CN112355311B - 一种钨基金属陶瓷核燃料芯块及其制备方法 - Google Patents

一种钨基金属陶瓷核燃料芯块及其制备方法 Download PDF

Info

Publication number
CN112355311B
CN112355311B CN202011128428.6A CN202011128428A CN112355311B CN 112355311 B CN112355311 B CN 112355311B CN 202011128428 A CN202011128428 A CN 202011128428A CN 112355311 B CN112355311 B CN 112355311B
Authority
CN
China
Prior art keywords
tungsten
metal
nuclear fuel
fuel pellet
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011128428.6A
Other languages
English (en)
Other versions
CN112355311A (zh
Inventor
张临超
刘瑞
李刚
谢卓明
杨俊峰
谢雪峰
张瑞谦
吴学邦
王先平
方前锋
刘长松
程帜军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Nuclear Power Institute of China
Original Assignee
Hefei Institutes of Physical Science of CAS
Nuclear Power Institute of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS, Nuclear Power Institute of China filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN202011128428.6A priority Critical patent/CN112355311B/zh
Publication of CN112355311A publication Critical patent/CN112355311A/zh
Application granted granted Critical
Publication of CN112355311B publication Critical patent/CN112355311B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/005Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/12Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/26Acidic compositions for etching refractory metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/64Ceramic dispersion fuel, e.g. cermet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明公开了一种钨基金属陶瓷核燃料芯块及其制备方法,该芯块包括钨基金属陶瓷基体,所述钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构,所述通孔结构的内壁具有保护层,且所述保护层将通孔结构的内壁完全覆盖。本发明避免了燃料芯块钨基金属陶瓷基体内部陶瓷相与外界环境的直接接触,起到保护作用,提高了钨基金属陶瓷核燃料芯块运行的安全可靠性。

Description

一种钨基金属陶瓷核燃料芯块及其制备方法
技术领域
本发明涉及核燃料技术领域,尤其涉及一种钨基金属陶瓷核燃料芯块及其制备方法。
背景技术
深空探测是人类最前沿的科技探索活动之一,不仅可加深人们对宇宙及生命的认识,还可推动空间科学、新材料等方面研究发展。传统的化学推进系统由于受到化学能限制,即便是最高效的液氢液氧发动机比冲仍无法达到500s,无法满足未来大载荷、载人深空探测任务的需求。因此,具有更高比冲的核推进系统成为未来深空探测主要甚至是唯一的选择。
自上世纪中期以来,美苏等国已在核热、核电推进空间发动机领域取得了一定的成果,先后研制并测试了多个系列的空间核动力发动机,而我国在该领域则起步较晚。2004年以来,随着嫦娥工程拉开了我国深空探测的序幕,火星探测、载人航天及空间站建设等任务也逐步展开,这对我国的空间核推进技术发展提出了迫切要求。
核热推进是利用核反应堆产生的裂变能将推进剂加热到高温高压状态,并将其从尾喷口喷出产生动力。因此在保证基体结构稳定的前提下,为有效实现热量传递,燃料芯块通常采用高熔点、高热导率及高硬度的钨基金属与燃料陶瓷进行混合,并设计成具备贯通孔的蜂窝状结构便于热量传导。然而,在极端高温高压工作条件下(达3000K),包括热氢等在内的工质会与贯通孔中暴露在外界环境中的铀或钚基燃料陶瓷发生一定的副反应,导致燃料陶瓷结构破坏,甚至造成局部过热及燃料芯块结构破损,给安全性带来极大隐患。因此,如何实现钨基金属陶瓷燃料芯块安全可靠运行,成为亟待解决的一个重要难题。
发明内容
基于背景技术存在的技术问题,本发明提出了一种钨基金属陶瓷核燃料芯块及其制备方法。
本发明提出的一种钨基金属陶瓷核燃料芯块,包括钨基金属陶瓷基体,所述钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构,所述通孔结构的内壁具有保护层,且所述保护层将通孔结构的内壁完全覆盖;
所述钨基金属陶瓷基体由陶瓷相与金属钨或者钨基合金组成,所述陶瓷相均匀弥散分布在基体中,其中陶瓷相包括二氧化铀、氮化铀、碳化铀、碳化钚、氮化钚、二氧化钚中的至少一种;
所述保护层由金属钨或者钨基合金组成。
优选地,所述保护层的厚度为0.1-1000μm。
优选地,所述钨基金属陶瓷基体中,陶瓷相的体积百分比为10-60%。
优选地,所述陶瓷相为颗粒状,粒径为10-500μm。
优选地,所述钨基合金为以金属钨为主要成分的合金;优选地,所述钨基合金中,钨的含量≥90wt%。
本发明中,钨基合金例如可以是钨与金属氧化物或者碳化物、铼、铝、铜中的至少一种组成的合金,其中金属氧化物或者碳化物的含量<5wt%,所述金属氧化物或者碳化物包括氧化锆、氧化镧、氧化钇、氧化钨、碳化锆、碳化钛、碳化钨等中的至少一种。
一种所述的钨基金属陶瓷核燃料芯块的制备方法,包括下述步骤:
S1、将金属钼棒表面进行预处理,在其表面形成一层均匀的金属钨或者钨基合金涂层;
S2、将陶瓷相粉体与金属钨粉或者钨基合金粉按比例混合均匀,得到钨基金属陶瓷前驱粉体;
S3、用S1预处理后的金属钼棒和S2得到的钨基金属陶瓷前驱粉体填充模具,使预处理后的金属钼棒呈阵列式均匀排列在钨基金属陶瓷前驱粉体中,经过冷压成型,得到坯体;
S4、将所述坯体在真空或保护气氛下烧结,得到块材;
S5、将所述块材进行机械加工,使得金属钼棒两端暴露,通过腐蚀完全去除块材中的金属钼棒,得到钨基金属陶瓷核燃料芯块。
优选地,所述步骤S3中,先在模具底部平铺一层钨基金属陶瓷前驱粉体,然后在粉体上均匀放置预处理后的金属钼棒,按照一层钨基金属陶瓷前驱粉体一层预处理后的金属钼棒的方式填充模具,最后在最上层平铺一层钨基金属陶瓷前驱粉体,经过冷压成型,得到坯体。
优选地,所述步骤S1中,金属钼棒表面进行预处理的方法为磁控溅射、化学气相沉积、浆料涂覆中的至少一种。
优选地,所述步骤S4中,烧结温度为1600-2200℃,烧结时间为0.1-20h;优选地,所述烧结方法为无压烧结、热压烧结、热等静压烧结或者放电等离子体烧结,所述保护气氛为氢气气氛、氩气气氛、氮气气氛中的至少一种。
优选地,所述步骤S5中,腐蚀去除块材中金属钼的具体方法如下:将块材进行切割,使得金属钼棒两端暴露,然后置于腐蚀液中,通过腐蚀完全去除金属钼棒。
优选地,所述腐蚀液的组分包括浓硝酸与浓硫酸、氢氟酸、浓盐酸中至少一种的组合;优选地,所述腐蚀液的组分包括浓硝酸、浓硫酸、氢氟酸、浓盐酸,其中浓硝酸、浓硫酸、氢氟酸、浓盐酸的体积比为(3-8):(1-5):(0-3):(0-5)。
本发明的有益效果如下:
本发明通过对金属钼棒表层进行预处理,并结合选择性腐蚀工艺,实现在钨基金属陶瓷贯通孔内壁形成一定厚度的保护层。其方法是在制备具有通孔的钨基金属陶瓷过程中,通过在金属钼棒表层涂覆或溅射一层金属钨和/或钨基合金涂层,并将其置于金属钨粉或者钨基合金粉与陶瓷相组成的钨基金属陶瓷前驱混合粉体中,烧结后利用腐蚀液选择性腐蚀去除金属钼棒部分,从而在形成通孔的同时,在通孔内壁也形成具有一定厚度的保护层,避免了燃料芯块钨基金属陶瓷基体内部陶瓷相与外界环境的直接接触,起到保护作用,提高了钨基金属陶瓷核燃料芯块运行的安全可靠性。本发明的方法操作简单且易实现工业化,具有广阔的应用前景。
附图说明
图1为本发明实施例1中钨基金属陶瓷核燃料芯块的制备流程示意图。
图2为本发明实施例1中金属钼棒预处理前后的对比图,左边为金属钼棒预处理前的图片,右边为金属钼棒预处理后的图片。
图3为本发明实施例1中钨基金属陶瓷核燃料芯块扫描电镜照片。
图4为本发明实施例2中钨基金属陶瓷核燃料芯块的扫描电镜照片。
图5为本发明对比例1中钨基金属陶瓷核燃料芯块的断面显微照片。
图6为本发明对比例2中钨基金属陶瓷核燃料芯块的断面显微照片。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
一种钨基金属陶瓷核燃料芯块,包括钨基金属陶瓷基体,钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构,通孔结构的内壁具有保护层,且保护层将通孔结构的内壁完全覆盖;
钨基金属陶瓷基体由二氧化铀陶瓷相与金属钨组成,其中二氧化铀陶瓷相呈颗粒状均匀弥散分布在基体中,其粒径为180μm;钨基金属陶瓷基体中,二氧化铀陶瓷相的体积百分比为55%;
保护层由金属钨组成,厚度为10μm。
钨基金属陶瓷核燃料芯块的制备方法,包括下述步骤:
S1、通过浆料涂覆-烘干方法对直径为2mm、长度为2cm的金属钼棒表面进行预处理,在其表面形成一层均匀的金属钨涂层;
S2、将粒径为180μm的二氧化铀微球与粒径为550nm的金属钨粉按体积比为5.5:4.5混合均匀,得到钨基金属陶瓷前驱粉体;
S3、将15g S2得到的钨基金属陶瓷前驱粉体平铺在内径为Φ30mm,外径为Φ50mm,高度为10cm的圆柱形石墨模具底部,然后在粉体上均匀放置5根S1预处理后的金属钼棒,再平铺20g S2得到的钨基金属陶瓷前驱粉体,然后在其上均匀放置5根S1预处理后的金属钼棒,再在其上平铺20g S2得到的钨基金属陶瓷前驱粉体,然后在其上均匀放置5根S1预处理后的金属钼棒,最后在其上平铺20g S2得到的钨基金属陶瓷前驱粉体,经过冷压成型,得到坯体;
S4、将模具置于放电等离子体烧结炉中,在氩气气氛下于1750℃、40MPa下烧结15min,得到块材;
S5、将块材进行切割,使得金属钼棒两端暴露,然后置于浓度为68%的浓硝酸和浓度为98%的浓硫酸按体积比1:1混合得到的腐蚀液中,加热至70℃腐蚀完全去除块材中的金属钼棒,清洗、干燥后得到钨基金属陶瓷核燃料芯块。
S1中,浆料涂覆-烘干的方法具体为:将金属钨粉与聚乙烯醇水溶液混合得到浆料,再将浆料均匀涂覆在金属钼棒表面,烘干,即可。
实施例2
一种钨基金属陶瓷核燃料芯块,包括钨基金属陶瓷基体,钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构,通孔结构的内壁具有保护层,且保护层将通孔结构的内壁完全覆盖;
钨基金属陶瓷基体由二氧化铀陶瓷相与钨基合金组成,其中二氧化铀陶瓷相呈颗粒状均匀弥散分布在基体中,其粒径为200μm;钨基金属陶瓷基体中,二氧化铀陶瓷相的体积百分比为50%;钨基合金由钨与碳化锆组成,碳化锆占钨基合金总质量的0.5wt%;
保护层由钨铼合金W90Re10组成,厚度为1μm。
钨基金属陶瓷核燃料芯块的制备方法,包括下述步骤:
S1、通过磁控溅射方法对直径为2mm、长度为5cm的金属钼棒表面进行预处理,在其表面形成一层均匀的钨铼合金W90Re10涂层;
S2、将粒径为200μm的二氧化铀微球与粒径为500nm的钨基合金粉按体积比为5:5混合均匀,得到钨基金属陶瓷前驱粉体,其中钨基合金粉的成分由钨与碳化锆组成,碳化锆占钨基合金粉总质量的0.5wt%;
S3、将130g S2得到的钨基金属陶瓷前驱粉体平铺在内径为Φ60mm,外径为Φ120mm,高度为10cm的圆柱形石墨模具底部,然后在粉体上均匀放置3根S1预处理后的金属钼棒,再在其上平铺130g S2得到的钨基金属陶瓷前驱粉体,经过冷压成型,得到坯体;
S4、将模具置于热压炉中,在真空气氛下于1800℃、32MPa下烧结1h,得到块材;
S5、将块材进行打磨,使得金属钼棒两端暴露,然后置于浓度为68%的浓硝酸、浓度为98%的浓硫酸、浓度为37%的浓盐酸、水按5:3:1:1体积比混合得到的腐蚀液中,加热至70℃腐蚀完全去除块材中的金属钼棒,清洗、干燥后得到钨基金属陶瓷核燃料芯块。
实施例3
一种钨基金属陶瓷核燃料芯块,包括钨基金属陶瓷基体,钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构,通孔结构的内壁具有保护层,且保护层将通孔结构的内壁完全覆盖;
钨基金属陶瓷基体由二氧化铀陶瓷相与金属钨组成,其中二氧化铀陶瓷相呈颗粒状均匀弥散分布在基体中,其粒径为180μm;钨基金属陶瓷基体中,二氧化铀陶瓷相的体积百分比为50%;
保护层由金属钨组成,厚度为0.5μm。
钨基金属陶瓷核燃料芯块的制备方法,包括下述步骤:
S1、通过化学气相沉积方法对直径为2mm、长度为5cm的金属钼棒表面进行预处理,在其表面形成一层均匀的金属钨涂层;
S2、将粒径为180μm的二氧化铀微球与粒径为2.8μm的金属钨粉按体积比为5:5混合均匀,得到钨基金属陶瓷前驱粉体;
S3、将180g S2得到的钨基金属陶瓷前驱粉体平铺在内径为Φ60mm,外径为Φ120mm,高度为16cm的圆柱形石墨模具底部,然后在粉体上均匀放置3根S1预处理后的金属钼棒,再平铺180g S2得到的钨基金属陶瓷前驱粉体,然后在其上均匀放置4根S1预处理后的金属钼棒,再平铺180g S2得到的钨基金属陶瓷前驱粉体,然后在其上均匀放置3根S1预处理后的金属钼棒,最后平铺180g S2钨基金属陶瓷前驱粉体,经过冷压成型,得到坯体;
S4、将模具置于热压炉中,在真空气氛下于1800℃、30MPa下烧结1h,得到块材;
S5、将块材进行打磨,使得金属钼棒两端暴露,然后置于浓度为68%的浓硝酸、浓度为98%的浓硫酸、水按体积比5:3:2混合得到的腐蚀液中,加热至60℃腐蚀完全去除块材中的金属钼棒,清洗、干燥后得到钨基金属陶瓷核燃料芯块。
对比例1
一种钨基金属陶瓷核燃料芯块,包括钨基金属陶瓷基体,钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构;
钨基金属陶瓷基体由二氧化铀陶瓷相与金属钨组成,其中二氧化铀陶瓷相呈颗粒状均匀弥散分布在基体中,粒径为180μm;钨基金属陶瓷基体中,二氧化铀陶瓷相的体积百分比为55%;
钨基金属陶瓷核燃料芯块的制备方法,包括下述步骤:
(1)将粒径为180μm的二氧化铀微球与粒径为550nm的金属钨粉按体积比为5.5:4.5混合均匀,得到钨基金属陶瓷前驱粉体;
(2)将15g S1得到的钨基金属陶瓷前驱粉体平铺在内径为Φ30mm,外径为Φ50mm,高度为10cm的圆柱形石墨模具底部,然后在粉体上均匀放置5根金属钼棒,再平铺20g S1得到的钨基金属陶瓷前驱粉体,然后在其上均匀放置5根金属钼棒,再在其上平铺20g S1得到的钨基金属陶瓷前驱粉体,然后在其上均匀放置5根金属钼棒,最后在其上平铺20g S1得到的钨基金属陶瓷前驱粉体,经过冷压成型,得到坯体,其中金属钼棒的直径为2mm、长度为2cm;
(3)将模具置于放电等离子体烧结炉中,在氩气气氛下于1750℃、40MPa下烧结15min,得到块材;
(4)将块材进行切割,使得金属钼棒两端暴露,然后置于浓度为68%的浓硝酸和浓度为98%的浓硫酸按体积比1:1混合得到的腐蚀液中,加热至70℃腐蚀完全去除块材中的金属钼棒,清洗、干燥后得到钨基金属陶瓷核燃料芯块。
对比例2
一种钨基金属陶瓷核燃料芯块,包括钨基金属陶瓷基体,钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构;
钨基金属陶瓷基体由二氧化铀陶瓷相与钨基合金组成,其中二氧化铀陶瓷相均匀弥散分布在基体中,其粒径为200μm;钨基金属陶瓷基体中,二氧化铀陶瓷相的体积百分比为50%;钨基合金由钨与碳化锆组成,碳化锆占钨基合金总质量的0.5wt%;
钨基金属陶瓷核燃料芯块的制备方法,包括下述步骤:
(1)将粒径为200μm的二氧化铀微球与粒径为500nm的钨基合金粉按体积比为5:5混合均匀,得到钨基金属陶瓷前驱粉体,其中钨基合金粉的成分由钨与碳化锆组成,碳化锆占钨基合金粉总质量的0.5wt%;
(2)将130g S1得到的钨基金属陶瓷前驱粉体平铺在内径为Φ60mm,外径为Φ120mm,高度为10cm的圆柱形石墨模具底部,然后在粉体上均匀放置3根直径为2mm、长度为5cm的金属钼棒,再在其上平铺130g S1得到的钨基金属陶瓷前驱粉体,经过冷压成型,得到坯体;
(3)将坯体置于热压炉中,在真空气氛下于1800℃、32MPa下烧结1h,得到块材;
(4)将块材进行打磨,使得金属钼棒两端暴露,然后置于浓度为68%的浓硝酸、浓度为98%的浓硫酸、浓度为37%的浓盐酸、水按5:3:1:1体积比混合得到的腐蚀液中,加热至70℃腐蚀完全去除块材中的金属钼棒,清洗、干燥后得到钨基金属陶瓷核燃料芯块。
图2为本发明实施例1中金属钼棒预处理前后的对比图,左边为金属钼棒预处理前的图片,右边为金属钼棒预处理后的图片。参照图2,预处理前金属钼棒表面呈银白色,经过预处理后得到表面具有金属钨涂层的金属钼棒,呈黑色。将其放置于钨基金属陶瓷混合粉体中高温烧结后形成致密块材,进一步通过腐蚀液腐蚀后,钼基金属溶解于腐蚀液中,而钨基金属陶瓷部分保持结构完好,最终可以形成通孔内壁具备金属钨保护层的蜂窝状钨基金属陶瓷块材。
图3为本发明实施例1中钨基金属陶瓷核燃料芯块扫描电镜照片。由图3可见,椭球形二氧化铀颗粒均匀分布于钨基金属陶瓷基体中,钨基金属陶瓷基体中具有通孔,且由于通孔内壁被金属钨保护层包围,未出现二氧化铀颗粒与通孔内壁直接接触的现象。
图4为本发明实施例2中钨基金属陶瓷核燃料芯块的扫描电镜照片。由图4可见,椭球形二氧化铀颗粒均匀分布于钨基金属陶瓷基体中,钨基金属陶瓷基体中具有通孔,且由于通孔内壁被钨铼合金保护层包围,未出现二氧化铀颗粒与通孔内壁直接接触的现象。
图5为本发明对比例1中钨基金属陶瓷核燃料芯块的断面显微照片。由图5可见,部分椭球形二氧化铀颗粒直接暴露于通孔内壁中。
图6为本发明对比例2中钨基金属陶瓷核燃料芯块的断面显微照片。由图6可见,部分椭球形二氧化铀颗粒直接暴露于通孔内壁中。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种钨基金属陶瓷核燃料芯块,其特征在于,包括钨基金属陶瓷基体,所述钨基金属陶瓷基体上具有呈阵列式均匀排列的通孔结构,所述通孔结构的内壁具有保护层,且所述保护层将通孔结构的内壁完全覆盖;
所述钨基金属陶瓷基体由陶瓷相与金属钨或者钨基合金组成,所述陶瓷相均匀弥散分布在基体中,其中陶瓷相包括二氧化铀、氮化铀、碳化铀、碳化钚、氮化钚、二氧化钚中的至少一种;
所述保护层由金属钨或者钨基合金组成。
2.根据权利要求1所述的钨基金属陶瓷核燃料芯块,其特征在于,所述保护层的厚度为0.1-1000μm。
3.根据权利要求1或2所述的钨基金属陶瓷核燃料芯块,其特征在于,所述钨基金属陶瓷基体中,陶瓷相的体积百分比为10-60%。
4.根据权利要求1或2所述的钨基金属陶瓷核燃料芯块,其特征在于,所述陶瓷相为颗粒状,粒径为10-500μm。
5.根据权利要求1或2所述的钨基金属陶瓷核燃料芯块,其特征在于,所述钨基合金为以金属钨为主要成分的合金,其中钨的含量≥90wt%。
6.一种如权利要求1-5任一项所述的钨基金属陶瓷核燃料芯块的制备方法,其特征在于,包括下述步骤:
S1、将金属钼棒表面进行预处理,在其表面形成一层均匀的金属钨或者钨基合金涂层;
S2、将陶瓷相粉体与金属钨粉或者钨基合金粉按比例混合均匀,得到钨基金属陶瓷前驱粉体;
S3、用S1预处理后的金属钼棒和S2得到的钨基金属陶瓷前驱粉体填充模具,使预处理后的金属钼棒呈阵列式均匀排列在钨基金属陶瓷前驱粉体中,经过冷压成型,得到坯体;
S4、将所述坯体在真空或保护气氛下烧结,得到块材;
S5、将所述块材进行机械加工,使得金属钼棒两端暴露,通过腐蚀完全去除块材中的金属钼棒,得到钨基金属陶瓷核燃料芯块。
7.根据权利要求6所述的钨基金属陶瓷核燃料芯块的制备方法,其特征在于,所述步骤S1中,金属钼棒表面进行预处理的方法为磁控溅射、化学气相沉积、浆料涂覆中的至少一种。
8.根据权利要求6或7所述的钨基金属陶瓷核燃料芯块的制备方法,其特征在于,所述步骤S4中,烧结温度为1600-2200℃,烧结时间为0.1-20h。
CN202011128428.6A 2020-10-21 2020-10-21 一种钨基金属陶瓷核燃料芯块及其制备方法 Active CN112355311B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011128428.6A CN112355311B (zh) 2020-10-21 2020-10-21 一种钨基金属陶瓷核燃料芯块及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011128428.6A CN112355311B (zh) 2020-10-21 2020-10-21 一种钨基金属陶瓷核燃料芯块及其制备方法

Publications (2)

Publication Number Publication Date
CN112355311A CN112355311A (zh) 2021-02-12
CN112355311B true CN112355311B (zh) 2022-08-02

Family

ID=74511088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011128428.6A Active CN112355311B (zh) 2020-10-21 2020-10-21 一种钨基金属陶瓷核燃料芯块及其制备方法

Country Status (1)

Country Link
CN (1) CN112355311B (zh)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1507487A (en) * 1974-06-24 1978-04-12 Gen Electric Nuclear fuel element
US4977034A (en) * 1989-11-07 1990-12-11 Teledyne Industries, Inc. Process for coextrusion billets with multiple metallic cylindrical layers by hot isostatic pressing and product
CN101019193A (zh) * 2004-06-07 2007-08-15 西屋电气有限责任公司 在核和化石发电厂中用于燃料安全壳屏蔽和其它应用的多层陶瓷管
CN101188147B (zh) * 2007-12-26 2011-07-27 中国核动力研究设计院 一种以碳化硅为惰性基体的核燃料及其制备方法
KR102416974B1 (ko) * 2017-02-13 2022-07-04 테라파워, 엘엘씨 연료 요소용 강-바나듐 합금 클래딩
US10311981B2 (en) * 2017-02-13 2019-06-04 Terrapower, Llc Steel-vanadium alloy cladding for fuel element
RU2680250C1 (ru) * 2018-04-13 2019-02-19 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Активная зона ядерного реактора
CN108866416B (zh) * 2018-06-11 2019-07-05 西安建筑科技大学 一种高强韧抗氧钼合金及制备方法
CN109943763B (zh) * 2019-04-22 2020-03-17 西安交通大学 一种高导热核燃料芯块的制备方法
CN110157934B (zh) * 2019-07-02 2020-11-10 中国原子能科学研究院 一种钨或钼基二氧化铀燃料芯块的制造方法
CN111508628B (zh) * 2020-04-17 2022-05-13 中国科学院合肥物质科学研究院 弥散分布有二氧化铀芯球的钨或钼基燃料芯块的制备方法

Also Published As

Publication number Publication date
CN112355311A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
CN108335760B (zh) 一种高铀装载量弥散燃料芯块的制备方法
CN104628395B (zh) 一种核燃料包壳元件的制备方法
US9224506B2 (en) Method of manufacturing nuclear fuel elements and a container for implementing such a method
CN105855537A (zh) 一种无机非金属包壳高温相变储热微胶囊及其制备方法
CN102260869B (zh) 一种采用冷气动力喷涂技术制备钨涂层的方法
US4869867A (en) Nuclear fuel
CN102515728A (zh) 一种导电陶瓷和制备该陶瓷的方法及该陶瓷的应用
JP2001351647A (ja) 固体電解質型燃料電池
CN112355311B (zh) 一种钨基金属陶瓷核燃料芯块及其制备方法
CN110451968B (zh) 一种核燃料包壳管及其制备方法
CN109698033B (zh) 用碳材增强热激发的氢燃料反应器
Murthy et al. Boron-based ceramics and composites for nuclear and space applications: synthesis and consolidation
JP2024507583A (ja) 原子炉燃料
US3342692A (en) Moderator-fuel element
US3232717A (en) Uranium monocarbide thermionic emitters
CN108408727A (zh) 一种易剥离陶瓷材料max相的合成及剥离方法
CN112242204B (zh) 一种钼基金属陶瓷核燃料芯块及其制备方法
US3243292A (en) Method of making a thermionic device
CN107299269A (zh) 一种抗高温氧化的W‑Cr‑Al复合材料及其制备方法
CN113584422B (zh) 质子交换膜燃料电池金属钛双极板表面Ti4O7涂层的制备方法
KR101574224B1 (ko) 산화물 핵연료 소결체 및 이의 제조방법
CN113258113B (zh) 一种金属支撑固体氧化物燃料电池及其制备方法
CN112174196B (zh) 一种TiN/C包覆钛酸锂氚增殖剂及其制备方法与制备装置系统
CN113215532B (zh) 黑腔内壁低密度金转化层的制备方法
CN114927243A (zh) 复合核燃料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant