例8
在制造例1中,除了在压缩成形后以120℃进行10小时的等温结晶化然后放冷之外,其他按同样的方法获得经照射的UHMWPE成形物。
实施例1
把在制造例1~8和比较制造例1~3中获得的UHMWPE成形物通过切削而制成一种厚7mm,直径7mm的试验片,按照以下的方法测定其摩擦力和磨损量并评价其摩擦系数和磨损系数。
试验装置和试验条件:在试验中使用京都大学生体医疗工学研究センタ-制的一方向型Pin-On-disc摩擦磨耗试验机。
一方向型试验机是一种按臂式荷重法将试验片压在一个顺时针方向旋转的陶瓷转盘面上的设备。可以通过施加于臂的一端的重量而改变荷重值。转盘的旋转是由变换器控制的电动机的旋转,通过皮带传达到轴承而使其旋转的。将试验速度设定为50mm/s。另外,所有的试验都是在50ml的生理食盐水中进行48小时,试验时的液体温度保持25±2℃。
摩擦力和磨损量的测定方法:摩擦力是用一个安装在试验机臂部上的杠杆或动力计来测定。一台笔式记录仪连续地记录摩擦力。试验结果(表1)示出的摩擦系数是在摩擦距离为8640m(试验开始48小时后)测得的数值。
磨损量的测定是以1MPa的力将试验片压在一个氧化锆制的转盘上,用一台非接触型静电容量变位计来测定试验片厚度的减小值,然后评价其磨损量。
该试验是将各个试验片对各种荷重条件皆进行3次试验,然后根据其平均值求出摩擦系数和磨损系数。在此情况下,按意图将氧化锆制的转盘表面作为Ra:0.2~0.3的粗面,测定48小时后的磨损量。
磨损系数和摩擦系数根据杜生(Dowson)公式求出。
磨损系数(WF)=磨损量(mm3)/{荷重(N)
×滑动距离(m)}
摩擦系数(CF)=摩擦力(N)/荷重(N)
结果示出在表1中。未照射试样在变形时的压缩比(原来的厚度/压缩变形后的厚度)为3时的磨损系数(WF)等于15.3×10-7,压缩比为4.5时WF等于16.4×10-7,压缩比为6时WF等于14.9×10-7,其数值几乎没有差别。然而,对于经过0.5MR照射的试样,压缩比为3时的WF等于9.07×10-7,压缩比为4.5时WF等于2.78×10-7,压缩比为6时WF等于5.31×10-8,可以看出其数值明显地降低。
实施例2
在制造例3和比较制造例3中获得的UHMWPE成形物的物理性质示于表2中。
熔融热和熔点,使用(株)岛津制作所制的DSC-50,按10℃/min的升温速度进行测定。另外,抗拉强度和弹性率,使用(株)岛津制作所制的自动绘图仪-100,按100%/min的拉伸速度进行测定。
如表2所示,与由比较制造例3的未照射试验获得的UHMWPE成形品相比,由制造例3的0.5MR照射试验获得的UHMWPE成形品的密度和熔点都提高了,抗拉强度和弹性率也都增加了。特别明显的是其熔点由原来的138.0℃提高至149.5℃。
                                                表1
制造例  照射剂量MR     压缩变形 冷  却     磨损系数(WF)     摩擦系数(CF)
    温度℃     压缩比
12345678  0.50.50.51.01.52.01.01.0     200200200200200200130200     34.5633333     放冷放冷放冷放冷放冷放冷放冷120℃10小时等温结晶化后放冷     9.07×10-72.78×10-75.31×10-87.35×10-74.62×10-78.31×10-89.64×10-72.53×10-8     0.110.080.030.040.020.010.120.01
比较制造例123 --- 200200200 34.56 放冷放冷放冷 15.3×10-716.4×10-714.9×10-7 0.140.150.12
                                                  表2
试样   密度(g/cm3)   熔融热(cal/g)   溶点(℃)   抗拉强度(kg/cm2)   弹性率(kg/cm2)
 比较制造例3 0.931 31.6 138.0 0.3×103 1.36×104
 制造例3   0.948   39.2   149.5   1.3×103   1.95×104
工业上利用的可能性
由本发明获得的人工关节用超高分子量聚乙烯成形物,在该成形物中具有分子取向或结晶取向,具有低摩擦性并且其耐磨损性优良,可以作为人工关节的臼使用。
另外,本发明的人工关节用超高分子量聚乙烯成形物可以作为人工股关节用臼(人工臼盖)、人工膝关节用臼(人工臼)以及人工肘关节用臼等使用,除此之外,不仅可作为医疗用材料,而且可以有效地利用它所具有的低摩擦和耐磨损性的特性,作为工业用材料应用。

Claims (6)

1.超高分子量聚乙烯成形物,具有结晶取向或高分子链在压缩方向上垂直取向的分子取向,是通过交联分子量200万~800万的超高分子量聚乙烯块料,将该块料在受热下进行压力处理使该块料变形,然后冷却该块料制成的。
2.如权利要求1所述的成形物,其中所说具有结晶取向或高分子链在压缩方向上垂直取向的分子取向的超高分子量聚乙烯被剂量为0.01~5MR的γ射线辐射交联。
3.如权利要求1所述的成形物,其中所说具有结晶取向或高分子链在压缩方向上垂直取向的分子取向超高分子量聚乙烯成形物的熔点为135~155℃。
4.由权利要求1所述成形物构成的人工关节。
5.一种具有结晶取向或高分子链在压缩方向上垂直取向的分子取向的超高分子量聚乙烯成形物的制造方法,该方法包括下列步骤:用剂量为0.01~5MR的高能射线照射分子量为200万~800万的超高分子量聚乙烯成形物,借此向其分子链中导入极微量的交联点以使其微量交联,然后将该交联的超高分子量聚乙烯成形物加热至能发生压缩变形的温度以使其压缩变形,在保持该变形状态下将其冷却。
6.如权利要求5所述的制造方法,其中所说能发生压缩变形的温度为从交联超高分子量聚乙烯的熔点以下50℃至熔点以上80℃范围内的温度。
CN95190923A 1994-09-21 1995-09-18 人工关节用超高分子量聚乙烯成形物及其制造方法 Expired - Lifetime CN1123583C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP254564/1994 1994-09-21
JP25456494 1994-09-21
JP254564/94 1994-09-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CNA031524982A Division CN1478812A (zh) 1994-09-21 1995-09-18 人工关节用超高分子量聚乙烯成形物及其制造方法

Publications (2)

Publication Number Publication Date
CN1135762A CN1135762A (zh) 1996-11-13
CN1123583C true CN1123583C (zh) 2003-10-08

Family

ID=17266807

Family Applications (2)

Application Number Title Priority Date Filing Date
CN95190923A Expired - Lifetime CN1123583C (zh) 1994-09-21 1995-09-18 人工关节用超高分子量聚乙烯成形物及其制造方法
CNA031524982A Pending CN1478812A (zh) 1994-09-21 1995-09-18 人工关节用超高分子量聚乙烯成形物及其制造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA031524982A Pending CN1478812A (zh) 1994-09-21 1995-09-18 人工关节用超高分子量聚乙烯成形物及其制造方法

Country Status (9)

Country Link
US (2) USRE44762E1 (zh)
EP (1) EP0729981B1 (zh)
JP (2) JP3563075B2 (zh)
KR (1) KR100293587B1 (zh)
CN (2) CN1123583C (zh)
AU (1) AU693260B2 (zh)
CA (2) CA2177042C (zh)
DE (1) DE69525924T2 (zh)
WO (1) WO1996009330A1 (zh)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
CA2166450C (en) * 1995-01-20 2008-03-25 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US8865788B2 (en) * 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US8563623B2 (en) * 1996-02-13 2013-10-22 The General Hospital Corporation Radiation melt treated ultra high molecular weight polyethylene prosthetic devices
CZ295935B6 (cs) * 1996-02-13 2005-12-14 Massachusetts Institute Of Technology Radiačně modifikovaný polyethylen o velmi vysoké molekulové hmotnosti, způsob jeho výroby a lékařská protéza a průmyslový výrobek z něj zhotovené
US20020156536A1 (en) * 1996-02-13 2002-10-24 Harris William H. Polyethylene hip joint prosthesis with extended range of motion
US5879400A (en) 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
EP0935446B1 (en) * 1996-07-09 2007-02-07 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6017975A (en) 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
WO1998016258A1 (en) * 1996-10-15 1998-04-23 The Orthopaedic Hospital Wear resistant surface-gradient cross-linked polyethylene
IT1298376B1 (it) * 1997-12-16 2000-01-05 Samo Spa Trattamento di reticolazione e sterilizzazione per la produzione di manufatti in polietilene ad elevate caratteristiche tribologiche,
JP4503114B2 (ja) * 1998-06-10 2010-07-14 デピュイ・オルソペディックス・インコーポレイテッド 架橋成形したプラスチック支持体
US6692679B1 (en) 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
DE60028370T2 (de) 1999-04-21 2007-05-03 Howmedica Osteonics Corp. Verfahren zur herstellung einer selektiv vernetzten medizinischen prothese aus polyethylen, sowie eine dergestalt hergestellte prothese
US6245276B1 (en) 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6627141B2 (en) 1999-06-08 2003-09-30 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6432349B1 (en) 1999-06-29 2002-08-13 Zimmer, Inc. Process of making an articulating bearing surface
US6143232A (en) * 1999-07-29 2000-11-07 Bristol-Meyers Squibb Company Method of manufacturing an articulating bearing surface for an orthopaedic implant
US6184265B1 (en) 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
KR100358191B1 (ko) 2000-02-16 2002-10-25 한국과학기술원 시멘트 사용 인공관절 스템용 자켓 및 이것을 구비한 인공관절
KR100358193B1 (ko) 2000-02-16 2002-10-25 한국과학기술원 시멘트 비사용 인공관절 스템용 플라스틱 자켓 및 이것을 구비한 인공관절
US6395799B1 (en) 2000-02-21 2002-05-28 Smith & Nephew, Inc. Electromagnetic and mechanical wave energy treatments of UHMWPE
WO2001080772A1 (en) * 2000-04-21 2001-11-01 Behrooz Tohidi Wear-resistant artificial joint
US7678151B2 (en) * 2000-05-01 2010-03-16 Ek Steven W System and method for joint resurface repair
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US6610067B2 (en) * 2000-05-01 2003-08-26 Arthrosurface, Incorporated System and method for joint resurface repair
US7163541B2 (en) 2002-12-03 2007-01-16 Arthrosurface Incorporated Tibial resurfacing system
US7896883B2 (en) 2000-05-01 2011-03-01 Arthrosurface, Inc. Bone resurfacing system and method
US6520964B2 (en) 2000-05-01 2003-02-18 Std Manufacturing, Inc. System and method for joint resurface repair
US7713305B2 (en) 2000-05-01 2010-05-11 Arthrosurface, Inc. Articular surface implant
US20040230315A1 (en) * 2000-05-01 2004-11-18 Ek Steven W. Articular surface implant
US6503439B1 (en) 2000-06-15 2003-01-07 Albert H. Burstein Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof
AU778259C (en) * 2000-07-14 2006-09-14 Depuy Orthopaedics, Inc. Method for compression molding a cross-linked preform
EP1304980B1 (en) * 2000-07-31 2007-05-16 Massachusetts General Hospital Monopolar constrained acetabular component
US6818172B2 (en) * 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
JP2004509717A (ja) * 2000-09-29 2004-04-02 デピュイ オーソピーディックス,インコーポレイテッド 照射ポリエチレンの超臨界流体治療
US6626947B2 (en) 2000-10-03 2003-09-30 Depuy Orthopaedics, Inc. Press fit acetabular cup and associated method for securing the cup to an acetabulum
US6547828B2 (en) 2001-02-23 2003-04-15 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US6652586B2 (en) * 2001-07-18 2003-11-25 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
US7182784B2 (en) * 2001-07-18 2007-02-27 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
JP2005511216A (ja) * 2001-12-12 2005-04-28 デピュイ・プロダクツ・インコーポレイテッド 整形外科装置およびその作製方法
WO2003059200A1 (en) * 2002-01-04 2003-07-24 Massachusetts General Hospital A high modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt
US7186364B2 (en) * 2002-01-28 2007-03-06 Depuy Products, Inc. Composite prosthetic bearing constructed of polyethylene and an ethylene-acrylate copolymer and method for making the same
US7819925B2 (en) 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
AU2003202796B2 (en) * 2002-01-29 2008-09-11 Plus Orthopedics Ag Sintering ultrahigh molecular weight polyethylene
WO2003089501A1 (en) * 2002-04-19 2003-10-30 Gammatron (Pty) Ltd Method of increasing the hydrostatic stress strength of a polymer
EP1369094B1 (de) 2002-05-31 2014-11-26 Zimmer GmbH Implantat und Verfahren zur Herstellung eines steril verpackten Implantats
CA2429930C (en) 2002-06-06 2008-10-14 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US20040002770A1 (en) * 2002-06-28 2004-01-01 King Richard S. Polymer-bioceramic composite for orthopaedic applications and method of manufacture thereof
US6593451B1 (en) 2002-10-09 2003-07-15 Pragtech, Inc. Method of processing polyacrylonitrile
US20040070107A1 (en) * 2002-10-09 2004-04-15 Pragtech, Inc. Method of making lubricious polyacrylonitrile artificial joint components and resulting product
WO2004037119A2 (en) * 2002-10-23 2004-05-06 Mako Surgical Corp. Modular femoral component for a total knee joint replacement for minimally invasive implantation
US7901408B2 (en) * 2002-12-03 2011-03-08 Arthrosurface, Inc. System and method for retrograde procedure
US8388624B2 (en) 2003-02-24 2013-03-05 Arthrosurface Incorporated Trochlear resurfacing system and method
US7938861B2 (en) 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
AT412969B (de) * 2003-05-19 2005-09-26 Klaus Dr Lederer Vernetztes, ultra-hochmolekulares polyethylen (uhmw-pe)
US20040262809A1 (en) * 2003-06-30 2004-12-30 Smith Todd S. Crosslinked polymeric composite for orthopaedic implants
JP2007512108A (ja) 2003-11-20 2007-05-17 アースロサーフィス・インコーポレーテッド 表面再形成デバイスの退歩的配送
US7951163B2 (en) 2003-11-20 2011-05-31 Arthrosurface, Inc. Retrograde excision system and apparatus
AU2006203909A1 (en) 2003-11-20 2006-07-13 Arthrosurface, Inc. System and method for retrograde procedure
US20050133949A1 (en) * 2003-12-19 2005-06-23 Pragtech, Inc. Polymer solidification and coating process
US7378144B2 (en) * 2004-02-17 2008-05-27 Kensey Nash Corporation Oriented polymer implantable device and process for making same
US20100191292A1 (en) * 2004-02-17 2010-07-29 Demeo Joseph Oriented polymer implantable device and process for making same
EP1765201A4 (en) 2004-06-28 2013-01-23 Arthrosurface Inc SYSTEM FOR THE BENDING AREA
US7384430B2 (en) * 2004-06-30 2008-06-10 Depuy Products, Inc. Low crystalline polymeric material for orthopaedic implants and an associated method
US7547405B2 (en) 2004-10-07 2009-06-16 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US8262976B2 (en) 2004-10-07 2012-09-11 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7344672B2 (en) 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7462318B2 (en) * 2004-10-07 2008-12-09 Biomet Manufacturing Corp. Crosslinked polymeric material with enhanced strength and process for manufacturing
US7828853B2 (en) 2004-11-22 2010-11-09 Arthrosurface, Inc. Articular surface implant and delivery system
US7879275B2 (en) * 2004-12-30 2011-02-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7896921B2 (en) * 2004-12-30 2011-03-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7883653B2 (en) 2004-12-30 2011-02-08 Depuy Products, Inc. Method of making an implantable orthopaedic bearing
WO2006138247A2 (en) * 2005-06-14 2006-12-28 Omni Life Science, Inc Crosslinked polyethylene article
US7538379B1 (en) * 2005-06-15 2009-05-26 Actel Corporation Non-volatile two-transistor programmable logic cell and array layout
US8034113B2 (en) * 2005-09-27 2011-10-11 Randall Lane Acker Joint prosthesis and method of implanting same
US8012214B2 (en) 2005-09-27 2011-09-06 Randall Lane Acker Joint prosthesis
BRPI0619637A2 (pt) * 2005-12-22 2011-10-04 Dsm Ip Assets Bv produto de reparo cirúrgico compreendendo filamentos uhmwpe
CN101616782A (zh) 2006-10-30 2009-12-30 施乐辉骨科用品股份公司 包括交联聚乙烯或使用已交联聚乙烯的方法
US9358029B2 (en) 2006-12-11 2016-06-07 Arthrosurface Incorporated Retrograde resection apparatus and method
CA2677726A1 (en) * 2007-02-14 2008-08-21 Arthrosurface Inc. Bone cement delivery device
US8641959B2 (en) 2007-07-27 2014-02-04 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
BRPI0820509A2 (pt) * 2007-11-06 2015-06-16 Dsm Ip Assests Bv Processo para produzir polietileno de (ultra) alto peso molecular
US9371426B2 (en) * 2008-12-08 2016-06-21 Sabic Global Technologies B.V. Compositions having improved tribological properties, methods of manufacture thereof and articles comprising the same
CA2759027C (en) 2009-04-17 2020-02-25 Arthrosurface Incorporated Glenoid resurfacing system and method
US9662126B2 (en) 2009-04-17 2017-05-30 Arthrosurface Incorporated Glenoid resurfacing system and method
WO2016154393A1 (en) 2009-04-17 2016-09-29 Arthrosurface Incorporated Glenoid repair system and methods of use thereof
ITVR20090190A1 (it) * 2009-11-13 2011-05-14 Eurocoating S P A Processo per accoppiare un componente polimerico ad un componente metallico costituenti parte di o una protesi medicale
GB0922339D0 (en) 2009-12-21 2010-02-03 Mcminn Derek J W Acetabular cup prothesis and introducer thereof
EP2542165A4 (en) 2010-03-05 2015-10-07 Arthrosurface Inc SYSTEM AND METHOD FOR TIBIAL RESURFACING
CN101810884A (zh) * 2010-03-19 2010-08-25 中国矿业大学 抗氧化超低磨损超高分子量聚乙烯髋关节臼
US9132209B2 (en) 2010-05-07 2015-09-15 Howmedia Osteonics Corp. Surface crosslinked polyethylene
DE102010029633A1 (de) 2010-06-02 2011-12-08 Hd Kunststoffe & Kunststofferzeugnisse Gmbh Zerkleinerung von ultrahochmolekularen Polyethylenfasern
EP2613711B1 (en) * 2010-09-09 2016-03-23 W. L. Gore & Associates, Inc. Method of increasing film tear strength
CN101948583B (zh) * 2010-10-25 2012-06-06 株洲时代工程塑料制品有限责任公司 交联聚乙烯复合材料及其制备方法
US9066716B2 (en) 2011-03-30 2015-06-30 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
US20130165982A1 (en) 2011-12-22 2013-06-27 Arthrosurface Incorporated System and Method for Bone Fixation
WO2014008126A1 (en) 2012-07-03 2014-01-09 Arthrosurface Incorporated System and method for joint resurfacing and repair
US9492200B2 (en) 2013-04-16 2016-11-15 Arthrosurface Incorporated Suture system and method
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene
US10624748B2 (en) 2014-03-07 2020-04-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US9931219B2 (en) 2014-03-07 2018-04-03 Arthrosurface Incorporated Implant and anchor assembly
US11607319B2 (en) 2014-03-07 2023-03-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US20150266210A1 (en) 2014-03-21 2015-09-24 Howmedica Osteonics Corp. Annealing method for cross-linked polyethylene
CN104961958A (zh) * 2015-06-30 2015-10-07 苏州佑君环境科技有限公司 一种人工关节用聚乙烯材料的制备方法
DE102015214668A1 (de) * 2015-07-31 2017-02-02 Waldemar Link Gmbh & Co. Kg Verfahren zur Bearbeitung eines Polymerwerkstücks für einen Einsatz in einem Gelenkimplantat
US11160663B2 (en) 2017-08-04 2021-11-02 Arthrosurface Incorporated Multicomponent articular surface implant
GB2596006B (en) 2019-03-12 2022-11-30 Arthrosurface Inc Humeral and glenoid articular surface implant systems and methods
CN113956528B (zh) * 2021-10-09 2022-12-06 中国科学院上海应用物理研究所 一种高交联超高分子量聚乙烯及其制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587163A (en) * 1984-03-06 1986-05-06 Zachariades Anagnostis E Preparation of ultra high molecular weight polyethylene morphologies of totally fused particles with superior mechanical performance
JPS62243634A (ja) * 1986-04-17 1987-10-24 Nippon Oil Co Ltd 超高分子量ポリエチレン架橋物の製造方法
US5030402A (en) * 1989-03-17 1991-07-09 Zachariades Anagnostis E Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948666A (en) 1956-11-21 1960-08-09 Gen Electric Irradiation process
US3362897A (en) 1962-11-21 1968-01-09 Gen Electric Stable irradiated polyethylene
US3563870A (en) 1969-01-23 1971-02-16 Dow Chemical Co Melt strength and melt extensibility of irradiated linear polyethylene
JPS526314B2 (zh) 1971-11-01 1977-02-21
US3956253A (en) 1972-09-16 1976-05-11 Ruhrchemie Aktiengesellschaft Polyethylene molding compounds of high-wear resistance
US4055862A (en) 1976-01-23 1977-11-01 Zimmer Usa, Inc. Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
US4265959A (en) 1977-01-12 1981-05-05 Sumitomo Chemical Company, Limited Process for producing semipermeable membranes
US4171338A (en) 1977-11-01 1979-10-16 Allied Chemical Corporation Process for ultra-high molecular weight, high abrasion resistance, cross-linked polyethylene
US4224696A (en) 1978-09-08 1980-09-30 Hexcel Corporation Prosthetic knee
US4281420A (en) 1979-02-15 1981-08-04 Raab S Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same
US4348350A (en) 1980-09-26 1982-09-07 Michigan Molecular Institute Ultra-drawing crystalline polymers under high pressure
JPS57211347A (en) 1981-06-24 1982-12-25 Dainippon Printing Co Ltd Artificial joint socket and method
DE3131812C2 (de) 1981-08-12 1983-06-16 Hewing GmbH & Co, 4434 Ochtrup Verfahren zur Herstellung von Formlingen aus durch Bestrahlen mit Elektronenstrahlen vernetzten Polyolefin-Formmassen
JPS5829841A (ja) 1981-08-14 1983-02-22 Asahi Chem Ind Co Ltd 改良されたポリエチレン組成物
US4586995A (en) 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
JPS6059172A (ja) 1983-09-09 1985-04-05 東洋紡績株式会社 架橋ポリエチレン繊維
GB8332952D0 (en) 1983-12-09 1984-01-18 Ward I M Polymer irradiation
JPS60154034A (ja) * 1984-01-23 1985-08-13 Toa Nenryo Kogyo Kk ポリエチレン延伸フイルム
CA1257745A (en) 1984-02-21 1989-07-18 Nachum Rosenzweig Recoverable polyethylene composition and article
US5030487A (en) * 1984-04-04 1991-07-09 Raychem Corporation Heat recoverable article comprising conductive polymer compositions
IN164745B (zh) * 1984-05-11 1989-05-20 Stamicarbon
US4655769A (en) 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
FR2578780B1 (fr) 1985-03-12 1987-08-14 Commissariat Energie Atomique Piece en polyolefine de haut poids moleculaire, notamment pour prothese articulaire, et son procede de fabrication par forgeage en matrice fermee
ATE76351T1 (de) 1985-04-01 1992-06-15 Raychem Corp Polymerfasern hoher festigkeit.
CA1279167C (en) 1985-11-30 1991-01-22 Mitsui Chemicals, Incorporated Molecularly oriented, silane-crosslinked ultra-high- molecular-weight polyethylene molded article and process for preparation thereof
JPH0662784B2 (ja) * 1986-10-09 1994-08-17 三井石油化学工業株式会社 分子配向及びシラン架橋ポリエチレン成形体及びその製法
US5478906A (en) 1988-12-02 1995-12-26 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene and articles thereof
JPH0764015B2 (ja) 1988-12-27 1995-07-12 日本石油株式会社 高配向ポリエチレン材料の製造方法
JPH0322222A (ja) 1989-06-19 1991-01-30 Sanyo Electric Co Ltd 光ディスク装置
US5037928A (en) 1989-10-24 1991-08-06 E. I. Du Pont De Nemours And Company Process of manufacturing ultrahigh molecular weight linear polyethylene shaped articles
US5200439A (en) 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
US5130376A (en) 1990-04-23 1992-07-14 Hercules Incorporated UHMWPE/styrenic molding compositions with improved flow properties and impact strength
NL9001069A (nl) 1990-05-03 1991-12-02 Stamicarbon Voorwerpen uit vernet geoerienteerd hoog-moleculair polyetheen.
US5204045A (en) 1990-06-15 1993-04-20 Symplastics Limited Process for extruding polymer shapes with smooth, unbroken surface
NL9001745A (nl) 1990-08-01 1992-03-02 Stamicarbon Oplossing van ultra-hoog moleculair polyetheen.
US5210130A (en) 1990-08-07 1993-05-11 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
JP2997898B2 (ja) * 1990-11-27 2000-01-11 株式会社小松製作所 超高分子量ポリエチレンの成形方法
GB9027699D0 (en) 1990-12-20 1991-02-13 Univ Toronto Process for the continuous production of high modulus articles from polyethylene
US5508319A (en) 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5439949A (en) 1991-08-21 1995-08-08 Rexene Corporation Propylene compositions with improved resistance to thermoforming sag
US5276079A (en) 1991-11-15 1994-01-04 Minnesota Mining And Manufacturing Company Pressure-sensitive poly(n-vinyl lactam) adhesive composition and method for producing and using same
WO1993010953A1 (en) 1991-11-27 1993-06-10 E.I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene, articles and processes of manufacture
US5505984A (en) 1993-01-21 1996-04-09 England; Garry L. Method for forming biocompatible components using an isostatic press
US5358529A (en) 1993-03-05 1994-10-25 Smith & Nephew Richards Inc. Plastic knee femoral implants
US5414049A (en) 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US5405393A (en) * 1993-06-02 1995-04-11 Academisch Ziekenhuis Groningen Temporomandibular joint prosthesis
US5505900A (en) 1993-07-09 1996-04-09 Suwanda; Dedo Continuous process for manufacture of crosslinked, oriented polyethylene extrudates
WO1995006148A1 (en) 1993-08-20 1995-03-02 Smith & Nephew Richards, Inc. Self-reinforced ultra-high molecular weight polyethylene composites
US5709020A (en) 1994-07-19 1998-01-20 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
CA2166450C (en) 1995-01-20 2008-03-25 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US5577368A (en) 1995-04-03 1996-11-26 Johnson & Johnson Professional, Inc. Method for improving wear resistance of polymeric bioimplantable components
GB9522477D0 (en) 1995-11-02 1996-01-03 Howmedica Method of improving the wear quality of ultra-high molecular weight polyethylene
GB9522478D0 (en) 1995-11-02 1996-01-03 Howmedica Prosthetic bearing element and implant incorporating such an element
US5879400A (en) 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US8865788B2 (en) 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
EP0935446B1 (en) 1996-07-09 2007-02-07 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6017975A (en) 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
GB9620692D0 (en) 1996-10-04 1996-11-20 Vantage Polymers Limited Olefin polymers
WO1998016258A1 (en) 1996-10-15 1998-04-23 The Orthopaedic Hospital Wear resistant surface-gradient cross-linked polyethylene
US6355215B1 (en) 1999-03-10 2002-03-12 Implex Corp. Wear-resistant olefinic medical implant and thermal treatment container therefor
US6184265B1 (en) 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6365089B1 (en) 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
US6818172B2 (en) 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
US6547828B2 (en) 2001-02-23 2003-04-15 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
WO2003059200A1 (en) 2002-01-04 2003-07-24 Massachusetts General Hospital A high modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587163A (en) * 1984-03-06 1986-05-06 Zachariades Anagnostis E Preparation of ultra high molecular weight polyethylene morphologies of totally fused particles with superior mechanical performance
US4587163B1 (zh) * 1984-03-06 1990-04-03 E Zachariades Anagnostis
JPS62243634A (ja) * 1986-04-17 1987-10-24 Nippon Oil Co Ltd 超高分子量ポリエチレン架橋物の製造方法
US5030402A (en) * 1989-03-17 1991-07-09 Zachariades Anagnostis E Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties

Also Published As

Publication number Publication date
EP0729981A4 (en) 1999-03-03
WO1996009330A1 (fr) 1996-03-28
AU693260B2 (en) 1998-06-25
USRE44762E1 (en) 2014-02-11
DE69525924T2 (de) 2002-09-05
CN1478812A (zh) 2004-03-03
KR960705861A (ko) 1996-11-08
JP2004027237A (ja) 2004-01-29
EP0729981A1 (en) 1996-09-04
US6168626B1 (en) 2001-01-02
CA2654851A1 (en) 1996-03-28
CN1135762A (zh) 1996-11-13
KR100293587B1 (ko) 2001-09-17
JP3563075B2 (ja) 2004-09-08
CA2654851C (en) 2011-01-18
CA2177042A1 (en) 1996-03-28
JP3628321B2 (ja) 2005-03-09
AU3485595A (en) 1996-04-09
EP0729981B1 (en) 2002-03-20
DE69525924D1 (de) 2002-04-25
CA2177042C (en) 2009-05-12

Similar Documents

Publication Publication Date Title
CN1123583C (zh) 人工关节用超高分子量聚乙烯成形物及其制造方法
US5834113A (en) Self-reinforced ultra-high molecular weight polyethylene composite medical implants
Chang et al. Wear behavior of bulk oriented and fiber reinforced UHMWPE
Ries et al. Effect of cross-linking on the microstructure and mechanical properties of ultra-high molecular weight polyethylene.
Kurtz et al. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty
CA1066839A (en) Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
Atkinson et al. Silane crosslinked polyethylene for prosthetic applications: II. Creep and wear behaviour and a preliminary moulding test
Fisher et al. Comparison of the wear of aged and non-aged ultrahigh molecular weight polyethylene sterilized by gamma irradiation and by gas plasma
CN1910026A (zh) 制造人工关节的方法
Deng et al. Fabrication and properties of UHMWPE grafted with acrylamide polymer brushes
Wang et al. High crystallinity makes excellent wear resistance in crosslinked UHMWPE
Zhu et al. Effect of counterpart material and water lubrication on the sliding wear performance of crosslinked and non-crosslinked ultra high molecular weight polyethylene
CN113956528B (zh) 一种高交联超高分子量聚乙烯及其制备方法、应用
Zhu et al. Bioinspired nacre-like PEEK material with superior tensile strength and impact toughness
Xue Research on polymer composites of replacement prostheses
Paladugu et al. Thermal imaging approach towards analyzing tribological response of UHMWPE-based hybrid nanocomposites
KR100424072B1 (ko) 내마모성이 향상된 초고분자량 폴리에틸렌 및 그의 제조방법
Ohta Studies on structure and mechanical properties of slightly
Ohta Studies on structure and mechanical properties of slightly cross-linked UHMWPE crystallized under uniaxial compression for artificial joints
Farjamfar et al. The Effect of Strain Rate on the Tensile Properties of PMMA/Hydroxyapatite Composite
Poowadin et al. Wear resistance of UHMWPE-based carbon nanocomposite subsequent AlB x ion implantation
Wenz et al. Accelerated testing of a composite spine plate
Bastiaansen Oriented structures based on flexible polymers: Drawing behaviour and properties
TOGUCHIDA Methods to Reduce the Wear of Ultrahigh-Molecular-Weight Polyethylene MASANORI Oka', SH HYON', M. OHTA', T. NAKAMURA², Y. USHIO², and J. TOGUCHIDA'
Xiong et al. Tribological properties of UHMWPE composites filled with nano-powder of SiO2 sliding against Ti-6Al-4V

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1023667

Country of ref document: HK

CX01 Expiry of patent term

Granted publication date: 20031008

EXPY Termination of patent right or utility model