CN108408727A - 一种易剥离陶瓷材料max相的合成及剥离方法 - Google Patents

一种易剥离陶瓷材料max相的合成及剥离方法 Download PDF

Info

Publication number
CN108408727A
CN108408727A CN201810193002.5A CN201810193002A CN108408727A CN 108408727 A CN108408727 A CN 108408727A CN 201810193002 A CN201810193002 A CN 201810193002A CN 108408727 A CN108408727 A CN 108408727A
Authority
CN
China
Prior art keywords
synthesis
max
max phases
stripping means
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810193002.5A
Other languages
English (en)
Inventor
彭秋明
窦洋
葛炳成
冯佳文
张昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201810193002.5A priority Critical patent/CN108408727A/zh
Publication of CN108408727A publication Critical patent/CN108408727A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/907Oxycarbides; Sulfocarbides; Mixture of carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/006Compounds containing, besides gallium, indium, or thallium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/002Compounds containing, besides titanium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种易剥离陶瓷材料MAX相的合成及剥离方法,其主要是将合成原材料:M为Sc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta;A为A与Li、Na、K、Mg、Ca的合金粉,其中Li、Na、K、Mg、Ca的含量为10‑50at%;X为C或N;分别从上述M、A、X中各选取一种,按质量比M:A:X=2‑4:0.5‑1.1:1‑3,在氩气气氛下球磨12‑36h,得易剥离MAX相的粉状合成原料;将所得粉末在50MPa于磨具中预压成圆柱体,然后在2‑6GPa,800‑1600℃条件下烧结2‑4h,冷却至室温后卸压取出,将MAX材料粉碎,浸入腐蚀液中,40℃搅拌12h得到二维MXene陶瓷材料。本发明摆脱了MAX相剥离对高浓度HF的依赖,有助于二维MXene材料应用的推广。

Description

一种易剥离陶瓷材料MAX相的合成及剥离方法
技术领域
本发明属于材料技术领域,特别涉及一种陶瓷材料MAX相的合成及剥离方法。
背景技术
三元层状陶瓷材料MAX是密排六方结构,通常用Mn+1AXn表示(n=1,2,3),其中,M代表过渡金属元素,A代表主族元素,X是碳或氮。M原子间以金属键相连、M与X间以强共价键结合此两种结合方式均较稳定;M与A之间的化学键较弱,A原子较易挣脱MX片层而得到二维层状的MX材料。目前用于剥离MAX相材料的主要是高浓度的氢氟酸。氢氟酸具有极强的腐蚀性、有剧毒。合成一种易于剥离或者取代氢氟酸作为腐蚀液的MAX相具有重要的意义。
目前MAX相的主要合成原料是M、A、X三种元素的单质、M元素的氢化物、化合物MX等。利用热压烧结、放电等离子烧结、氩气气氛无压烧结等工艺合成MAX相。利用以上工艺原料合成出的MAX相纯度很高,但是对它们的剥离条件要求比较苛刻,在二维材料的应用领域受到一定的限制。周爱国(Zhengyang Li,Libo Wang,Dandan Sun,Yude Zhang,BaozhongLiu,Qianku Hu,Aiguo Zhou。Synthesis and thermal stability of two-dimensionalcarbide MXene Ti3C2[J].Materials Science and Engineering B.2015,191:33-40)等研究的Ti3AlC2的剥离方法是以40%-49%的HF浸泡Ti3AlC2。该过程中使用的浓HF溶液具有强腐蚀性和毒性,致使该方法的推广大大受限。洪茂椿(Wang Kun,Zhou Youfu,Xu Wentao,Huang Decai,Wang Zhiguang,Hong Maochun.Fabrication and thermal stability oftwo-dimensional carbide Ti3C2nanosheets[J].Ceramics International.2016,42(7):8419-8424.)等研究的Ti3AlC2的剥离方法也是以高浓度的HF浸泡,与上述方法类似,并未摆脱浓HF的使用。
二维MXene材料的推广使用首先要解决其剥离试剂与剥离方法的无毒(低毒)、无害(低伤害)、操作难的问题。
发明内容
本发明的目的旨在提供一种工艺简单、无毒无害、容易剥离的易剥离陶瓷材料MAX相的合成及剥离方法。
本发明的合成及剥离方法如下:
(1)合成原材料:M为Sc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta;A为A与Li、Na、K、Mg、Ca的合金粉,其中Li、Na、K、Mg、Ca的含量为10-50at%;X为C或N;
分别从上述M、A、X中各选取一种,按质量比M:A:X=2-4:0.5-1.1:1-3,其中A的合金以A元素计量,按10-20:1的球料比加入直径6mm的不锈钢磨球,以300-400r/min的转速在氩气气氛下球磨12-36h,使之混合均匀,得易剥离MAX相的粉状合成原料;
(2)将步骤(1)所得粉末在50MPa的压力下于不锈钢磨具中预压成直径10mm高14mm的圆柱体,然后以高压烧结的方式在2-6GPa,800-1600℃条件下烧结2-4h,冷却至室温后卸掉压力取出样品,将其打磨干净得到易剥离的MAX相;
(3)把步骤(2)所得MAX材料粉碎,浸入腐蚀液中,40℃搅拌12h得二维MXene陶瓷材料。
所述腐蚀液为强碱:KOH、NaOH,强酸:盐酸、硝酸,弱酸:低浓度氢氟酸。
MAX相是三元层状陶瓷材料,其中A元素独立成层,以较弱的共价键与M原子相连。显然,按上述配比配料A元素不足,不足以完全生成MAX相,缺少A元素的位置会随机产生。由于高压反应限制了L元素的逸出,迫使它占据A元素的位置(无化学键的形成)或者使键能较弱的化学键。因为L元素与其他元素间并无化学键的生成且L元素是非常活泼的金属元素,当这种含有均匀分散的Li、Na、K、Mg或Ca元素的MAX相被剥离时,首先是MAX相表面(层)的Li、Na、K、Mg或Ca元素与腐蚀液反应生成微小孔洞,此反应过程中会短时间内放出较多的热量且生成强碱,这一脉冲热量会机械性的扩张L原子所占据的微小孔洞,辅助腐蚀液接触MAX相中的A原子及其它Li、Na、K、Mg或Ca原子,有助于进一步腐蚀。同时这一热量也会提高腐蚀液与MAX的反应活性,在无HF的腐蚀液或低浓度的HF腐蚀液中,实现MAX的剥离。当腐蚀液为强酸时,溶液中氢离子浓度较高,对活泼金属的反应活性高且反应剧烈,在反应过程中不仅放出大量热量还生成氢气,这一热量和气体机械的扩张MXene的层间距,利于MAX的剥离。另外由于此法合成的MAX中含有活泼的金属单质,在活泼金属被剥离的过程中有利于HF对MAX的腐蚀。所以在低浓度的HF中会被剥离(比浓度的HF相较于高浓度的HF活性低)。
本发明与现有技术相比具有如下优点:
1、合成的MAX相易于剥离,避免了高浓度HF溶液的使用;
2、利用高压限域的作用将样品全面压实封住限制Li、Na、K、Mg或Ca元素的损失(相对于放电等离子烧结、热压烧结、气氛无压烧结);
3、利用活泼金属元素占位,再将其去除的方法达到了合成易剥离MAX相的目的;
4、避免了对人体危害巨大的高浓度HF的使用实现MAX相的剥离,具有广阔的应用前景。
具体实施例
实施例1
按铝和锂的质量之比为5:1,于真空非自耗电弧炉中熔炼铝锂合金,待冷却后翻转再次熔炼,重复熔炼五次,利用浓差扩散使二者混合均匀。将熔炼好的铝锂合金粉碎,筛选500目以下的细粉备用,按质量比钛:铝锂合金(以铝计):碳=3:1.1:2配料,按10:1的球料比加入直径6mm的不锈钢磨球,400r/min在氩气气氛下每球磨60min冷却30min,循环12次得易剥离MAX相的合成原料;将上述原料在不锈钢磨具中以50MPa压力预压成直径10mm、高14mm的圆柱体,之后在六面顶压机中烧结,压力2GPa,温度1300℃,烧结2h后冷却至室温,把样品取出打磨干净、粉碎备用;取烧结后的粉末1g浸泡于20mL 2mol L-1的NaOH溶液中,40℃搅拌12h后离心洗涤干燥得到二维MXene(Ti3C2Tx)。(T为-OH/-F/-O-中的一种或多种,x为其含量。下同)
实施例2
按铝镁的质量比为1:1,于真空非自耗电弧炉中熔炼铝镁合金,待冷却后翻转再次熔炼,重复熔炼五次,利用浓差扩散使二者混合均匀。将熔炼好的铝锂合金粉碎,筛选500目以下的细粉备用,按质量比钛:铝锂合金(以铝计):碳=4:0.5:3配料,按10:1的球料比加入直径6mm的不锈钢磨球,300r/min在氩气气氛下每球磨60min冷却30min,循环24次得易剥离MAX相的合成原料;将上述原料在不锈钢磨具中以50MPa压力预压成直径10mm,高14mm的圆柱体,之后在六面顶压机中烧结,压力4GPa,温度1200℃,烧结2h后冷却至室温,把样品取出打磨干净、粉碎备用;取烧结后的粉末1g浸泡于20mL 2mol L-1的HCl溶液中,40℃搅拌12h后离心洗涤干燥得到二维MXene(Ti2CTx)。
实施例3
按硅钙的质量比为9:1,于真空非自耗电弧炉中熔炼硅钙合金,待冷却后翻转再次熔炼,重复熔炼五次,利用浓差扩散使二者混合均匀。将熔炼好的铝锂合金粉碎,筛选500目以下的细粉备用,按质量比钛:铝锂合金(以铝计):碳=3:0.5:2配料,按20:1的球料比加入直径6mm的不锈钢磨球,350r/min在氩气气氛下每球磨60min冷却30min,循环12次得易剥离MAX相的合成原料;将上述原料在不锈钢磨具中以50MPa压力预压成直径10mm,高14mm的圆柱体,之后在六面顶压机中烧结,压力3GPa,温度1350℃,烧结2h后冷却至室温,把样品取出打磨干净、粉碎备用;取烧结后的粉末1g浸泡于20mL 4mol L-1的KOH溶液中,40℃搅拌12h后离心洗涤干燥得到二维MXene(Ti3C2Tx)。
实施例4
按镓钠的质量比为1:1,于真空非自耗电弧炉中熔炼镓钠合金,待冷却后翻转再次熔炼,重复熔炼五次,利用浓差扩散使二者混合均匀。将熔炼好的铝锂合金粉碎,筛选500目以下的细粉备用,按质量比钛:铝锂合金(以铝计):碳=2:1.1:1配料,按20:1的球料比加入直径6mm的不锈钢磨球,400r/min在氩气气氛下每球磨60min冷却30min,循环36次得易剥离MAX相的合成原料;将上述原料在不锈钢磨具中以50MPa压力预压成直径10mm,高14mm的圆柱体,之后在六面顶压机中烧结,压力4GPa,温度1100℃,烧结2h后冷却至室温,把样品取出打磨干净、粉碎备用;取烧结后的粉末1g浸泡于20mL 2mol L-1的NaOH溶液中,40℃搅拌12h后离心洗涤干燥得到二维MXene(Ga2CTx)。
实施例5
按铝钠的质量比为1:1,于真空非自耗电弧炉中熔炼铝钠合金,待冷却后翻转再次熔炼,重复熔炼五次,利用浓差扩散使二者混合均匀。将熔炼好的铝锂合金粉碎,筛选500目以下的细粉备用,按质量比铌:铝锂合金(以铝计):碳=3:1.1:2配料,按20:1的球料比加入直径6mm的不锈钢磨球,400r/min在氩气气氛下每球磨60min冷却30min,循环24次得易剥离MAX相的合成原料;将上述原料在不锈钢磨具中以50MPa压力预压成直径10mm,高14mm的圆柱体,之后在六面顶压机中烧结,压力6GPa,温度1600℃,烧结4h后冷却至室温,把样品取出打磨干净、粉碎备用。取烧结后的粉末1g浸泡于20mL 10%的HF溶液中,40℃搅拌12h后离心洗涤干燥得到二维MXene(Nb2CTx)。
实施例6
按硅锂的质量比为1:1,于真空非自耗电弧炉中熔炼铝钠合金,待冷却后翻转再次熔炼,重复熔炼五次,利用浓差扩散使二者混合均匀。将熔炼好的铝锂合金粉碎,筛选500目以下的细粉备用,按质量比铌:铝锂合金(以铝计):碳=3:1.1:2配料,按20:1的球料比加入直径6mm的不锈钢磨球,400r/min在氩气气氛下每球磨60min冷却30min,循环24次得易剥离MAX相的合成原料;将上述原料在不锈钢磨具中以50MPa压力预压成直径10mm,高14mm的圆柱体,之后在六面顶压机中烧结,压力6GPa,温度800℃,烧结4h后冷却至室温,把样品取出打磨干净、粉碎备用。取烧结后的粉末1g浸泡于20mL 2mol L-1的NaOH溶液中,40℃搅拌12h后离心洗涤干燥得到二维MXene(Nb2CTx)。

Claims (2)

1.一种易剥离陶瓷材料MAX相的合成及剥离方法,其特征在于:
(1)合成原材料:M为Sc、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta;A为A与Li、Na、K、Mg、Ca的合金粉,其中Li、Na、K、Mg、Ca的含量为10-50at%;X为C或N;
分别从上述M、A、X中各选取一种,按质量比M:A:X=2-4:0.5-1.1:1-3,其中A的合金以A元素计量,按10-20:1的球料比加入直径6mm的不锈钢磨球,以300-400r/min的转速在氩气气氛下球磨12-36h,使之混合均匀,得易剥离MAX相的粉状合成原料;
(2)将步骤(1)所得粉末在50MPa的压力下于不锈钢磨具中预压成直径10mm高14mm的圆柱体,然后以高压烧结的方式在2-6GPa,800-1600℃条件下烧结2-4h,冷却至室温后卸掉压力取出样品,将其打磨干净得到易剥离的MAX相;
(3)把步骤(2)所得MAX材料粉碎,浸入腐蚀液中,40℃搅拌12h得到二维MXene陶瓷材料。
2.根据权利要求1所述的易剥离陶瓷材料MAX相的合成及剥离方法,其特征在于:所述腐蚀液为强碱:KOH、NaOH,强酸:盐酸、硝酸,弱酸:低浓度氢氟酸。
CN201810193002.5A 2018-03-09 2018-03-09 一种易剥离陶瓷材料max相的合成及剥离方法 Pending CN108408727A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810193002.5A CN108408727A (zh) 2018-03-09 2018-03-09 一种易剥离陶瓷材料max相的合成及剥离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810193002.5A CN108408727A (zh) 2018-03-09 2018-03-09 一种易剥离陶瓷材料max相的合成及剥离方法

Publications (1)

Publication Number Publication Date
CN108408727A true CN108408727A (zh) 2018-08-17

Family

ID=63130655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810193002.5A Pending CN108408727A (zh) 2018-03-09 2018-03-09 一种易剥离陶瓷材料max相的合成及剥离方法

Country Status (1)

Country Link
CN (1) CN108408727A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231989A (zh) * 2018-11-01 2019-01-18 燕山大学 一种高活性合金插层Ti3AlMC2陶瓷材料的制备方法
CN109231988A (zh) * 2018-11-01 2019-01-18 燕山大学 一种大空位非计量比活性Ti3AlC2陶瓷材料的制备方法
CN113066965A (zh) * 2021-03-22 2021-07-02 宁波杉杉新材料科技有限公司 MXene-硅复合负极材料、含其的电池及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1091891A (en) * 1976-10-20 1980-12-23 Noboru Kawakami Process for producing titanium carbide
CN102633505A (zh) * 2012-03-14 2012-08-15 中国科学院宁波材料技术与工程研究所 一种高纯度max相陶瓷粉体的制备方法
CN106430195A (zh) * 2016-10-14 2017-02-22 北京大学 一种MXene材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1091891A (en) * 1976-10-20 1980-12-23 Noboru Kawakami Process for producing titanium carbide
CN102633505A (zh) * 2012-03-14 2012-08-15 中国科学院宁波材料技术与工程研究所 一种高纯度max相陶瓷粉体的制备方法
CN106430195A (zh) * 2016-10-14 2017-02-22 北京大学 一种MXene材料及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231989A (zh) * 2018-11-01 2019-01-18 燕山大学 一种高活性合金插层Ti3AlMC2陶瓷材料的制备方法
CN109231988A (zh) * 2018-11-01 2019-01-18 燕山大学 一种大空位非计量比活性Ti3AlC2陶瓷材料的制备方法
CN109231988B (zh) * 2018-11-01 2020-09-22 燕山大学 一种大空位非计量比活性Ti3AlC2陶瓷材料的制备方法
CN113066965A (zh) * 2021-03-22 2021-07-02 宁波杉杉新材料科技有限公司 MXene-硅复合负极材料、含其的电池及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108257925B (zh) 一种硅化金刚石/SiC复合材料的制备方法
JP4723224B2 (ja) 亜酸化ニオブをベースとする焼結体及び亜酸化ニオブを有する固体電解コンデンサの製造方法
CN112794734B (zh) 一种多元金属碳化物改性的碳基材料及其制备方法
CN108408727A (zh) 一种易剥离陶瓷材料max相的合成及剥离方法
WO2005073418A1 (ja) タングステン系焼結体およびその製造方法
CN104232995B (zh) 一种高强韧超细晶复合结构钛合金及其制备方法与应用
JP2021502317A (ja) 金属ホウ化物及びその使用
CN114525424B (zh) 一种钛基复合材料及其制备方法
Ngai et al. Influence of Ti3SiC2 content on erosion behavior of Cu–Ti3SiC2 cathode under vacuum arc
CN104073703B (zh) 一种Al2O3-TiN-Al陶瓷复合材料及其制备方法
Zhang et al. High strength bulk tantalum with novel gradient structure within a particle fabricated by spark plasma sintering
Zhai et al. Effect of Si content on microstructure and properties of Si/Al composites
Murthy et al. Boron-based ceramics and composites for nuclear and space applications: synthesis and consolidation
CN104232961B (zh) 一种高强高硬Cu-Cr复合材料及其制备方法和应用
CN111662085B (zh) 基于非接触式闪烧技术的含有金刚石的碳化钨陶瓷的制备方法
Ciupiński et al. Heat sink materials processing by pulse plasma sintering
CN109385566A (zh) Pvd用高强高耐磨多主元合金涂层材料及其制备方法
CN106866152B (zh) 一种yb4块体的制备方法
CN105345007A (zh) 一种高致密铬钨合金靶材的制备方法
CN115521150A (zh) 一种碳化硼/铅复合防辐射材料、其制备方法及应用
CN107164678B (zh) 一种高温化学容器用钽材料及其制备方法
KR20150017716A (ko) 무응력 cbn 복합 재료로 제조된 절삭 공구 및 제조 방법
CN105364074A (zh) 一种高致密铬钨合金靶材的制备方法
JP2004169064A (ja) 銅−タングステン合金およびその製造方法
JP7470291B2 (ja) 炭化物結合多結晶ダイヤモンド電極素材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180817