USRE44762E1 - Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same - Google Patents

Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same Download PDF

Info

Publication number
USRE44762E1
USRE44762E1 US13/531,232 US53123296A USRE44762E US RE44762 E1 USRE44762 E1 US RE44762E1 US 53123296 A US53123296 A US 53123296A US RE44762 E USRE44762 E US RE44762E
Authority
US
United States
Prior art keywords
block
molecular weight
compression
weight polyethylene
ultra high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US13/531,232
Inventor
Suong-Hyu Hyon
Masanori Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BMG Inc
Original Assignee
BMG Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BMG Inc filed Critical BMG Inc
Priority to US13/531,232 priority Critical patent/USRE44762E1/en
Application granted granted Critical
Publication of USRE44762E1 publication Critical patent/USRE44762E1/en
Assigned to BMG INCORPORATED reassignment BMG INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HYON, SUONG-HYU, OKA, MASANORI
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/16Forging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/085Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0087Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene

Definitions

  • the present invention relates to an ultra high molecular weight polyethylene molded article suitable for artificial joints having molecular orientation or crystal orientation and to a method of preparing the same.
  • These artificial joints includes an artificial hip joint, an artificial knee joint, an artificial elbow joint, an artificial finger joint, artificial shoulder joint and the like.
  • the artificial hip joint and artificial knee joint it is necessary for the artificial hip joint and artificial knee joint to have high mechanical strength because gravity corresponding to several times the patient's body weight is applied to them. Therefore, materials for the artificial joint at present are constituted of a hard material of metal or ceramic and a soft socket of an ultra high molecular weight polyethylene (UHMWPE).
  • UHMWPE ultra high molecular weight polyethylene
  • the UHMWPE constituting such a socket is superior in abrasion resistance as compared with polymeric materials such as polytetrafluoroethylene and polycarbonate, the UHMWPE is inferior in properties such as low abrasion resistance and stress relaxation to impact load which are inherently possessed by articular cartilage of living body. Also, reaction caused by a foreign matter has been a serious problem wherein macrophages proliferate against wear debris of the UHMWPE socket, i.e. component and an abnormal granulation tissue generated thereby causes resorption of the bone.
  • the present inventors tried to obtain a molded article of a low friction and to improve an abrasion resistance by introducing molecular orientation or crystal orientation into a finished product by means of, not a chemical modification method, but a physical modification method.
  • the invention relates to an ultra high molecular weight polyethylene (UHMWPE) molded article for artificial joints and to an artificial join comprising the UHMWPE molded article.
  • UHMWPE ultra high molecular weight polyethylene
  • This UHMWPE molded article having molecular orientation or crystal orientation can be obtained by irradiating a low dose of a high energy ray to a raw UHMWPE molded article to introduce a very small amount of crosslinking points in polymer chains so as to be crosslinked slightly, then by compression-deforming the crosslinked UHMWPE molded article after heating up to its compression-deformable temperature, and by cooling the molded article while keeping the deformed state.
  • the UHMWPE molded article having molecular orientation or crystal orientation (hereinafter referred to as “oriented UHMWPE molded article”) of the present invention has a low friction and remarkably improved abrasion resistance. And, the artificial joint comprising the oriented UHMWPE molded article has a smooth lubricity and reduced amount of abrasion loss.
  • the oriented UHMWPE molded article of the invention has molecular orientation or crystal orientation within the molded article.
  • the meaning of “to have molecular orientation within the molded article” is that polymer chains are oriented perpendicular to the direction of the compression, namely, oriented to the direction of the flow of the molecular chains.
  • the meaning of “to have crystal orientation” is that the crystal planes in polyethylene such as ( 200 ) plane and ( 110 ) plane are oriented to the direction parallel to the compression plane, namely, that the crystal planes are oriented. Also, the presence of these orientations can be known by means of biefringence measurements, infrared spectra and X-ray diffraction.
  • a coefficient of friction of the molded article decreases and abrasion loss also decreases by endowing with those orientations.
  • other functional properties for example, tensile strength and tensile modulus are improved, and also density, thermal properties (melting point, heat of fusion) and the like are improved.
  • the oriented UHMWPE molded article can be obtained by irradiating a high energy ray to raw UHMWPE and then heating up and compression-deforming the UHMWPE, followed by cooling and solidifying.
  • the raw UHMWPE one having a weight-average molecular weight of 2 to 8 million, preferably 5 to 7 million is used.
  • the melting point thereof is approximately 136° to 139° C.
  • the raw UHMWPE is used usually in the form of block, and may be used in the form of rod.
  • Every kind of high energy rays can be employed as the high energy ray to be irradiated, for example a radioactive ray such as ⁇ -ray or X-ray, an electron beam, a neutron ray and the like.
  • ⁇ -ray is superior in views of availability of irradiation apparatus and excellent permeability to materials.
  • This irradiation of the high energy ray is carried out to generate crosslinking points in the molecular chains of the UHMWPE and then to produce intermolecular crosslinkage.
  • the density of crosslinking is preferably such a very small degree that the crystallization is not prevented with ensuring a large elastic-deformation, for example 0.1 to 10, particularly 1 to 2 crosslinking points per one molecular chain.
  • the atmosphere of a vacuum or of an inert gas such as N 2 or argon is preferable.
  • the temperature of the atmosphere may be room temperature and also may be a higher temperature of not less than the crystal transition point (80° C.).
  • the dose of irradiation is very important. If the dose of irradiation is too high, the density of crosslinking becomes higher, and the bridged structure is destroyed if a large deformation is applied in the subsequent process. And, even if the molten state is made, such a degree of elastic deformation required to obtain the desired molecular orientation or crystal orientation cannot be given. As a result, it is obliged to decrease a degree of the deformation, and it becomes impossible to obtain the molecular orientation or crystal orientation which is necessary for molecular chains in the molded article.
  • a preferable dose of irradiation (energy) is the dose to give the above-mentioned density of crosslinking and 0.01 to 5.0 MR, preferably 0.1 to 3 MR in case of radioactive rays.
  • the UHMWPE molded article which is crosslinked slightly by irradiating with the high energy ray has an infinite weight-average molecular weight because it is crosslinked, and the melting point thereof changes not so much and is 136° and 139° C.
  • this slightly crosslinked UHMWPE molded article is heated up to a compression-deformable temperature.
  • the compression-deformable temperature of is a temperature of around or not less than the melting point of the crosslinked UHMWPE, and is concretely from the melting point minus 50° C. to the melting point plus 80° C. It is most suitable to heat up to a temperature of not less than the melting point, particularly preferably 160° to 220° C., further preferably 180° to 200° C. to melt completely.
  • the compression-deformation can be carried out, however, at a temperature of even around the melting point, for example 100° to 130° C. If completely melted, since the crosslinked UHMWPE is in the state of rubber to possess rubber elasticity, the compression-deformation is easily carried out.
  • the compression-deformation is carried out under a pressure of 30 to 200 kgf/cm 2 , usually 50 to 100 kgf/cm 2 , with heating at the above-mentioned temperature in a die suitable for the use or be using a hot press machine. It is sufficient that a degree of the compression is approximately 1 ⁇ 3 to 1/10 of an original thickness in case of a molded article in the form of block.
  • the deformation of the crosslinked UHMWPE molded article of the present invention is a rubber elastic deformation because molecular chains are crosslinked slightly, and after the molecular chains are stretched to give the necessary molecular orientation, then cooled as they are and crystallized, the crystal orientation can be obtained.
  • non-crosslinked, namely non-irradiated UHMWPE molded article is fluid-deformed when heated and compressed at a temperature of not less than the melting point, and thus molecular orientation or crystal orientation cannot be obtained.
  • the UHMWPE molded article having the molecular orientation or crystal orientation obtained by the compression-deformation as described above is cooled and solidified while keeping the deformed state. If the deformed state is set free before solidification, the stretched molecular chains are relaxed in stress to return to the original state because the compression-deformation is conducted in the molten state. That is, the molecular orientation or crystal orientation in the UHMWPE molded article is relaxed in a moment. Therefore, the deformed state must not be set free until solidified.
  • the cooling method there are rapid coolings such as water-cooling and air-cooling as well as standing to cool, and the cooling is carried out down to room temperature, preferably to a temperature of around 20° to 40° C. Further, it is preferable to cool at a constant rate under a condition of 10° C./min, preferably 1° C./min to obtain excellent dynamic properties because the cooling rate has a great influence on the crystallinity, particularly on the degree of crystallinity of the produced molded article.
  • the completion of the solidification can be confirmed by decrease of a pressure guage (the volume being shrinked after the completion of the crystallization).
  • the compression-deformed UHMWPE molded article may be subjected to isothermal crystallization at around 100° to 130° C., preferably 110° to 120° C., for 1 to 20 hours, preferably 5 to 10 hours, with keeping the deformed state, and then cooled to room temperature, preferably to 40° C. and solidified.
  • isothermal crystallization the degree of crystallinity becomes higher and the dynamic properties are improved.
  • the cooling after the isothermal crystallization is not particularly limited and cooling at a rate of 1° C./min is preferable.
  • the melting point of the UHMWPE molded article having the molecular orientation or crystal orientation obtained by the cooling and solidification is 135° to 155° C.
  • the compression-deformed molded article which is obtained as described above can also be processed to a socket for artificial joints by cutting and can be molded by means of the compression-deformation mold with a die comprising a convex and concave portions.
  • the surface hardness can be further reinforced by introducing metal ions, e.g. titanium, zirconium, iron, molybdenum, aluminium and/or cobalt ion, into the UHMWPE molded article for artificial joints which is obtained by cutting the compression-deformed molded article.
  • a block of UHMWPE (thickness 3 cm, width 5 cm, length 5 cm) having a weight-average molecular weight of approximately 6 million and a melting point of 138° C. was put in a glass ampul and the glass was sealed after reducing the inner pressure (10 ⁇ 2 to 10 ⁇ 3 mmHg) under vacuum.
  • ⁇ -Ray from cobalt 60 was irradiated at a dose of 0.5 MR to this glass ampul at 25° C.
  • the UHMWPE block irradiated by the radioactive ray (melting point: 138° C., weight-average molecular weight: infinite) was taken out from the glass ampul, melted completely at 200° C. by using at hot press, compressed to 1 ⁇ 3, 1/4.5 and 1 ⁇ 6 of the original thickness by applying a pressure of 50 kgf/cm 2 m and then cooled to room temperature through natural cooling with keeping the deformed state.
  • Irradiated UHMWPE molded articles were obtained by compression-deforming and cooling naturally similarly in Preparation Example 1 except that a dose of irradiation of ⁇ -ray was changed to 1.0 MR, 1.5 MR or 2.0 MR.
  • Each weight-average molecular weights of the 1.0 MR irradiated article, 1.5 MR irradiated article and 2.0 MR irradiated article were infinite, and the melting points thereof were almost constant and were 138° C.
  • a test sample having a thickness of 7 mm and a diameter of 7 mm was prepared by cutting from the UHMWPE molded article obtained in each of Preparation Examples 1 to 8 and Comparative Preparation Examples 1 to 3, and wear factor and coefficient of friction were evaluated by measuring a friction force and wear factor as the following.
  • the unidirectional-type testing machine is operated by pressing a test sample on a surface of a ceramic disc, which is rotating in the clockwise direction, by means of the arm-type loading method.
  • the load can be varied by providing a weight to the one end of the arm.
  • the rotation of the disc is transmitted to a bearing by way of a belt according to the rotation of an invertor-controlled motor.
  • the testing speed was set to 50 mm/s. Also, all tests were carried out in 50 ml saline for 48 hours and the temperature of the liquid was kept at 25 ⁇ 2° C.
  • a friction force was measured by a lever type dynamometer fixed to the arm portion of the testing machine. The friction force was recorded with a pen recorder with the lapse of time. The friction coefficients shown in test results (Table 1) were determined in case of a sliding distance of 8640 m (48 hours after tests begin).
  • the wear volume was evaluated by compressing the rotating disc of zirconia at a pressure of 1 MPa and by measuring the decreased thickness of the test sample with a non-contact type capacitance level gauge.
  • the test for each test sample was carried out three times under each loading condition, and the coefficient of friction and coefficient of abrasion were calculated in average value.
  • the surface of the zirconia disc was made in intentionally roughened to Ra; 0.2 to 0.3, and the wear volume was measured after 48 hours.
  • the heat of fusion and melting point were measured at a scan speed of 10° C./min by means of DSC-50 of SHIMADZU CORPORATION. And, the tensile strength and Young's modulus were measured at a tensile rate of 100%/min by means of Autograph S-100 of SHIMADZU CORPORATION.
  • the density and melting point of UHMWPE molded article obtained from the 0.5 MR irraidation test of Preparation Example 3 are higher and the tensile strength and Young's modulus thereof increase, as compared with those of the UHMWPE molded article obtained from the non-irradiation test of Comparative Preparation Example 3.
  • the melting point rises from 138.0° to 149.5° C.
  • the ultra high molecular weight polyethylene molded article for artificial joints obtained according to the present invention has the molecular orientation or crystal orientation in the molded article, and is low in friction and is superior in abrasion resistance, and therefore is available as a components of artificial joints.
  • the ultra high molecular weight polyethylene molded article for artificial joints of the present invention can be used as a component for artificial hip joints (artificial acetabular cup), a component for artificial knee joints (artificial tibial insert) and the socket for artificial elbow joints, and in addition to the medical use, it can be applied as materials for various industries by utilizing the characteristics such as low friction and superior abrasion resistance.

Abstract

An ultra high molecular weight polyethylene molded article for artificial joints has molecular orientation or crystal orientation in the molded article, and is low in friction and is superior in abrasion resistance, and therefore is available as components for artificial joints. Further, the ultra high molecular weight polyethylene molded article for artificial joints can be used as a component for artificial hip joints (artificial acetabular cup), a component for artificial knee joints (artificial tibial insert) and the socket for artificial elbow joints, and in addition to the medical use, it can be applied as materials for various industries by utilizing the characteristics such as low friction and superior abrasion resistance.

Description

More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,168,626. The reissue applications are: Ser. No. 10/141,374 filed May 8, 2002; Ser. No. 10/643,674 filed Aug. 19, 2003, a divisional reissue of Ser. No. 10/141,374; and Ser. No. 11/522,504 filed Sep. 15, 2006, a continuation reissue of (now abandoned) Ser. No. 10/643,673 (which was a divisional reissue of Ser. No. 10/141,374); and the current application, a continuation reissue of Ser. No. 10/643,674.
TECHNICAL FIELD
The present invention relates to an ultra high molecular weight polyethylene molded article suitable for artificial joints having molecular orientation or crystal orientation and to a method of preparing the same.
BACKGROUND ART
Thirty years or more have passed since an artificial joint was developed and applied clinically to patients suffering from any diseases of arthritis. Since then, benefits given by the artificial joint have been great in the sense of social welfare because, for example, patients with chronic rheumatism have been able to walk again and to return to public life. On the other hand, however, serious problems have occurred, particularly late appearing complications caused by total joint arthroplasty, a high rate of “loosening” in the implant components, and the necessity of revision of the joint with a surgical operation due to osteolysis around the implanted artificial joint.
These artificial joints includes an artificial hip joint, an artificial knee joint, an artificial elbow joint, an artificial finger joint, artificial shoulder joint and the like. Among those joints, it is necessary for the artificial hip joint and artificial knee joint to have high mechanical strength because gravity corresponding to several times the patient's body weight is applied to them. Therefore, materials for the artificial joint at present are constituted of a hard material of metal or ceramic and a soft socket of an ultra high molecular weight polyethylene (UHMWPE). While the UHMWPE constituting such a socket is superior in abrasion resistance as compared with polymeric materials such as polytetrafluoroethylene and polycarbonate, the UHMWPE is inferior in properties such as low abrasion resistance and stress relaxation to impact load which are inherently possessed by articular cartilage of living body. Also, reaction caused by a foreign matter has been a serious problem wherein macrophages proliferate against wear debris of the UHMWPE socket, i.e. component and an abnormal granulation tissue generated thereby causes resorption of the bone.
After artificial joints were developed, though some improvements in qualities of material and design have been made, for example, a cementless artificial joint and the like with respect to the hard material, there has been no remarkable progress for about thirty years with respect to the soft socket portion except that the UHMWPE was employed. And if the artificial joint is used for a long period of time, numerous wear debris of polyethylene are produced because of friction between the hard material such as metal and the UHMWPE of the socket. By considering the osteolysis due to granulation tissue containing a foreign matter which is caused by the wear debris, further improvement of abrasion resistance is indispensable. As an attempt to reduce the abrasion of UHMWPE, it can be considered to select a material for the hard material and to improve the UHMWPE. Though the irradiation of an ultra high dose of γ-ray was tried for improving the UHMWPE, it was made clear that coefficient of abrasion increases and abrasion loss does not decrease. Also, though the improvement to increase molecular weight of the UHMWPE was made and a weight-average molecular weight of the UHMWPE at present has been increased to approximately 5 to 8 million, it is difficult to make a UHMWPE having a far ultra high molecular weight. Further, considerable improvement in dynamic properties can scarcely be expected even if a UHMWPE having a weight-average molecular weight of 10 million could be synthesized. Thus, it is regarded that any improvement in dynamic properties of the UHMWPE by chemical modification reached its limitation, and it is regarded to be difficult to obtain a UHMWPE molded article having a more excellent abrasion resistance and lower friction.
It is well-known that Carothers of E.I. Du Pont developed, first all over the world, a synthetic fiber, i.e., Nylon, and greatly contributed industrially. As means for improving mechanical properties of this synthetic fiber, uniaxial stretching in the direction of fiber axis is carried out industrially. Also, to improve the strength of the film, biaxial stretching and rolling are carried out industrially. In accordance with these methods, mechanical properties can be increased considerably by giving uniaxial orientation or biaxial orientation to molecules or crystals.
From these points of view, there is an idea that orientation is given to molecules or crystals in the polymer structure to improve the mechanical properties. However, any technologies cannot endow molecules or crystals with orientation in a large molded article in the form of block, and it is not easy to consider enablement of a method.
Then, the present inventors tried to obtain a molded article of a low friction and to improve an abrasion resistance by introducing molecular orientation or crystal orientation into a finished product by means of, not a chemical modification method, but a physical modification method.
This approach has never been attempted, not only in Japan, but also in other countries. The idea to endow the polyethylene molded article for artificial joints with molecular orientation or crystal orientation is the very creative, and it is sure that this invention, if actually carried out, will be applied to artificial joints all over the world. Also, this invention will be revolutionary in terms of industrial innovation whereby disadvantages which have been problems for the past thirty years are improved.
DISCLOSURE OF THE INVENTION
The invention relates to an ultra high molecular weight polyethylene (UHMWPE) molded article for artificial joints and to an artificial join comprising the UHMWPE molded article.
This UHMWPE molded article having molecular orientation or crystal orientation can be obtained by irradiating a low dose of a high energy ray to a raw UHMWPE molded article to introduce a very small amount of crosslinking points in polymer chains so as to be crosslinked slightly, then by compression-deforming the crosslinked UHMWPE molded article after heating up to its compression-deformable temperature, and by cooling the molded article while keeping the deformed state.
The UHMWPE molded article having molecular orientation or crystal orientation (hereinafter referred to as “oriented UHMWPE molded article”) of the present invention has a low friction and remarkably improved abrasion resistance. And, the artificial joint comprising the oriented UHMWPE molded article has a smooth lubricity and reduced amount of abrasion loss.
BEST MODE FOR CARRYING OUT INVENTION
The oriented UHMWPE molded article of the invention has molecular orientation or crystal orientation within the molded article. The meaning of “to have molecular orientation within the molded article” is that polymer chains are oriented perpendicular to the direction of the compression, namely, oriented to the direction of the flow of the molecular chains. The meaning of “to have crystal orientation” is that the crystal planes in polyethylene such as (200) plane and (110) plane are oriented to the direction parallel to the compression plane, namely, that the crystal planes are oriented. Also, the presence of these orientations can be known by means of biefringence measurements, infrared spectra and X-ray diffraction. And, a coefficient of friction of the molded article decreases and abrasion loss also decreases by endowing with those orientations. Also, other functional properties, for example, tensile strength and tensile modulus are improved, and also density, thermal properties (melting point, heat of fusion) and the like are improved.
As described above, the oriented UHMWPE molded article can be obtained by irradiating a high energy ray to raw UHMWPE and then heating up and compression-deforming the UHMWPE, followed by cooling and solidifying.
As the raw UHMWPE, one having a weight-average molecular weight of 2 to 8 million, preferably 5 to 7 million is used. The melting point thereof is approximately 136° to 139° C. The raw UHMWPE is used usually in the form of block, and may be used in the form of rod.
Every kind of high energy rays can be employed as the high energy ray to be irradiated, for example a radioactive ray such as γ-ray or X-ray, an electron beam, a neutron ray and the like. Among them, γ-ray is superior in views of availability of irradiation apparatus and excellent permeability to materials. This irradiation of the high energy ray is carried out to generate crosslinking points in the molecular chains of the UHMWPE and then to produce intermolecular crosslinkage. The density of crosslinking is preferably such a very small degree that the crystallization is not prevented with ensuring a large elastic-deformation, for example 0.1 to 10, particularly 1 to 2 crosslinking points per one molecular chain.
With respect to the irradiation atmosphere, if oxygen exists, it is not preferable since a decomposition (cleavage) occurs simultaneously, and therefore the atmosphere of a vacuum or of an inert gas such as N2 or argon is preferable. The temperature of the atmosphere may be room temperature and also may be a higher temperature of not less than the crystal transition point (80° C.).
The dose of irradiation (energy) is very important. If the dose of irradiation is too high, the density of crosslinking becomes higher, and the bridged structure is destroyed if a large deformation is applied in the subsequent process. And, even if the molten state is made, such a degree of elastic deformation required to obtain the desired molecular orientation or crystal orientation cannot be given. As a result, it is obliged to decrease a degree of the deformation, and it becomes impossible to obtain the molecular orientation or crystal orientation which is necessary for molecular chains in the molded article. On the other hand, in case that a dose of irradiation is too low or not irradiation is carried out, molecular chains are fluidized in the manner of viscous fluidity without stretching to be plastic-deformed, resulting in that the molecular orientation or crystal orientation cannot be obtained. A preferable dose of irradiation (energy) is the dose to give the above-mentioned density of crosslinking and 0.01 to 5.0 MR, preferably 0.1 to 3 MR in case of radioactive rays.
The UHMWPE molded article which is crosslinked slightly by irradiating with the high energy ray has an infinite weight-average molecular weight because it is crosslinked, and the melting point thereof changes not so much and is 136° and 139° C.
Then, this slightly crosslinked UHMWPE molded article is heated up to a compression-deformable temperature. The compression-deformable temperature of is a temperature of around or not less than the melting point of the crosslinked UHMWPE, and is concretely from the melting point minus 50° C. to the melting point plus 80° C. It is most suitable to heat up to a temperature of not less than the melting point, particularly preferably 160° to 220° C., further preferably 180° to 200° C. to melt completely. The compression-deformation can be carried out, however, at a temperature of even around the melting point, for example 100° to 130° C. If completely melted, since the crosslinked UHMWPE is in the state of rubber to possess rubber elasticity, the compression-deformation is easily carried out.
The compression-deformation is carried out under a pressure of 30 to 200 kgf/cm2, usually 50 to 100 kgf/cm2, with heating at the above-mentioned temperature in a die suitable for the use or be using a hot press machine. It is sufficient that a degree of the compression is approximately ⅓ to 1/10 of an original thickness in case of a molded article in the form of block. The deformation of the crosslinked UHMWPE molded article of the present invention is a rubber elastic deformation because molecular chains are crosslinked slightly, and after the molecular chains are stretched to give the necessary molecular orientation, then cooled as they are and crystallized, the crystal orientation can be obtained. On the other hand, non-crosslinked, namely non-irradiated UHMWPE molded article is fluid-deformed when heated and compressed at a temperature of not less than the melting point, and thus molecular orientation or crystal orientation cannot be obtained.
Then, the UHMWPE molded article having the molecular orientation or crystal orientation obtained by the compression-deformation as described above is cooled and solidified while keeping the deformed state. If the deformed state is set free before solidification, the stretched molecular chains are relaxed in stress to return to the original state because the compression-deformation is conducted in the molten state. That is, the molecular orientation or crystal orientation in the UHMWPE molded article is relaxed in a moment. Therefore, the deformed state must not be set free until solidified.
As the cooling method, there are rapid coolings such as water-cooling and air-cooling as well as standing to cool, and the cooling is carried out down to room temperature, preferably to a temperature of around 20° to 40° C. Further, it is preferable to cool at a constant rate under a condition of 10° C./min, preferably 1° C./min to obtain excellent dynamic properties because the cooling rate has a great influence on the crystallinity, particularly on the degree of crystallinity of the produced molded article. The completion of the solidification can be confirmed by decrease of a pressure guage (the volume being shrinked after the completion of the crystallization).
Also, before the cooling, the compression-deformed UHMWPE molded article may be subjected to isothermal crystallization at around 100° to 130° C., preferably 110° to 120° C., for 1 to 20 hours, preferably 5 to 10 hours, with keeping the deformed state, and then cooled to room temperature, preferably to 40° C. and solidified. When carrying out the isothermal crystallization, the degree of crystallinity becomes higher and the dynamic properties are improved. The cooling after the isothermal crystallization is not particularly limited and cooling at a rate of 1° C./min is preferable.
The melting point of the UHMWPE molded article having the molecular orientation or crystal orientation obtained by the cooling and solidification is 135° to 155° C.
The compression-deformed molded article which is obtained as described above can also be processed to a socket for artificial joints by cutting and can be molded by means of the compression-deformation mold with a die comprising a convex and concave portions. The surface hardness can be further reinforced by introducing metal ions, e.g. titanium, zirconium, iron, molybdenum, aluminium and/or cobalt ion, into the UHMWPE molded article for artificial joints which is obtained by cutting the compression-deformed molded article.
Hereinafter, the present invention is explained concretely by referring to Preparation Examples and Examples.
PREPARATION EXAMPLES 1 TO 3
A block of UHMWPE (thickness 3 cm, width 5 cm, length 5 cm) having a weight-average molecular weight of approximately 6 million and a melting point of 138° C. was put in a glass ampul and the glass was sealed after reducing the inner pressure (10−2 to 10−3 mmHg) under vacuum. γ-Ray from cobalt 60 was irradiated at a dose of 0.5 MR to this glass ampul at 25° C. Then, the UHMWPE block irradiated by the radioactive ray (melting point: 138° C., weight-average molecular weight: infinite) was taken out from the glass ampul, melted completely at 200° C. by using at hot press, compressed to ⅓, 1/4.5 and ⅙ of the original thickness by applying a pressure of 50 kgf/cm2m and then cooled to room temperature through natural cooling with keeping the deformed state.
COMPARATIVE PREPARATION EXAMPLES 1 TO 3
The same raw UHMWPE block as was used in Preparation Examples 1 to 3 was compressed to ⅓, 1/4.5 and ⅙ of the original thickness after melting completely at 200° C. by using a hot press in the same way without irradiation, and cooled naturally to room temperature with keeping the deformed state.
PREPARATION EXAMPLES 4 TO 6
Irradiated UHMWPE molded articles were obtained by compression-deforming and cooling naturally similarly in Preparation Example 1 except that a dose of irradiation of γ-ray was changed to 1.0 MR, 1.5 MR or 2.0 MR. Each weight-average molecular weights of the 1.0 MR irradiated article, 1.5 MR irradiated article and 2.0 MR irradiated article were infinite, and the melting points thereof were almost constant and were 138° C.
PREPARATION EXAMPLE 7
An irradiated UHMWPE molded article was obtained similarly in Preparation Example 1 except that after the irradiation of γ-ray (0.5 MR), the temperature was raised to 130° C. and the compression-deformation to ⅓ was carried out under a pressure of 200 kgf/cm3 for 5 minutes.
PREPARATION EXAMPLE 8
An irradiated UHMWPE molded article was obtained similarly in Preparation Example 1 except that after the compression molding, isothermal crystallization was carried out for 10 hours at 120° C. and then natural cooling was carried out.
EXAMPLE 1
A test sample having a thickness of 7 mm and a diameter of 7 mm was prepared by cutting from the UHMWPE molded article obtained in each of Preparation Examples 1 to 8 and Comparative Preparation Examples 1 to 3, and wear factor and coefficient of friction were evaluated by measuring a friction force and wear factor as the following.
Testing apparatus and testing conditions:
The unidirectional Pin-On-Disc wear and friction testing machine manufactured by Research Center for Biomedical Engineering, Kyoto University, was used for the test.
The unidirectional-type testing machine is operated by pressing a test sample on a surface of a ceramic disc, which is rotating in the clockwise direction, by means of the arm-type loading method. The load can be varied by providing a weight to the one end of the arm. The rotation of the disc is transmitted to a bearing by way of a belt according to the rotation of an invertor-controlled motor. The testing speed was set to 50 mm/s. Also, all tests were carried out in 50 ml saline for 48 hours and the temperature of the liquid was kept at 25±2° C.
Means to measure frictional force and wear volume:
A friction force was measured by a lever type dynamometer fixed to the arm portion of the testing machine. The friction force was recorded with a pen recorder with the lapse of time. The friction coefficients shown in test results (Table 1) were determined in case of a sliding distance of 8640 m (48 hours after tests begin).
The wear volume was evaluated by compressing the rotating disc of zirconia at a pressure of 1 MPa and by measuring the decreased thickness of the test sample with a non-contact type capacitance level gauge.
The test for each test sample was carried out three times under each loading condition, and the coefficient of friction and coefficient of abrasion were calculated in average value. In this case, the surface of the zirconia disc was made in intentionally roughened to Ra; 0.2 to 0.3, and the wear volume was measured after 48 hours.
Wear factor and coefficient of friction were calculated according to the equation of Dowson et al.
  • Wear Factor (WF)=Wear volume (mm3)/{Load (N)×Sliding distance (m)}
  • Coefficient of friction (CF)=Friction force (N)/Load (N)
The test results are shown in Table 1. With respect to the non-irradiated sample, there is no substantial difference in the wear factor (WF), that is, WF of 15.3×10−7 for the sample having the compression ratio at deformation (original thickness/thickness after compression-deformation) of 3, WF of 16.4×10−7 for the compression ratio of 4.5, and WF of 14.9×10−7 for the compression ratio of 6.
Remarkable decrease was observed, however, with respect to the 0.5 MR irradiated sample, i.e. WF if 9.07×10−7 for the compression ratio of 3, WF of 2.78×10−7 for the compression ratio of 4.5, and WF of 5.31×10−8 for the compression ratio of 6.
EXAMPLE 2
Characteristics of the UHMWPE molded articles obtained in Preparation Example 3 and Comparative Preparation Example 3 are shown in Table 2.
The heat of fusion and melting point were measured at a scan speed of 10° C./min by means of DSC-50 of SHIMADZU CORPORATION. And, the tensile strength and Young's modulus were measured at a tensile rate of 100%/min by means of Autograph S-100 of SHIMADZU CORPORATION.
As shown in Table 2, the density and melting point of UHMWPE molded article obtained from the 0.5 MR irraidation test of Preparation Example 3 are higher and the tensile strength and Young's modulus thereof increase, as compared with those of the UHMWPE molded article obtained from the non-irradiation test of Comparative Preparation Example 3. Particularly, the melting point rises from 138.0° to 149.5° C.
TABLE 1
Dose of Compression deformation Wear Coefficient
irradiation Temperature Compression factor of friction
MR (° C.) ratio Cooling (WF) (CF)
Preparation
Example
1 0.5 200 3 standing to cool 9.07 × 10−7 0.11
2 0.5 200 4.5 standing to cool 2.78 × 10−7 0.08
3 0.5 200 6 standing to cool 5.31 × 10−8 0.03
4 1.0 200 3 standing to cool 7.35 × 10−7 0.04
5 1.5 200 3 standing to cool 4.62 × 10−7 0.02
6 2.0 200 3 standing to cool 8.31 × 10−8 0.01
7 1.0 130 3 standing to cool 9.64 × 10−7 0.12
8 1.0 200 3 allowed to cool after 2.53 × 10−8 0.01
the isothermal
crystallization for
10 hours at 120° C.
Comparative
Preparation
Example
1 200 3 standing to cool 15.3 × 10−7 0.14
2 200 4.5 standing to cool 16.4 × 10−7 0.15
3 200 6 standing to cool 14.9 × 10−7 0.12
TABLE 2
Heat of Melting Tensile Young's
Density fusion point strength modulus
Sample (g/cm3) (cal/g) (° C.) (kg/cm2) (kg/cm2)
Comparative 0.931 31.6 138.0 0.3 × 103 1.36 × 104
Preparation
Example 3
Preparation 0.948 39.2 149.5 1.3 × 103 1.95 × 104
Example 3
INDUSTRIAL APPLICABILITY
The ultra high molecular weight polyethylene molded article for artificial joints obtained according to the present invention has the molecular orientation or crystal orientation in the molded article, and is low in friction and is superior in abrasion resistance, and therefore is available as a components of artificial joints.
Further, the ultra high molecular weight polyethylene molded article for artificial joints of the present invention can be used as a component for artificial hip joints (artificial acetabular cup), a component for artificial knee joints (artificial tibial insert) and the socket for artificial elbow joints, and in addition to the medical use, it can be applied as materials for various industries by utilizing the characteristics such as low friction and superior abrasion resistance.

Claims (34)

What is claimed is:
1. An ultra high molecular weight polyethylene molded block having a molecular weight not less than 5 million, having been crosslinked slightly and having been compression-deformed in a direction perpendicular to a compression plane, cooled and solidified in a compression-deformed state under pressure so as to have orientation of crystal planes in a direction parallel to the compression plane, and a thickness range of 5 to 10 mm in a direction perpendicular to the compression plane.
2. The molded block of claim 1, wherein a melting temperature of the ultra high molecular weight polyethylene is in a range of 135 to 155° C.
3. A method for producing an ultra high molecular weight polyethylene molded block having orientation of crystal planes in a direction parallel to a compression plane, comprising slightly crosslinking an ultra high molecular weight polyethylene molded block having a molecular weight not less than 5 million by irradiating the block with a high energy ray and thereby introducing a very small amount of crosslinking points into molecular chains of the block, then heating the crosslinked ultra high molecular weight polyethylene molded block up to a compression deformable temperature, compression-deforming the block by compressing the block in a direction perpendicular to the compression plane so as to deform the block, and then cooling the block while keeping the block in a deformed state under pressure, said block after cooling having a thickness range of 5 to 10 mm in a direction perpendicular to the compression plane.
4. The method of claim 3, where the high energy ray is a radioactive ray and a dose of the irradiation is in the range of 0.01 to 5.0 MR.
5. The method of claim 3 or 4, wherein the compression-deformable temperature is in a range of 50° C. lower than a melting temperature of the crosslinked ultra high molecular weight polyethylene to 80° C. higher than the melting temperature.
6. The method of claim 3, 4 or 5 wherein a weight-average molecular weight of the ultra high molecular weight polyethylene before irradiation is in a range of 2 to 8 million.
7. An ultra molecular weight polyethylene molded block having orientation of crystal planes in a direction parallel to a compression plane, said block produced by slightly crosslinking an ultra high molecular weight polyethylene block having a molecular weight of not less than 5 million by irradiating the block with a high energy ray and thereby introducing a very small amount of crosslinking points into molecular chains of the block, then heating the crosslinked block up to a compression deformable temperature, compression-deforming the block by compressing the block in a direction perpendicular to the compression plane so as to deform the block, and then cooling and solidifying the block while keeping the block in a deformed state under pressure, said block after cooling and solidifying having a thickness range of 5 to 10 mm in a direction perpendicular to the compression plane.
8. Artificial joint for implantation in a joint of an animal, the joint comprising a joint component formed from an ultra high molecular weight polyethylene molded block having a molecular weight of not less than 5 million, having been crosslinked slightly and having been compression-deformed in a direction perpendicular to a compression plane, cooled and solidified in a compression-deformed state under pressure so as to have orientation of crystal planes in a direction parallel to the compression plane, said block having a thickness range of 5 to 10 mm in a direction perpendicular to the compression plane.
9. Artificial joint according to claim 8, the joint for implantation in a joint of a human being.
10. Artificial joint for implantation in a joint of an animal, the joint comprising a joint component formed from an ultra high molecular weight polyethylene molded block having a molecular weight of not less than 5 million, having been crosslinked slightly and having been compression-deformed in a direction perpendicular to a compression plane so as to have orientation of crystal planes in a direction parallel to the compression plane, wherein said block having a thickness range of 5 to 10 mm in a direction perpendicular to the compression plane and the melting temperature of the molded block is in a range of 135 to 155° C.
11. Artificial joint according to claim 10, the joint for implantation in a joint of a human being.
12. A method for producing an ultra high molecular weight polyethylene (UHMWPE) artificial hip component, UHMWPE artificial knee component, UHMWPE artificial elbow component, UHMWPE artificial finger component, or UHMWPE artificial shoulder component having improved abrasion resistance, comprising:
(a) crosslinking an ultra high molecular weight polyethylene block having a molecular weight not less than 5 million by irradiating the block with a high energy radiation at a level of at least 1 MR;
(b) heating said crosslinked block up to a compression deformable temperature below the melting point of the UHMWPE;
(c) subjecting said heated block to pressure; then
(d) cooling said block; and
(e) processing said cooled block to form said component.
13. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, wherein said irradiation is gamma irradiation at a level of from 1 MR to 5 MR.
14. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, wherein said heating is in a range of from 50° C. lower than the melting temperature of the crosslinked ultra high molecular weight polyethylene to the melting temperature.
15. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, wherein said pressure is applied so as to deform the block.
16. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 15, wherein said deformation is in a direction perpendicular to the plane of compression.
17. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 16, wherein said block is cooled in a compression-deformed state under pressure.
18. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 17, wherein said block has an orientation of crystal planes in a direction parallel to the compression plane.
19. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 16, wherein said block has a thickness, after compression, of at least 5 mm in a direction perpendicular to the compression plane.
20. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 16, wherein said block, prior to compression, has a thickness of at least 3 cm.
21. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 18, wherein said cooled block has a melting point of from 135° C. to 155° C.
22. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, wherein said irradiation is conducted in the presence of oxygen.
23. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, wherein said irradiation is conducted under a vacuum or in an inert atmosphere.
24. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, additionally comprising processing said block, after cooling, by a process comprising cutting said block to form said component.
25. A method of producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, wherein after said subjecting to pressure step, said block is subjected to isothermal crystallization.
26. A method for producing an ultra high molecular weight polyethylene artificial joint component according to claim 12, wherein after said subjecting to pressure step, said block is subjected to isothermal treatment at a temperature of from around 100° C. to 130° C. for a period of from 1 hour to 20 hours.
27. A method of making an artificial joint component having improved abrasion resistance, the artificial joint component being obtained by fabrication from a crosslinked ultra high molecular weight polyethylene (UHMWPE) which is prepared by the method comprising:
a) providing raw UHMWPE in the form of a rod;
b) crosslinking the rod with gamma-irradiation at a dose of at least 1 MR;
c) heating the crosslinked rod to a compression deformable temperature below the melting point of the UHMWPE;
d) subjecting the heated rod to pressure; and
e) cooling and solidifying the rod.
28. A method according to claim 27, wherein the dose of gamma-irradiation is 1 MR to 5 MR.
29. A method according to claim 27, wherein the compression deformable temperature is greater than the melting point minus 50° C.
30. A method according to claim 28, wherein pressure is applied in step d) to deform the rod.
31. A method according to claim 30, wherein the deformed rod is cooled in a compression deformed state.
32. A method of producing a UHMWPE artificial joint component comprising making a crosslinked UHMWPE according to claim 27 and processing the rod after solidification to form the joint component.
33. A method according to claim 32, wherein the joint component is selected from hip, knee, elbow, finger, and shoulder.
34. A method according to claim 32, wherein the joint component is a hip component or a knee component.
US13/531,232 1994-09-21 1995-09-18 Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same Expired - Lifetime USRE44762E1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/531,232 USRE44762E1 (en) 1994-09-21 1995-09-18 Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP6-254564 1994-09-21
JP25456494 1994-09-21
PCT/JP1995/001858 WO1996009330A1 (en) 1994-09-21 1995-09-18 Ultrahigh-molecular-weight polyethylene molding for artificial joint and process for producing the molding
US08/640,738 US6168626B1 (en) 1994-09-21 1995-09-18 Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US13/531,232 USRE44762E1 (en) 1994-09-21 1995-09-18 Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same

Publications (1)

Publication Number Publication Date
USRE44762E1 true USRE44762E1 (en) 2014-02-11

Family

ID=17266807

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/640,738 Expired - Lifetime US6168626B1 (en) 1994-09-21 1995-09-18 Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US13/531,232 Expired - Lifetime USRE44762E1 (en) 1994-09-21 1995-09-18 Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US08/640,738 Expired - Lifetime US6168626B1 (en) 1994-09-21 1995-09-18 Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same

Country Status (9)

Country Link
US (2) US6168626B1 (en)
EP (1) EP0729981B1 (en)
JP (2) JP3563075B2 (en)
KR (1) KR100293587B1 (en)
CN (2) CN1123583C (en)
AU (1) AU693260B2 (en)
CA (2) CA2654851C (en)
DE (1) DE69525924T2 (en)
WO (1) WO1996009330A1 (en)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
CA2166450C (en) 1995-01-20 2008-03-25 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US8865788B2 (en) * 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US5879400A (en) 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US20020156536A1 (en) * 1996-02-13 2002-10-24 Harris William H. Polyethylene hip joint prosthesis with extended range of motion
US8563623B2 (en) * 1996-02-13 2013-10-22 The General Hospital Corporation Radiation melt treated ultra high molecular weight polyethylene prosthetic devices
ES2243980T3 (en) 1996-02-13 2005-12-01 Massachusetts Institute Of Technology ULTRA HIGH MOLECULAR POLYETHYLENE PROTECTION DEVICES MOLECULAR TREATED BY FUSION AND RADIATION.
JP2000514481A (en) 1996-07-09 2000-10-31 ザ オーソピーディック ホスピタル Crosslinking of low wear polyethylene using radiation and heat treatment
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6017975A (en) * 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
WO1998016258A1 (en) * 1996-10-15 1998-04-23 The Orthopaedic Hospital Wear resistant surface-gradient cross-linked polyethylene
IT1298376B1 (en) * 1997-12-16 2000-01-05 Samo Spa CROSS-LINKING AND STERILIZATION TREATMENT FOR THE PRODUCTION OF POLYETHYLENE PRODUCTS WITH HIGH TRIBOLOGICAL CHARACTERISTICS,
US6692679B1 (en) 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
DE69922435T2 (en) * 1998-06-10 2005-12-08 Depuy Products, Inc., Warsaw Method for producing crosslinked, molded plastic bearings
AU760210C (en) 1999-04-21 2004-10-07 Howmedica Osteonics Corp. Selectively cross-linked polyethylene orthopedic devices
US6627141B2 (en) 1999-06-08 2003-09-30 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6245276B1 (en) 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6432349B1 (en) * 1999-06-29 2002-08-13 Zimmer, Inc. Process of making an articulating bearing surface
US6143232A (en) * 1999-07-29 2000-11-07 Bristol-Meyers Squibb Company Method of manufacturing an articulating bearing surface for an orthopaedic implant
US6184265B1 (en) * 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
KR100358193B1 (en) 2000-02-16 2002-10-25 한국과학기술원 Plastic jacket for cementless artificial joint and the artificial joint with it
KR100358191B1 (en) 2000-02-16 2002-10-25 한국과학기술원 Jacket for cemented artificial joint and the artificial joint with it
US6395799B1 (en) 2000-02-21 2002-05-28 Smith & Nephew, Inc. Electromagnetic and mechanical wave energy treatments of UHMWPE
US20030208280A1 (en) * 2000-04-21 2003-11-06 Behrooz Tohidi Wear resistant artificial joint
US7713305B2 (en) 2000-05-01 2010-05-11 Arthrosurface, Inc. Articular surface implant
US7163541B2 (en) 2002-12-03 2007-01-16 Arthrosurface Incorporated Tibial resurfacing system
US6610067B2 (en) * 2000-05-01 2003-08-26 Arthrosurface, Incorporated System and method for joint resurface repair
US8177841B2 (en) 2000-05-01 2012-05-15 Arthrosurface Inc. System and method for joint resurface repair
US7896883B2 (en) 2000-05-01 2011-03-01 Arthrosurface, Inc. Bone resurfacing system and method
US6520964B2 (en) 2000-05-01 2003-02-18 Std Manufacturing, Inc. System and method for joint resurface repair
US20040230315A1 (en) * 2000-05-01 2004-11-18 Ek Steven W. Articular surface implant
US7678151B2 (en) * 2000-05-01 2010-03-16 Ek Steven W System and method for joint resurface repair
US6503439B1 (en) 2000-06-15 2003-01-07 Albert H. Burstein Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof
JP2004504178A (en) * 2000-07-14 2004-02-12 デピュイ・オーソピーディックス・インコーポレイテッド Method for molding crosslinked preforms
JP4354181B2 (en) 2000-07-31 2009-10-28 ザ・ジェネラル・ホスピタル・コーポレイション Improved acetabular component that reduces the risk of dislocation
US6818172B2 (en) * 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
ES2271074T3 (en) * 2000-09-29 2007-04-16 Depuy Orthopaedics, Inc. TREATMENT WITH A SUPERCRITICAL FLUID OF AN IRRADIATED PREFORM OF A PROTECTED POLYETHYLENE SUPPORT.
US6626947B2 (en) 2000-10-03 2003-09-30 Depuy Orthopaedics, Inc. Press fit acetabular cup and associated method for securing the cup to an acetabulum
US6547828B2 (en) 2001-02-23 2003-04-15 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US6652586B2 (en) * 2001-07-18 2003-11-25 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
US7182784B2 (en) * 2001-07-18 2007-02-27 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
US7160492B2 (en) * 2001-12-12 2007-01-09 Depuy Products, Inc. Orthopaedic device for implantation in the body of an animal and method for making the same
EP1463457A4 (en) 2002-01-04 2006-12-20 Massachusetts Gen Hospital A high modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt
US7186364B2 (en) 2002-01-28 2007-03-06 Depuy Products, Inc. Composite prosthetic bearing constructed of polyethylene and an ethylene-acrylate copolymer and method for making the same
US7819925B2 (en) * 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
ATE312704T1 (en) 2002-01-29 2005-12-15 Paul Smith SINTERING OF ULTRA HIGH MOLECULAR POLYETHYLENE
AU2003262390A1 (en) * 2002-04-19 2003-11-03 Gammatron (Pty) Ltd Method of increasing the hydrostatic stress strength of a polymer
EP1369094B1 (en) 2002-05-31 2014-11-26 Zimmer GmbH Implant and method of manufacturing a sterile packaged implant
CA2429930C (en) 2002-06-06 2008-10-14 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US20040002770A1 (en) * 2002-06-28 2004-01-01 King Richard S. Polymer-bioceramic composite for orthopaedic applications and method of manufacture thereof
US6593451B1 (en) 2002-10-09 2003-07-15 Pragtech, Inc. Method of processing polyacrylonitrile
US20040070107A1 (en) * 2002-10-09 2004-04-15 Pragtech, Inc. Method of making lubricious polyacrylonitrile artificial joint components and resulting product
WO2004037119A2 (en) * 2002-10-23 2004-05-06 Mako Surgical Corp. Modular femoral component for a total knee joint replacement for minimally invasive implantation
US7901408B2 (en) * 2002-12-03 2011-03-08 Arthrosurface, Inc. System and method for retrograde procedure
US8388624B2 (en) 2003-02-24 2013-03-05 Arthrosurface Incorporated Trochlear resurfacing system and method
US7938861B2 (en) 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
AT412969B (en) * 2003-05-19 2005-09-26 Klaus Dr Lederer NETWORKED, ULTRA-HIGH-MOLECULAR POLYETHYLENE (UHMW-PE)
US20040262809A1 (en) * 2003-06-30 2004-12-30 Smith Todd S. Crosslinked polymeric composite for orthopaedic implants
WO2006074321A2 (en) 2003-11-20 2006-07-13 Arthrosurface, Inc. System and method for retrograde procedure
WO2005051231A2 (en) 2003-11-20 2005-06-09 Arthrosurface, Inc. Retrograde delivery of resurfacing devices
US7951163B2 (en) 2003-11-20 2011-05-31 Arthrosurface, Inc. Retrograde excision system and apparatus
US20050133949A1 (en) * 2003-12-19 2005-06-23 Pragtech, Inc. Polymer solidification and coating process
US7378144B2 (en) * 2004-02-17 2008-05-27 Kensey Nash Corporation Oriented polymer implantable device and process for making same
US20100191292A1 (en) * 2004-02-17 2010-07-29 Demeo Joseph Oriented polymer implantable device and process for making same
JP2008504107A (en) 2004-06-28 2008-02-14 アースロサーフィス・インコーポレーテッド Joint surface replacement system
US7384430B2 (en) * 2004-06-30 2008-06-10 Depuy Products, Inc. Low crystalline polymeric material for orthopaedic implants and an associated method
US7547405B2 (en) * 2004-10-07 2009-06-16 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7344672B2 (en) 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7462318B2 (en) 2004-10-07 2008-12-09 Biomet Manufacturing Corp. Crosslinked polymeric material with enhanced strength and process for manufacturing
US8262976B2 (en) 2004-10-07 2012-09-11 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7828853B2 (en) 2004-11-22 2010-11-09 Arthrosurface, Inc. Articular surface implant and delivery system
US7879275B2 (en) 2004-12-30 2011-02-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7896921B2 (en) * 2004-12-30 2011-03-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7883653B2 (en) 2004-12-30 2011-02-08 Depuy Products, Inc. Method of making an implantable orthopaedic bearing
WO2006138247A2 (en) * 2005-06-14 2006-12-28 Omni Life Science, Inc Crosslinked polyethylene article
US7538379B1 (en) * 2005-06-15 2009-05-26 Actel Corporation Non-volatile two-transistor programmable logic cell and array layout
US8012214B2 (en) 2005-09-27 2011-09-06 Randall Lane Acker Joint prosthesis
US8034113B2 (en) * 2005-09-27 2011-10-11 Randall Lane Acker Joint prosthesis and method of implanting same
CN101346497B (en) * 2005-12-22 2011-08-10 帝斯曼知识产权资产管理有限公司 Surgical repair product comprising uhmwpe filaments
EP2083981B1 (en) 2006-10-30 2021-10-06 Smith & Nephew Orthopaedics AG Processes comprising crosslinking polyethylene or using crosslinked polyethylene
AU2007332787A1 (en) 2006-12-11 2008-06-19 Arthrosurface Incorporated Retrograde resection apparatus and method
WO2008101097A2 (en) * 2007-02-14 2008-08-21 Arthrosurface Incorporated Bone cement delivery device
US8641959B2 (en) 2007-07-27 2014-02-04 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
JP2011503253A (en) * 2007-11-06 2011-01-27 ディーエスエム アイピー アセッツ ビー.ブイ. Production method of (ultra) high molecular weight polyethylene
US9371426B2 (en) * 2008-12-08 2016-06-21 Sabic Global Technologies B.V. Compositions having improved tribological properties, methods of manufacture thereof and articles comprising the same
EP2429429B1 (en) 2009-04-17 2018-07-25 Arthrosurface Incorporated Glenoid resurfacing system
WO2010121250A1 (en) 2009-04-17 2010-10-21 Arthrosurface Incorporated Glenoid resurfacing system and method
US10945743B2 (en) 2009-04-17 2021-03-16 Arthrosurface Incorporated Glenoid repair system and methods of use thereof
ITVR20090190A1 (en) * 2009-11-13 2011-05-14 Eurocoating S P A PROCESS TO CONNECT A POLYMER COMPONENT TO A METALLIC COMPONENT CONSTITUTING PART OF OR A MEDICAL PROSTHESIS
GB0922339D0 (en) * 2009-12-21 2010-02-03 Mcminn Derek J W Acetabular cup prothesis and introducer thereof
CA2792048A1 (en) 2010-03-05 2011-09-09 Arthrosurface Incorporated Tibial resurfacing system and method
CN101810884A (en) * 2010-03-19 2010-08-25 中国矿业大学 Antioxidant ultra-low abrasion ultra-high molecular weight polyethylene hip cotyle
US9132209B2 (en) 2010-05-07 2015-09-15 Howmedia Osteonics Corp. Surface crosslinked polyethylene
DE102010029633A1 (en) 2010-06-02 2011-12-08 Hd Kunststoffe & Kunststofferzeugnisse Gmbh Comminution of ultra-high molecular weight polyethylene fibers
US9403329B2 (en) * 2010-09-09 2016-08-02 W. L. Gore & Associates, Inc. Method of increasing film tear strength
CN101948583B (en) * 2010-10-25 2012-06-06 株洲时代工程塑料制品有限责任公司 Crosslinked polyethylene composite material and preparation method thereof
US9066716B2 (en) 2011-03-30 2015-06-30 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
EP2804565B1 (en) 2011-12-22 2018-03-07 Arthrosurface Incorporated System for bone fixation
WO2014008126A1 (en) 2012-07-03 2014-01-09 Arthrosurface Incorporated System and method for joint resurfacing and repair
US9492200B2 (en) 2013-04-16 2016-11-15 Arthrosurface Incorporated Suture system and method
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene
US10624748B2 (en) 2014-03-07 2020-04-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US11607319B2 (en) 2014-03-07 2023-03-21 Arthrosurface Incorporated System and method for repairing articular surfaces
US20150250472A1 (en) 2014-03-07 2015-09-10 Arthrosurface Incorporated Delivery System for Articular Surface Implant
US20150266210A1 (en) 2014-03-21 2015-09-24 Howmedica Osteonics Corp. Annealing method for cross-linked polyethylene
CN104961958A (en) * 2015-06-30 2015-10-07 苏州佑君环境科技有限公司 Preparation method of polyethylene material for artificial joint
DE102015214668A1 (en) * 2015-07-31 2017-02-02 Waldemar Link Gmbh & Co. Kg Method for processing a polymer workpiece for use in a joint implant
CA3108761A1 (en) 2017-08-04 2019-02-07 Arthrosurface Incorporated Multicomponent articular surface implant
GB2609338B (en) 2019-03-12 2023-06-14 Arthrosurface Inc Humeral and glenoid articular surface implant systems and methods
CN113956528B (en) * 2021-10-09 2022-12-06 中国科学院上海应用物理研究所 High-crosslinking ultrahigh molecular weight polyethylene and preparation method and application thereof

Citations (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948666A (en) 1956-11-21 1960-08-09 Gen Electric Irradiation process
US3362897A (en) 1962-11-21 1968-01-09 Gen Electric Stable irradiated polyethylene
US3563870A (en) 1969-01-23 1971-02-16 Dow Chemical Co Melt strength and melt extensibility of irradiated linear polyethylene
US3886056A (en) 1971-11-01 1975-05-27 Ryozo Kitamaru Process for producing a high melting temperature polyethylene employing irradiation and orienting
US3956253A (en) 1972-09-16 1976-05-11 Ruhrchemie Aktiengesellschaft Polyethylene molding compounds of high-wear resistance
US4055862A (en) 1976-01-23 1977-11-01 Zimmer Usa, Inc. Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
US4171338A (en) 1977-11-01 1979-10-16 Allied Chemical Corporation Process for ultra-high molecular weight, high abrasion resistance, cross-linked polyethylene
US4224696A (en) 1978-09-08 1980-09-30 Hexcel Corporation Prosthetic knee
US4265959A (en) 1977-01-12 1981-05-05 Sumitomo Chemical Company, Limited Process for producing semipermeable membranes
US4281420A (en) 1979-02-15 1981-08-04 Raab S Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same
US4348350A (en) 1980-09-26 1982-09-07 Michigan Molecular Institute Ultra-drawing crystalline polymers under high pressure
JPS57211347A (en) 1981-06-24 1982-12-25 Dainippon Printing Co Ltd Artificial joint socket and method
US4390666A (en) 1981-08-14 1983-06-28 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene blend composition
US4582656A (en) 1981-08-12 1986-04-15 Hewing Gmbh & Co. Method of producing molded articles from polyolefin molding compositions crosslinked by irradiation
US4586995A (en) 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
US4587163A (en) 1984-03-06 1986-05-06 Zachariades Anagnostis E Preparation of ultra high molecular weight polyethylene morphologies of totally fused particles with superior mechanical performance
US4636340A (en) 1984-01-23 1987-01-13 Toa Nenryo Kogyo Kabushiki Kaisha Method of producing crosslinked polyethylene stretched film
US4655769A (en) 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4668577A (en) 1983-09-09 1987-05-26 Toyo Boseki Kabushiki Kaisha Polyethylene filaments and their production
JPS62243634A (en) 1986-04-17 1987-10-24 Nippon Oil Co Ltd Ultra-high-molecular weight polyethylene crosslinked product
US4747990A (en) 1985-03-12 1988-05-31 Cie Oris Industrie S.A. Process of making a high molecular weight polyolefin part
US4778633A (en) 1985-04-01 1988-10-18 Raychem Corporation Method of making high strength polyethylene fiber
CA1257745A (en) 1984-02-21 1989-07-18 Nachum Rosenzweig Recoverable polyethylene composition and article
US4902460A (en) 1985-11-30 1990-02-20 Mitsui Petrochemical Industries, Ltd. Process for preparation of molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article
JPH02175137A (en) 1988-12-27 1990-07-06 Nippon Oil Co Ltd Production of high-orientation polyethylene material
JPH0322222A (en) 1989-06-19 1991-01-30 Sanyo Electric Co Ltd Optical disk device
US5030402A (en) 1989-03-17 1991-07-09 Zachariades Anagnostis E Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties
US5030487A (en) 1984-04-04 1991-07-09 Raychem Corporation Heat recoverable article comprising conductive polymer compositions
US5037928A (en) 1989-10-24 1991-08-06 E. I. Du Pont De Nemours And Company Process of manufacturing ultrahigh molecular weight linear polyethylene shaped articles
US5066755A (en) 1984-05-11 1991-11-19 Stamicarbon B.V. Novel irradiated polyethylene filaments tapes and films and process therefor
US5130376A (en) 1990-04-23 1992-07-14 Hercules Incorporated UHMWPE/styrenic molding compositions with improved flow properties and impact strength
JPH04198201A (en) 1990-11-27 1992-07-17 Komatsu Ltd Molding of ultrahigh-molecular-weight polyethylene
US5160464A (en) 1983-12-09 1992-11-03 National Research Development Corporation Polymer irradiation
US5200439A (en) 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
US5204045A (en) 1990-06-15 1993-04-20 Symplastics Limited Process for extruding polymer shapes with smooth, unbroken surface
US5210130A (en) 1990-08-07 1993-05-11 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
WO1993010953A1 (en) 1991-11-27 1993-06-10 E.I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene, articles and processes of manufacture
US5234652A (en) 1990-12-20 1993-08-10 Woodhams Raymond T Process for the continuous production of high modulus articles from high molecular weight plastics
JPH05507748A (en) 1990-05-03 1993-11-04 スタミカーボン・ベスローテン・フェンノートシャップ Crosslinked oriented high molecular weight polyethylene and methods of making products from such polyethylene
US5276079A (en) 1991-11-15 1994-01-04 Minnesota Mining And Manufacturing Company Pressure-sensitive poly(n-vinyl lactam) adhesive composition and method for producing and using same
US5358529A (en) 1993-03-05 1994-10-25 Smith & Nephew Richards Inc. Plastic knee femoral implants
WO1995006148A1 (en) 1993-08-20 1995-03-02 Smith & Nephew Richards, Inc. Self-reinforced ultra-high molecular weight polyethylene composites
US5405393A (en) 1993-06-02 1995-04-11 Academisch Ziekenhuis Groningen Temporomandibular joint prosthesis
US5414049A (en) 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US5428079A (en) 1990-08-01 1995-06-27 Dsm N.V. Solution of ultra-high molecular weight polyethylene
US5439949A (en) 1991-08-21 1995-08-08 Rexene Corporation Propylene compositions with improved resistance to thermoforming sag
US5466530A (en) 1993-01-21 1995-11-14 England; Garry L. Biocompatible components fabricated from a substantially consolidated stock of material
US5478906A (en) 1988-12-02 1995-12-26 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene and articles thereof
US5505900A (en) 1993-07-09 1996-04-09 Suwanda; Dedo Continuous process for manufacture of crosslinked, oriented polyethylene extrudates
US5508319A (en) 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5577368A (en) 1995-04-03 1996-11-26 Johnson & Johnson Professional, Inc. Method for improving wear resistance of polymeric bioimplantable components
WO1998001085A1 (en) 1996-07-09 1998-01-15 The Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US5709020A (en) 1994-07-19 1998-01-20 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US5879400A (en) 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US6017975A (en) 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6048480A (en) 1995-11-02 2000-04-11 Howmedica International Inc. Ultra-high molecular weight polyethylene
US6146426A (en) 1995-11-02 2000-11-14 Howmedica Interntional Inc. Prosthetic polyethylene bearing having enhanced wear properties
US6165220A (en) 1996-10-15 2000-12-26 The Orthopaedic Hospital Wear resistant surface-gradient crosslinked polyethylene
US6184265B1 (en) 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6281264B1 (en) 1995-01-20 2001-08-28 The Orthopaedic Hospital Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US6355215B1 (en) 1999-03-10 2002-03-12 Implex Corp. Wear-resistant olefinic medical implant and thermal treatment container therefor
US6365089B1 (en) 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
US20020125614A1 (en) 2000-09-29 2002-09-12 Richard King Oriented, cross-linked UHMWPE molding for orthopaedic applications
US6458727B1 (en) 1996-10-04 2002-10-01 University Of Leeds Innovative Limited Olefin polymers
US20020161438A1 (en) 2001-02-23 2002-10-31 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US20030119935A1 (en) 1996-02-13 2003-06-26 Merrill Edward W. Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US20030149125A1 (en) 2002-01-04 2003-08-07 Muratoglu Orhun K. High modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662784B2 (en) * 1986-10-09 1994-08-17 三井石油化学工業株式会社 Molecular orientation and silane cross-linked polyethylene molding and method for producing the same

Patent Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2948666A (en) 1956-11-21 1960-08-09 Gen Electric Irradiation process
US3362897A (en) 1962-11-21 1968-01-09 Gen Electric Stable irradiated polyethylene
US3563870A (en) 1969-01-23 1971-02-16 Dow Chemical Co Melt strength and melt extensibility of irradiated linear polyethylene
US3886056A (en) 1971-11-01 1975-05-27 Ryozo Kitamaru Process for producing a high melting temperature polyethylene employing irradiation and orienting
US3956253A (en) 1972-09-16 1976-05-11 Ruhrchemie Aktiengesellschaft Polyethylene molding compounds of high-wear resistance
US4055862A (en) 1976-01-23 1977-11-01 Zimmer Usa, Inc. Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
US4265959A (en) 1977-01-12 1981-05-05 Sumitomo Chemical Company, Limited Process for producing semipermeable membranes
US4171338A (en) 1977-11-01 1979-10-16 Allied Chemical Corporation Process for ultra-high molecular weight, high abrasion resistance, cross-linked polyethylene
US4224696A (en) 1978-09-08 1980-09-30 Hexcel Corporation Prosthetic knee
US4281420A (en) 1979-02-15 1981-08-04 Raab S Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same
US4348350A (en) 1980-09-26 1982-09-07 Michigan Molecular Institute Ultra-drawing crystalline polymers under high pressure
JPS57211347A (en) 1981-06-24 1982-12-25 Dainippon Printing Co Ltd Artificial joint socket and method
US4582656A (en) 1981-08-12 1986-04-15 Hewing Gmbh & Co. Method of producing molded articles from polyolefin molding compositions crosslinked by irradiation
US4390666A (en) 1981-08-14 1983-06-28 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene blend composition
US4586995A (en) 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
US4668577A (en) 1983-09-09 1987-05-26 Toyo Boseki Kabushiki Kaisha Polyethylene filaments and their production
US5160464A (en) 1983-12-09 1992-11-03 National Research Development Corporation Polymer irradiation
US4636340A (en) 1984-01-23 1987-01-13 Toa Nenryo Kogyo Kabushiki Kaisha Method of producing crosslinked polyethylene stretched film
CA1257745A (en) 1984-02-21 1989-07-18 Nachum Rosenzweig Recoverable polyethylene composition and article
US4587163B1 (en) 1984-03-06 1990-04-03 E Zachariades Anagnostis
US4587163A (en) 1984-03-06 1986-05-06 Zachariades Anagnostis E Preparation of ultra high molecular weight polyethylene morphologies of totally fused particles with superior mechanical performance
US5030487A (en) 1984-04-04 1991-07-09 Raychem Corporation Heat recoverable article comprising conductive polymer compositions
US5066755A (en) 1984-05-11 1991-11-19 Stamicarbon B.V. Novel irradiated polyethylene filaments tapes and films and process therefor
US4655769A (en) 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4747990A (en) 1985-03-12 1988-05-31 Cie Oris Industrie S.A. Process of making a high molecular weight polyolefin part
US4778633A (en) 1985-04-01 1988-10-18 Raychem Corporation Method of making high strength polyethylene fiber
US4902460A (en) 1985-11-30 1990-02-20 Mitsui Petrochemical Industries, Ltd. Process for preparation of molecularly oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article
JPS62243634A (en) 1986-04-17 1987-10-24 Nippon Oil Co Ltd Ultra-high-molecular weight polyethylene crosslinked product
US5684124A (en) 1988-12-02 1997-11-04 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene processes of manufacture
US5478906A (en) 1988-12-02 1995-12-26 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene and articles thereof
JPH02175137A (en) 1988-12-27 1990-07-06 Nippon Oil Co Ltd Production of high-orientation polyethylene material
US5030402A (en) 1989-03-17 1991-07-09 Zachariades Anagnostis E Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties
JPH0322222A (en) 1989-06-19 1991-01-30 Sanyo Electric Co Ltd Optical disk device
US5037928A (en) 1989-10-24 1991-08-06 E. I. Du Pont De Nemours And Company Process of manufacturing ultrahigh molecular weight linear polyethylene shaped articles
US5200439A (en) 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
US5130376A (en) 1990-04-23 1992-07-14 Hercules Incorporated UHMWPE/styrenic molding compositions with improved flow properties and impact strength
JPH05507748A (en) 1990-05-03 1993-11-04 スタミカーボン・ベスローテン・フェンノートシャップ Crosslinked oriented high molecular weight polyethylene and methods of making products from such polyethylene
US5204045A (en) 1990-06-15 1993-04-20 Symplastics Limited Process for extruding polymer shapes with smooth, unbroken surface
US5428079A (en) 1990-08-01 1995-06-27 Dsm N.V. Solution of ultra-high molecular weight polyethylene
US5210130A (en) 1990-08-07 1993-05-11 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
JPH04198201A (en) 1990-11-27 1992-07-17 Komatsu Ltd Molding of ultrahigh-molecular-weight polyethylene
US5234652A (en) 1990-12-20 1993-08-10 Woodhams Raymond T Process for the continuous production of high modulus articles from high molecular weight plastics
US5552104A (en) 1991-06-21 1996-09-03 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5508319A (en) 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5439949A (en) 1991-08-21 1995-08-08 Rexene Corporation Propylene compositions with improved resistance to thermoforming sag
US5276079A (en) 1991-11-15 1994-01-04 Minnesota Mining And Manufacturing Company Pressure-sensitive poly(n-vinyl lactam) adhesive composition and method for producing and using same
WO1993010953A1 (en) 1991-11-27 1993-06-10 E.I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene, articles and processes of manufacture
US5466530A (en) 1993-01-21 1995-11-14 England; Garry L. Biocompatible components fabricated from a substantially consolidated stock of material
US5358529A (en) 1993-03-05 1994-10-25 Smith & Nephew Richards Inc. Plastic knee femoral implants
US5414049A (en) 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US6818020B2 (en) 1993-06-01 2004-11-16 Howmedica Osteonics Corp. Non-oxidizing polymeric medical implant
US5449745A (en) 1993-06-01 1995-09-12 Howmedica Inc. Non-oxidizing polymeric medical implant
US5543471A (en) 1993-06-01 1996-08-06 Howmedica Inc. Non-oxidizing polymeric medical implant
US6372814B1 (en) 1993-06-01 2002-04-16 Stryker Technologies Corporation Non-oxidizing polymeric medical implant
US5650485A (en) 1993-06-01 1997-07-22 Howmedica Inc. Non-oxidizing polymeric medical implant
US6664308B2 (en) 1993-06-01 2003-12-16 Stryker Technologies Corporation Non-oxidizing polymeric medical implant
US20050059750A1 (en) 1993-06-01 2005-03-17 Howmedica Osteonics Corp. Non-oxidizing polymeric medical implant
US6174934B1 (en) 1993-06-01 2001-01-16 Stryker Technologies Corporation Non-oxidizing polymeric medical implant
US5728748A (en) 1993-06-01 1998-03-17 Howmedica Inc. Non oxidizing polymeric medical implant
US5405393A (en) 1993-06-02 1995-04-11 Academisch Ziekenhuis Groningen Temporomandibular joint prosthesis
US5505900A (en) 1993-07-09 1996-04-09 Suwanda; Dedo Continuous process for manufacture of crosslinked, oriented polyethylene extrudates
US5824411A (en) 1993-08-20 1998-10-20 Poly-Med, Inc. Self-reinforced ultra-high molecular weight polyethylene composites
WO1995006148A1 (en) 1993-08-20 1995-03-02 Smith & Nephew Richards, Inc. Self-reinforced ultra-high molecular weight polyethylene composites
US5709020A (en) 1994-07-19 1998-01-20 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US20010049401A1 (en) 1995-01-20 2001-12-06 The Orthopaedic Hospital And University Of Southern California Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20040208841A1 (en) 1995-01-20 2004-10-21 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US6281264B1 (en) 1995-01-20 2001-08-28 The Orthopaedic Hospital Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20030158287A1 (en) 1995-01-20 2003-08-21 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20030045603A1 (en) 1995-01-20 2003-03-06 The Orthopaedic Hospital And University Of Southern California Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US5577368A (en) 1995-04-03 1996-11-26 Johnson & Johnson Professional, Inc. Method for improving wear resistance of polymeric bioimplantable components
US6146426A (en) 1995-11-02 2000-11-14 Howmedica Interntional Inc. Prosthetic polyethylene bearing having enhanced wear properties
US6048480A (en) 1995-11-02 2000-04-11 Howmedica International Inc. Ultra-high molecular weight polyethylene
US5879400A (en) 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US20030119935A1 (en) 1996-02-13 2003-06-26 Merrill Edward W. Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
WO1998001085A1 (en) 1996-07-09 1998-01-15 The Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20020037944A1 (en) 1996-07-09 2002-03-28 The Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20020107300A1 (en) 1996-10-02 2002-08-08 Saum Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6017975A (en) 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US6458727B1 (en) 1996-10-04 2002-10-01 University Of Leeds Innovative Limited Olefin polymers
US6494917B1 (en) 1996-10-15 2002-12-17 Orthopaedic Hospital Wear resistant surface-gradient crosslinked polyethylene
US6165220A (en) 1996-10-15 2000-12-26 The Orthopaedic Hospital Wear resistant surface-gradient crosslinked polyethylene
US6355215B1 (en) 1999-03-10 2002-03-12 Implex Corp. Wear-resistant olefinic medical implant and thermal treatment container therefor
US6184265B1 (en) 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6365089B1 (en) 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
US20020125614A1 (en) 2000-09-29 2002-09-12 Richard King Oriented, cross-linked UHMWPE molding for orthopaedic applications
US20030130743A1 (en) 2001-02-23 2003-07-10 Scott Marcus L. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US20020161438A1 (en) 2001-02-23 2002-10-31 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US20030149125A1 (en) 2002-01-04 2003-08-07 Muratoglu Orhun K. High modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt

Non-Patent Citations (88)

* Cited by examiner, † Cited by third party
Title
"Researchers Get Awards for Orthopaedic Research", The American Academy of Orthopaedic Surgeons, News Release. (Mar. 19, 1998), available at http://www.aaos.org/wordhtml/press/98press/kappa.htm. (4 pages).
"Researchers to Get Kappa Delta Awards for Achievements" The American Academy of Orthopaedic Surgeons, Academy News. (Mar. 19, 1998), available at http://www.aaos.org/wordhtml/98news/kappa.htm. (3 pages).
Appleby et al. "Post-Gamma Irradiation Cross-linking of Polyethylene Tape by Acetylene Treatment" Journal of Materials Science. vol. 29 (1994) p. 227-231.
Appleby et al. "Property Modification of Polyethylene Tapes by Acetylene-Sensitized Gamma Irradiation" Journal of Materials Science. vol. 29 (1994) p. 151-156.
Bhateja et al. "Radiation-Induced Crystallinity Changes in Polyethylene Blends" Journal of Materials Science. vol. 20 (1985) p. 2839-2845.
Bhateja, S. "Radiation-Induced Crystallinity Changes in Linear Polyethylene" Journal of Polymer Science: Polymer Physics Edition. vol. 21 (1983) p. 523-536.
Bhateja, S. "Radiation-Induced Crystallinity Changes in Linear Polyethylene: Influence of Aging" Journal of Applied Polymer Science. vol. 28 (1983) p. 861-872.
Bhateja, S. "Radiation-Induced Crystallinity Changes in Pressure-Crystallized Ultrahigh Molecular Weight Polyethylene" J. Macromol. Sci. Phys. B22(1) (1983) p. 159-168.
Bowman, J. "The Processing and Properties of y-Irradiated HDPE Granules" Intern. Polymer Processing III. (1988) p. 211-220.
Chen et al. "Radiation-Induced Crosslinking: II. Effect on the Crystalline and Amorphous Densities of Polyethylene" Colloid Polym Sci. vol. 269 (1991) p. 469-476.
Chen et al. "Radiation-Induced Crosslinking: III. Effect on the Crystalline and Amorphous Density Fluctuations of Polyethylene" Colloid Polym Sci. vol. 269 (1991) p. 353-363.
Choudhury et al. "The Effects of Irradiation and Ageing on the Abrasive Wear Resistance of Ultra High Molecular Weight Polyethylene" Wear Elsevier Science. vol. 203-204 (1997) p. 335-340.
Chu et al. "Some Structures and Properties of Very High Molecular Weight Linear Polyethylene" Bull. Inst. Chem. Res. vol. 47, No. 3 (1969) p. 209-221.
Collier et al. "Polyethylene: The Past, Present and Future" The American Academy of Orthopaedic Surgeons, 1999 Annual Meeting Scientific Program, available at http://www.aaos.org/wordhtml/anmeet99/sciprog/g.htm. (20 pages).
Crugnola et al., Ultrahigh Molecular Weight Polyethylene as Used in Articular Prostheses (A Molecular Weight Distribution Study), J. of App. Polymer Science, vol. 20, (1976) pp. 809-812.
Dijkstra et al. "Cross-linking of Ultra-high Molecular Weight Polyethylene in the Melt by Means of Electron Beam Irradiation" Polymer. vol. 30 (May 1989) p. 866-873.
Dole et al. "Crystallinity and Crosslinking Efficiency in the Irradiation of Polyethylene" Radiat. Phys. Chem. vol. 14 (1979) p. 711-720.
du Plessis et al. "The Improvement of Polyethylene Prostheses Through Radiation Crosslinking" Radiat. Phys. Chem. vol. 9 (1977) p. 647-652.
Edit by Polymer Society "Polymer Functional Material Series (vol. 9) Medical Treatment Functional Material", Nov. 20, 1990, Kyoritsu Shuppan K.K., p. 165-166.
Edit by Polymer Society "Polymer New Material One Point (vol. 20) Medical Polymer Material", Feb. 20, 1989, Kyoritsu Shuppan K.K., p. 45-46.
Ellis et al., The Use of Ultrahigh Molecular Weight Polyethylene in Articular Prostheses-II. Effects of Fabrication and Gamma Sterilization on Polymer Characteristics, Coatings and Plastics Preprints, vol. 37, No. 2, American Chemical Society, (1977) pp. 280-284.
Ellwanger et al. "Very High Pressure Molding of Ultra High Molecular Weight Polyethylene (UHMWPE)" ANTEC. (1987) p. 572-574.
Gauvin et al., "Investigation of the Radio Frequency Heating Process for UHMWPE" ANTEC. (1987) p. 575-578.
Handlos, V. "Enhanced Crosslinking of Polyethylene" Radiat. Phys. Chem. vol. 14 (1979) p. 721-728.
Howmedica, Material Properties, Product Quality Control, and Their Relation to UHMWPE Performance, Part Two of a Series on Ultra-High Molecular Weight Polyethylene, (1994) pp. 1-20.
Howmedica, Overview and Fundamentals of UHMWPE, Part One of a Series on Ultra-High Molecular Weight Polyethylene, (1994) pp. 1-8.
Jahan et al. "Combined Chemical and Mechanical Effects on Free Radicals in UHMWPE Joints During Implantation" Journal of Biomedical Materials Research. vol. 25 (1991) p. 1005-1017.
Jones et al., Effect of gamma Irradiation on the Friction and Wear of Ultrahigh Molecular weight Polyethylene, Wear, vol. 70, (1981) pp. 77-92.
Jones et al., Effect of γ Irradiation on the Friction and Wear of Ultrahigh Molecular weight Polyethylene, Wear, vol. 70, (1981) pp. 77-92.
Kang et al. "The Radiation Chemistry of Polyethylene IX. Temperaure Coefficient of Cross-Linking and Other Effects" Journal of the American Chemical Society. vol. 89:9 (1967) p. 1980-1986.
Kanig, G. "Further Electron Microscope Observations on Polyethylene III. Smectic Intermediate State During Melting and Crystallization" Colloid Polym Sci. vol. 269 (1991) p. 1118-1125.
Kashiwabara et al., Radiation-Induced Oxidation of Plastics, Radiation Processing of Polymers, Chapter 11, (1992) pp. 221-254.
Kato et al. "Structural Changes and Melting Behavior of gamma-Irradiated Polyethylene" Japanese Journal of Applied Physics. vol. 20, No. 4. (Apr. 1981) p. 691-697.
Kato et al. "Structural Changes and Melting Behavior of γ-Irradiated Polyethylene" Japanese Journal of Applied Physics. vol. 20, No. 4. (Apr. 1981) p. 691-697.
Kitamaru et al. "A Commentary Remark on the Isothermal Crystallization of a Polyethylene Gel from the Stretched Molten State" Bull. Inst. Chem. Res. vol. 46, No. 2 (1968) p. 97-106.
Kitamaru et al. "Size and Orientation of Cristallites in Lightly Cross-linked Polyethylene, Crystallized from the Melt Under Uniaxial Compression" Die Makromolekulare Chemie. vol. 175 (1974) p. 255-275.
Kitamaru et al. "Structure and Properties of Lightly Crosslinked Crystalline Polymers Crystallized or Processed Under Molecular Orientation" Journal of Polymer Science: Macromolecular Reviews. vol. 14 (1979) p. 207-264.
Kitamaru et al. "The Properties of Transparent Film Made from Linear Polyethylene by Irradiation Cross-Linking" Properties of Transparent Film. vol. 6, No. 3 (May-Jun. 1973) p. 337-343.
Kurth et al., "Effects of Radiation Sterilization on UHMW-Polyethylene" ANTEC. (1987) p. 1193-1197.
Lin et al. "Review Structure and Plastic Deformation of Polyethylene" Journal of Materials Science. vol. 29 (1994) p. 294-323.
Matsubara et al. "The Wear Properties of High-Density Polyethylene Irradiated by Gamma Rays" Wear. vol. 10 (1967) p. 214-222.
Meyer, B. "Recent Developments in Radiation Sterilizable Plastics" ANTEC. (1987) p. 1190-1192.
Minkova et al. "Blends of Normal High Density and Ultra-High Molecular Weight Polyethylene, gamma Irradiated at a Low Dose" Colloid Polym Sci. vol. 268 (1990) p. 1018-1023.
Minkova et al. "Blends of Normal High Density and Ultra-High Molecular Weight Polyethylene, γ Irradiated at a Low Dose" Colloid Polym Sci. vol. 268 (1990) p. 1018-1023.
Minkova, L. "DSC of gamma-Irradiated Ultra-High Molecular Weight Polyethylene and High Density Polyethylene of Normal Molecular Weight" Colloid Polym Sci. vol. 266 (1988) p. 6-10.
Minkova, L. "DSC of γ-Irradiated Ultra-High Molecular Weight Polyethylene and High Density Polyethylene of Normal Molecular Weight" Colloid Polym Sci. vol. 266 (1988) p. 6-10.
Muratoglu et al. "A Novel Method of Cross-Linking Ultra-High-Molecular Weight Polyethylene to Improve Wear, Reduce Oxidation, and Retain Mechanical Properties" The Journal of Arthroplasty. vol. 16, No. 2 (2001) p. 149-160.
Nakayama et al. "Structure and Mechanical Properties of Ultra-High Molecular Weight Polyethylene Deformed Near Melting Temperature" Pure & Appl. Chem. vol. 63, No. 12 (1991) p. 1793-1804.
Narkis et al., Structure and Tensile Behavior of Irradiation-and Peroxide-Crosslinked Polyethylenes, J. Macromol. Sci. - Phys., vol. B 26, No. 1, (1987) pp. 37-58.
Nusbaum et al., The Effects of Radiation Sterilization on the Properties of Ultrahigh Molecular Weight Polyethylene, Journal of Biomedical Materials Research, vol. 13, (1979) pp. 557-576.
O'Neill et al. "The Distribution of Oxidation Products in Irradiated Ultra-High Molecular Weight Polyethylene" Polymer Degradation and Stability. vol. 49 (1995) p. 239-244.
Oonishi et al. "Comparison of Wear of UHMWPE Sliding Against Metal and Alumina in Total Hip Prostheses-Wear Test and Clinical Results" 3rd World Biomaterials Congress, Transactions. (Apr. 1988) p. 337.
Oonishi et al. "Comparisons of Wear of UHMW Polyethylene Sliding Against Metal and Alumina in Total Hip Prostheses" Bioceramics. vol. 1 (1989) p. 272-277.
Oonishi et al. "Effect of Cross-Linkage by Gamma Radiation in Heavy Doses to Low Wear Polyethylene in Total Hip Prostheses" Journal of Materials Science: Materials in Medicine. vol. 7 (1996) p. 753-763.
Oonishi et al. "Improvement of Polyethylene by Irradiation in Artificial Joints" Radiat. Phys. Chem. vol. 39, No. 6 (1992) p. 495-504.
Oonishi et al. "In Vivo and In Vitro Wear Behaviour on Weightbearing Surfaces of Polyethylene Sockets Improved by Irradiation in Total Hip Prostheses" Surface Modification Technologies V. (1992) p. 101-112.
Oonishi et al. "SEM Observation on the Clinically Used Gamma-Irradiated Reinforced HDP Socket in Total Hip Replacement" Clinical Implant Materials, Advances in Biomaterials. vol. 9 (1990) p. 379-384.
Oonishi et al. "The Optimum Dose of Gamma Radiation-Heavy Doses to Low Wear Polyethylene in Total Hip Prostheses" Journal of Materials Science Materials in Medicine. vol. 8 (1997) p. 11-18.
Oonishi et al. "Wear Resistance of Gamma-Ray Irradiated U.H.M.W. Polyethylene Socket in Total Hip Prosthesis-Wear Test and Long Term Clinical Results" MRS Int'l. Mtg. On Adv. Mats. vol. 1 (1989) p. 351-356.
Oonishi et al. "Wear Resistance of Gamma-Ray Irradiated UHMWPE Socket in Total Hip Prostheses-Wear Test and Long Term Clinical Results" 3rd World Biomaterials Congress, Transactions. (Apr. 1988) p. 588.
Patel, G. "Acceleration of Radiation-Induced Crosslinking in Polyethylene by Diacetylenes" Radiat. Phys. Chem. vol. 14 (1979) p. 729-735.
Premnath et al. "Gamma Sterilization of UHMWPE Articular Implants: an Analysis of the Oxidation Problem" Biomaterials. vol. 17 (1996) p. 1741-1753.
Rimnac et al. "Chemical and Mechanical Degradation of UHMWPE: Report of the Development of an In Vitro Test" Journal of Applied Biomaterials. vol. 5 (1994) p. 17-21.
Rose et al. "Exploratory Investigations on the Structure Dependence of the Wear Resistance of Polyethylene" Wear. vol. 77 (1982) p. 89-104.
Salovey et al. "Irradiation of Ultra High Molecular Weight Polyethylene" Polymer Preprints. vol. 26, No. 1 (1985) p. 118-119.
Salovey, R. "On the Morphology of Crosslinking Polymers" Polymer Letters. vol. 2 (1964) p. 833-834.
Sandford et al. "Shelf Life Prediction of Radiation Sterilized Medical Devices" ANTEC (1987) p. 1201-1204.
Sawatari et al. "Crosslinking Effect of Ultrahigh Molecular Weight Polyethylene-Low Molecular Weight Polyethylene Blend Films Produced by Gelation/Crystallization From Solutions" Colloid Polym Sci. vol. 269, No. 8 (1991) p. 795-806.
Shen et al. "The Friction and Wear Behavior of Irradiated Very High Molecular Weight Polyethylene" Wear. vol. 30 (1974) p. 349-364.
Shinde et al. "Irradiation of Ultrahigh-Molecular-Weight Polyethylene" Journal of Polymer Science: Polymer Physics Edition. vol. 23 (Feb. 1985) p. 1681-1689.
Silverman, Radiation-Induced and Chemical Crosslinking: A Brief Comparison, Radiation Processing of Polymers, Chap. 2, (1992) p. 15-22.
Streicher, R. "Change in Properties of High Molecular Weight Polyethylenes After Ionizing Irradiation for Sterilization and Modification" Third International Conference on Radiation Processing for Plastics and Rubber (Nov. 1987) (9 pages).
Streicher, R. "Influence of Ionizing Irradiation in Air and Nitrogen for Sterilization of Surgical Grade Polyethylene for Implants" Radiat. Phys. Chem. vol. 31, Nos. 4-6 (1988) p. 693-698.
Streicher, R. "Investigation on Sterilization and Modification of High Molecular Weight Polyethylenes by Ionizing Irradiation" Reprint from beta-gamma 1/89 p. 34-43.
Streicher, R. "Ionizing Irradiation for Sterilization and Modification of High Molecular Weight Polyethylenes" Plastics and Rubber Processing and Applications. vol. 10, (1988) p. 221-229.
Streicher, R. "UHMW-Polyethylen als Werkstoff für artikulierende Komponenten von Gelenkendoprothesen (UHMW Polyethylene Used as a Material for the Articulating Components of Endoprostheses)" Biomed. Technik, vol. 38 (1993) p. 303-313.
Sultan et al., Advances in Crosslinking Technology, Plastics, Rubber and Composites Processing and Applications 21, (1994) pp. 65-73.
Sun et al. "Development of an Accelerated Aging Method for Evaluation of Long-term Irradiation Effects on UHMWPE Implants" Howmedica Inc., Pfizer Hospital Products Group. (1996) p. 969-970.
Waldman et al. "Compressive Stress Relaxation Behavior of Irradiated Ultra-High Molecular Weight Polyethylene at 37° C." Journal of Applied Biomaterials. vol. 5 (1994) p. 333-338.
Wang et al. "Melting of Ultrahigh Molecular Weight Polyethylene" Journal of Applied Polymer Science. vol. 34 (1987) p. 593-599.
Ward, I. "New Developments in the Production of High Modulus and High Strength Flexible Polymers" Progr Colloid Polym Sci. vol. 92 (1993) p. 103-110.
Williams, J. "Radiation Stability of Polypropylene" ANTEC. (1987) p. 1198-1200.
Wilson et al. "Proton Modification of Ultra High Molecular Weight Polyethylene to Promote Crosslinking for Enhanced Chemical and Physical Properties" Mat. Res. Soc. Symp. Proc. vol. 396 (1996) p. 311-316.
Wong et al. "Molecular Deformation Processes in Gel-Spun Polyethylene Fibres" Journal of Materials Science. vol. 29 (1994) p. 520-526.
Yongxiang et al., Crosslinking of Wire and Cable Insulation Using Electron Accelerators, Radiation Processing of Polymers, Chap. 5, (1992) pp. 71-92.
Zhao et al. "Effect of Irradiation on Crystallinity and Mechanical Properties of Ultrahigh Molecular Weight Polyethylene" Journal of Applied Polymer Science. vol. 50 (1993) p. 1797-1801.
Zoepfl et al. "Differential Scanning Calorimetry Studies of Irradated Polyethylene: II. The Effect of Oxygen" Journal of Polymer Science: Polymer Chemistry Edition. vol. 22 (1984) p. 2033-2045.
Zoepfl et al. "Differential Scanning Calorimetry Studies of Irradiated Polyethylene: I. Melting Temperatures and Fusion Endotherms" Journal of Polymer Science: Polymer Chemistry Edition. vol. 22 (1984) p. 2017-2032.

Also Published As

Publication number Publication date
AU3485595A (en) 1996-04-09
CN1135762A (en) 1996-11-13
CA2177042C (en) 2009-05-12
AU693260B2 (en) 1998-06-25
JP2004027237A (en) 2004-01-29
JP3563075B2 (en) 2004-09-08
KR100293587B1 (en) 2001-09-17
CA2654851C (en) 2011-01-18
CN1123583C (en) 2003-10-08
CN1478812A (en) 2004-03-03
EP0729981A4 (en) 1999-03-03
WO1996009330A1 (en) 1996-03-28
DE69525924D1 (en) 2002-04-25
CA2177042A1 (en) 1996-03-28
EP0729981B1 (en) 2002-03-20
EP0729981A1 (en) 1996-09-04
DE69525924T2 (en) 2002-09-05
KR960705861A (en) 1996-11-08
JP3628321B2 (en) 2005-03-09
CA2654851A1 (en) 1996-03-28
US6168626B1 (en) 2001-01-02

Similar Documents

Publication Publication Date Title
USRE44762E1 (en) Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
JP3652669B2 (en) MEDICAL IMPLANT COMPRISING CROSSLINKED POLYMER WITH INCREASED WEAR RESISTANCE, ITS COMPONENT AND METHOD FOR PRODUCING THEM
US4055862A (en) Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
US8680173B2 (en) Sequentially cross-linked polyethylene
RU2211008C2 (en) Prosthetic devices out of polyethylene of ultra-high molecular weight treated with irradiation and fusion
US6503439B1 (en) Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof
BR9710643A (en) Process for the production of shaped articles of low modulus and ultra high molecular weight polyethylene.
EP1330347B1 (en) Supercritical fluid treatment of an irradiated preform of a prosthesis bearing made of polyethylene
EP0714460A1 (en) Self-reinforced ultra-high molecular weight polyethylene composites
JP2000514481A (en) Crosslinking of low wear polyethylene using radiation and heat treatment
JP2003260076A (en) Method for making prosthetic bearing for orthopedic surgery, prosthesis for orthopedic surgery and implantable prosthetic bearing
EP1493455A2 (en) Crosslinked polymeric composite for orthopaedic implants
Chen et al. Clinical applications of uhmwpe in joint implants
Das et al. Wear Performance of UHMWPE and PCU Artificial Disc Materials
Berzen et al. Ultrahigh Molecular Weight Polyethylene (UHMW‐PE): Application in Artificlal Joints
KR100307799B1 (en) Abrasion Resistance Improvement Method of Ultra-high Molecular Weight Polyethylene for Artificial Joints
Suwanprateeb et al. Radiation enhanced modification of HDPE for medical applications
KR101040567B1 (en) Method for manufacturing UHMWPE liner of artificial hip joint prosthesis
Bellare et al. The polyethylene history
Veretennikova et al. Some structural and mechanical characteristics of biostable high-molecular-weight polyethylene

Legal Events

Date Code Title Description
AS Assignment

Owner name: BMG INCORPORATED, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HYON, SUONG-HYU;OKA, MASANORI;REEL/FRAME:034946/0311

Effective date: 19960327