CN113215532B - 黑腔内壁低密度金转化层的制备方法 - Google Patents

黑腔内壁低密度金转化层的制备方法 Download PDF

Info

Publication number
CN113215532B
CN113215532B CN202110517767.1A CN202110517767A CN113215532B CN 113215532 B CN113215532 B CN 113215532B CN 202110517767 A CN202110517767 A CN 202110517767A CN 113215532 B CN113215532 B CN 113215532B
Authority
CN
China
Prior art keywords
layer
low
density
wall
black cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110517767.1A
Other languages
English (en)
Other versions
CN113215532A (zh
Inventor
刘艳松
何智兵
黄景林
易泰民
王涛
陈果
何小珊
谢春平
李俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laser Fusion Research Center China Academy of Engineering Physics
Original Assignee
Laser Fusion Research Center China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laser Fusion Research Center China Academy of Engineering Physics filed Critical Laser Fusion Research Center China Academy of Engineering Physics
Priority to CN202110517767.1A priority Critical patent/CN113215532B/zh
Publication of CN113215532A publication Critical patent/CN113215532A/zh
Application granted granted Critical
Publication of CN113215532B publication Critical patent/CN113215532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开的是激光惯性约束聚变靶制备技术领域的一种黑腔内壁低密度金转化层的制备方法,包括以下步骤:首先采用Au靶与活泼金属靶的双靶共溅方式在芯轴表面制备合金结构的内衬层;然后在内衬层结构的表面制备纯金的支撑层;然后对样品进行退火处理;最后将样品在电解质溶液中进行去芯轴和合金处理,清洗、烘干后得到内衬层为低密度金转化层的黑腔。本发明直接在传统金黑腔内壁原位制备低密度能量转化层,不需要二次加工装配成型,制备方法简单,成本低、效率高,并且低密度Au层的密度和密度分布精确可控,可根据需求有效调节,低密度金层作为金黑腔内衬层可提高激光‑X光能量转化效率,降低黑腔壁损失能量,降低特定角度的闪烁和抑制受激布里渊散射。

Description

黑腔内壁低密度金转化层的制备方法
技术领域
本发明涉及激光惯性约束聚变靶制备技术领域,具体涉及一种黑腔内壁低密度金转化层的制备方法。
背景技术
间接驱动激光惯性约束聚变是聚变能源研究的重要方向之一,在不久的将来有望提供清洁能源并解决日益严重的环境问题。在间接驱动激光惯性约束聚变中,激光注入高Z金属材料为主的黑腔,通过激光与黑腔靶壁材料相互作用,把激光能量转化为X光能量;然后在黑腔靶壁的约束下,形成高温、干净和均匀的热辐射场;最后利用X光辐射与装有燃料的球形靶丸相互作用,压缩聚变燃料产生内爆,实现可控核聚变。可见,黑腔作为间接驱动的能量转化单元起到了至关重要的作用。电镀或溅射方法制备的近块体密度金黑腔是最常用的黑腔。
目前研究表明,黑腔中主要的辐射能量损失来自于腔壁漏失,通过改进腔壁辐射性,特别是将腔内壁高Z辐射物质低密度化,能将有望显著提升黑腔能量耦合效率。(M.D.Rosen,J.H.Hammer.Phys Rev E.72,056403,2005)。在抑制等离子体运动的同时,相比同种材料的固体形态,高Z低密度腔壁材料对激光X光转换效率、X光再发射率都有提升作用,有利于提高黑腔能量耦合效率。理论研究表明,将0.3g/cc低密度金替代19.3g/cc固体金制作黑腔,能够降低大约17%的腔壁能量损耗,可提升腔内辐射温度约4%(Lu Zhang,Yongkun Ding,Zhiwei Lin,Hang Li,Longfei Jing,et al.Nucl.Fusion,2016,56:036006)。由此可见,低密度金层相对于块体密度金层,具有更高的激光-X光吸收转化效率和更低的黑腔壁损失能量。
为此,若在传统的Au黑腔内表面制备出具有低密度内壁转化层,那么这种黑腔的X光转化效率就得以提高,于此同时黑腔壁能量损失会降低。在相同的激光能量条件下,黑腔内靶丸可以获得更高能量的X射线,更低的黑腔壁的能量损失和更高的辐射温度,因而更易实现聚变反应。此外,金黑腔内壁低密度化可以降低特定角度的闪烁,抑制受激布里渊散射(SBS)起到减散层的作用。
发明内容
为克服现有块体密度金层黑腔在转化效率和能量损失上的不足,本发明所要解决的技术问题是:提供一种可提高X光转化效率,同时降低黑腔壁能量损失的黑腔内壁低密度金转化层的制备方法。
本发明解决其技术问题所采用的技术方案是:
一种黑腔内壁低密度金转化层的制备方法,包括以下步骤:
A、采用Au靶与活泼金属靶的双靶共溅方式在芯轴表面制备合金结构的内衬层;
B、采用溅射或电镀方式在步骤A制得的内衬层结构的表面制备纯金的支撑层;
C、对步骤B制备的样品进行退火处理;
D、将步骤C获得的样品在电解质溶液中进行去芯轴和去合金化处理,清洗、烘干后得到内衬层为低密度金转化层的黑腔。
2、如权利要求1所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:在步骤A中进行溅射之前,首先使溅射真空室的真空度达到1×10-7Pa~1×10-5Pa,然后充入高纯氩气,并使溅射真空室的真空度维持在0.1Pa~0.6Pa。
进一步的是,在步骤A中进行双靶共溅时,将1~12个芯轴放置于自转公转样品架,样品架公转中心到溅射靶中心的距离为80~150mm,样品架公转中心法线与溅射靶中心轴线呈30~45°夹角。
进一步的是,所述芯轴材料为Cu、Al、Ag或以上材料构成的合金,形状为圆柱型、多节圆柱型、球柱型、椭球柱形或任意两种及以上形状的组合。
进一步的是,所述内衬层厚度为1~50μm,内衬层中Au含量为5~50at.%,其余为活泼金属,所述活泼金属包括Al、Cu或Ag中的一种。
进一步的是,所述支撑层的厚度为10~50μm。
进一步的是,在步骤C中进行退火处理时,背底真空优于1×10-5Pa,在300℃~450℃下热处理24~144H,随后冷却至室温取出。
进一步的是,步骤D中的电解质溶液为硝酸溶液或其他腐蚀性溶液。
进一步的是,所述内衬层的合金结构采用Au层与活泼金属层交替设置的多层结构取代。
进一步的是,所述多层结构为10~20层,其中,活泼金属层的厚度不变,Au层厚度从内到外均匀递增。
本发明的有益效果是:
1、直接在传统金黑腔内壁原位制备低密度能量转化层,不需要二次加工装配成型,制备方法简单,成本低、效率高;
2、低密度Au层的密度和密度分布精确可控,可根据需求有效调节;
3、通过适当热处理后,低密度Au层与块体密度金层结合力良好,并且化学性质稳定;
4、低密度金层作为金黑腔内衬层可提高激光-X光能量转化效率,降低黑腔壁损失能量,降低特定角度的闪烁和抑制受激布里渊散射。
附图说明
图1为实施例一中450℃热处理下制备的黑腔内壁低密度Au转化层的扫描电镜照片。
图2为实施例一中390℃热处理下制备的黑腔内壁低密度Au转化层的扫描电镜照片。
图3为实施例二中多层周期结构先驱体层镀制的示意图。
图4为实施例二中制备的黑腔内壁低密度Au转化层的扫描电镜照片。
具体实施方式
下面结合附图对本发明进一步说明。
本发明所提供的一种黑腔内壁低密度金转化层的制备方法,包括以下步骤:
A、采用Au靶与活泼金属靶的双靶共溅方式在芯轴表面制备合金结构的内衬层;
B、采用溅射或电镀方式在步骤A制得的内衬层结构的表面制备纯金的支撑层;
C、对步骤B制备的样品进行退火处理;
D、将步骤C获得的样品在电解质溶液中进行去芯轴和去合金化处理,清洗、烘干后得到内衬层为低密度金转化层的黑腔。
本申请的制备原理是,将原有的块体式黑腔结构改为内衬层+支撑层的结构形式,其中内衬层采用Au+活泼金属的合金材质,在去除芯轴得到黑腔时,内衬层中的活泼金属也会被去除,从而得到低密度金的黑腔内壁。
在步骤A中进行溅射之前,首先使溅射真空室的真空度达到1×10-7Pa~1×10- 5Pa,然后充入高纯氩气,并使溅射真空室的真空度维持在0.1Pa~0.6Pa。合理的气压保护,可使溅射靶的工作稳定可靠,保证镀层不受外部空气干扰。
在步骤A中进行双靶共溅时,为提高制备效率,可将1~12个芯轴放置于自转公转样品架上,样品架公转中心到溅射靶中心的距离为80~150mm,在该范围内,溅射粉末的速率最快,更有利于控制镀层厚度以及沉积速率。样品架公转中心法线与溅射靶中心轴线呈30~45°夹角,便于溅射到所有芯轴,同时可使金属很好的沉积在芯轴上。
对于材质和形状,跟普通外镀黑腔类似,根据不同的使用要求,所述芯轴材料为Cu、Al、Ag或以上材料构成的合金,形状可以为圆柱型、多节圆柱型、球柱型、椭球柱形或任意两种及以上形状的组合。
为了得到合适的低密度金层,所述内衬层厚度为1~50μm,内衬层中Au含量为5~50at.%,其余为活泼金属,为了便于后续腐蚀芯轴时一并去除,所述活泼金属可以采用与芯轴相同的材质,包括Al、Cu或Ag等。为了满足黑腔的结构强度,所述支撑层的厚度最好为10~50μm。
在步骤C中进行退火处理时,背底真空优于1×10-5Pa,在300℃~450℃下热处理24~144H,随后冷却至室温取出。热处理的作用一方面是可以提高镀层的结合力,另一方面可促进活泼金属与Au之间的相互移动,便于形成质地均匀的低密度金层。
对于步骤D中的电解质溶液,可以采用酸性或碱性溶液,其中优选硝酸溶液,更具成本和环保优势。
对于实现低密度金层,本申请还提供了一种替代方案,即所述内衬层的合金结构采用Au层与活泼金属层交替设置的多层结构取代。具体的,所述多层结构为10~20层,其中,活泼金属层的厚度不变,Au层厚度从内到外均匀递增。经过热处理和去芯轴处理后,多层结构仍然能形成较好的低密度金层。
下面通过具体实施例对本发明进一步说明
实施例一:
采用本申请的方法在芯轴上制备黑腔,芯轴和活泼金属采用Cu,具体操作步骤如下:
步骤一、将两个芯轴放置于自转公转样品架,样品架公转中心到溅射靶中心的距离为100mm;样品架公转中心法线与溅射靶中心轴线呈45°角;
步骤二、通过机械泵或分子泵抽真空使溅射真空室的真空度达到1×10-7Pa,然后充入高纯氩气,并调节闸板阀使溅射真空室的真空度维持在0.6Pa,所述的高纯氩气的纯度为99.999%~99.9999%;
步骤三、采用Au靶与Cu靶双靶共溅射制备内衬层,合金内衬层厚度为10μm,其中金含量为10at.%,Cu含量为90at.%;
步骤四、外层金支撑层采用电镀方法制备,厚度为30μm;
步骤五、控制背底真空优于1×10-5Pa后开始升温,将两个芯轴分别在390℃和450℃下热处理72H,冷却至室温取出;
步骤六、将热处理后的样品放入硝酸溶液进行电解腐蚀,随后取出烘干。
对制得的黑腔进行电镜扫描,得到如图1、图2所示的黑腔内壁低密度金转化层,可以明显看到内衬层上具有很多因活泼金属被腐蚀所留下的细小空隙,正因为这些空隙,使得内衬层成为低密度金层。其中图1的热处理温度为450℃,图2的热处理温度为390℃。
实施例二:
采用与对比文件1同样的材料,只是在步骤三中,采用Au靶与Cu靶交替溅射的方式得到12层结构的内衬层,其中Cu层的厚度不变,每层厚度为1μm,金层厚度从内侧的0.2μm开始以每层增加0.2μm的方式向外递增。具体结构如图3所示。对最后制得的黑腔进行电镜扫描,得到如图4所示的黑腔内壁低密度金转化层。
可见,采用本申请的方法,可以制备得到黑腔内壁低密度金转化层。

Claims (8)

1.一种黑腔内壁低密度金转化层的制备方法,其特征是,包括以下步骤:
A、采用Au靶与活泼金属靶的双靶共溅方式在芯轴表面制备合金结构的内衬层,所述内衬层厚度为1~50μm,内衬层中Au含量为5~50at.%,其余为活泼金属,所述活泼金属包括Al、Cu或Ag中的一种;
B、采用溅射或电镀方式在步骤A制得的内衬层结构的表面制备纯金的支撑层,所述支撑层的厚度为10~50μm;
C、对步骤B制备的样品进行退火处理;
D、将步骤C获得的样品在电解质溶液中进行去芯轴和去合金化处理,清洗、烘干后得到内衬层为低密度金转化层的黑腔。
2.如权利要求1所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:在步骤A中进行溅射之前,首先使溅射真空室的真空度达到1×10-7Pa~1×10-5Pa,然后充入高纯氩气,并使溅射真空室的真空度维持在0.1Pa~0.6Pa。
3.如权利要求2所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:在步骤A中进行双靶共溅时,将1~12个芯轴放置于自转公转样品架,样品架公转中心到溅射靶中心的距离为80~150mm,样品架公转中心法线与溅射靶中心轴线呈30~45°夹角。
4.如权利要求1所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:所述芯轴材料为Cu、Al、Ag或以上材料构成的合金,形状为圆柱型、多节圆柱型、球柱型、椭球柱形或任意两种及以上形状的组合。
5.如权利要求1所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:在步骤C中进行退火处理时,背底真空优于1×10-5Pa,在300℃~450℃下热处理24~144H,随后冷却至室温取出。
6.如权利要求1所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:步骤D中的电解质溶液为硝酸溶液或其他腐蚀性溶液。
7.如权利要求1-6任意一项权利要求所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:所述内衬层的合金结构采用Au层与活泼金属层交替设置的多层结构取代。
8.如权利要求7所述的一种黑腔内壁低密度金转化层的制备方法,其特征是:所述多层结构为10~20层,其中,活泼金属层的厚度不变,Au层厚度从内到外均匀递增。
CN202110517767.1A 2021-05-12 2021-05-12 黑腔内壁低密度金转化层的制备方法 Active CN113215532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110517767.1A CN113215532B (zh) 2021-05-12 2021-05-12 黑腔内壁低密度金转化层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110517767.1A CN113215532B (zh) 2021-05-12 2021-05-12 黑腔内壁低密度金转化层的制备方法

Publications (2)

Publication Number Publication Date
CN113215532A CN113215532A (zh) 2021-08-06
CN113215532B true CN113215532B (zh) 2022-12-23

Family

ID=77095066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110517767.1A Active CN113215532B (zh) 2021-05-12 2021-05-12 黑腔内壁低密度金转化层的制备方法

Country Status (1)

Country Link
CN (1) CN113215532B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115091131B (zh) * 2022-06-29 2023-10-20 中国工程物理研究院激光聚变研究中心 一种镍ch复合黑腔制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430451A (en) * 1982-03-03 1984-02-07 The United States Of America As Represented By The United States Department Of Energy Low density, microcellular foams, preparation, and articles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130308736A1 (en) * 2011-11-11 2013-11-21 Lawrence Livermore National Security, Llc Porous Scaffolds for Hydrogen Fuel in Inertial Confinement Fusion Capsules
CN104372300B (zh) * 2014-11-03 2017-01-18 济南大学 一种厚度可控纳米多孔金属薄膜的制备方法
US20200161007A1 (en) * 2016-12-01 2020-05-21 Innoven Energy Llc High Yield ICF Target for Large Radiation Gains
CN106498221B (zh) * 2016-12-14 2019-03-26 中国工程物理研究院激光聚变研究中心 纳米多孔金及其制备方法
CN111826609B (zh) * 2020-03-30 2022-06-28 中国工程物理研究院激光聚变研究中心 一种u-w-n三元薄膜及其制备方法和应用
CN111575709B (zh) * 2020-06-18 2021-12-17 中国工程物理研究院激光聚变研究中心 一种银黑腔制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430451A (en) * 1982-03-03 1984-02-07 The United States Of America As Represented By The United States Department Of Energy Low density, microcellular foams, preparation, and articles

Also Published As

Publication number Publication date
CN113215532A (zh) 2021-08-06

Similar Documents

Publication Publication Date Title
US6521173B2 (en) Low oxygen refractory metal powder for powder metallurgy
CN113215532B (zh) 黑腔内壁低密度金转化层的制备方法
CN112442643B (zh) 一种层状纤维増韧钨基复合材料及其制备方法
CN114000089B (zh) 一种利用aps技术制备的高熵氧化物超高温热障涂层及其方法
WO2022016775A1 (zh) 活塞制作方法及活塞
CN104213096A (zh) 一种含钨涂层坩埚的制备方法
CN111809099B (zh) NiCrAl改性氧化物陶瓷增强铁基复合材料及其制备方法和应用
CN111285677A (zh) 一种高致密叠层复合件的制备方法
CN109365803A (zh) 一种粉末表面稀土改性的铝合金复杂构件增材制造方法
CN1855586A (zh) 二次锂离子电池的负极材料
CN112267039A (zh) 一种高体积分数碳化硅颗粒增强铝基复合材料的制备工艺
CN111575709B (zh) 一种银黑腔制造方法
CN101217197B (zh) 固体氧化物燃料电池连续梯度阳极的制备方法
EP3933863B1 (en) Electrode structure body and fabrication method thereof
CN114622146B (zh) 一种涂层改性铌纤维增强钛铝基复合材料的制备方法
CN103831222A (zh) 一种硬质合金表面非层状氧化铝/碳化钛涂层的制备
CN109913823B (zh) 一种轻水堆锆管涂层
CN112695320B (zh) 一种松装陶瓷预制体的高通量制备方法
CN112663005B (zh) 多晶硅还原炉内壁镀膜装置及方法
CN113249694B (zh) 溅射内镀黑腔及其制备方法
CN114799460A (zh) 一种扩散连接制备多层复合阳极基体的方法
CN116178019A (zh) 一种无压包裹煅烧制备多孔max相陶瓷材料的方法
CN109161859A (zh) 一种表面有前驱梯度烧结保护C-Si-Al涂层的碳纤维及其制备方法和用途
CN112028640A (zh) TiC-ZrO2复合粉体及复合纤维的制备方法
CN112355311B (zh) 一种钨基金属陶瓷核燃料芯块及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant