CN112349772A - 累积型mos沟道二极管结构 - Google Patents
累积型mos沟道二极管结构 Download PDFInfo
- Publication number
- CN112349772A CN112349772A CN202011223439.2A CN202011223439A CN112349772A CN 112349772 A CN112349772 A CN 112349772A CN 202011223439 A CN202011223439 A CN 202011223439A CN 112349772 A CN112349772 A CN 112349772A
- Authority
- CN
- China
- Prior art keywords
- type
- region
- accumulation
- groove
- diode structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009825 accumulation Methods 0.000 title claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 57
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 102000004129 N-Type Calcium Channels Human genes 0.000 claims description 25
- 108090000699 N-Type Calcium Channels Proteins 0.000 claims description 25
- 108091006146 Channels Proteins 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 4
- 230000004888 barrier function Effects 0.000 abstract description 10
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical class 0.000 abstract description 2
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000011084 recovery Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/72—Transistor-type devices, i.e. able to continuously respond to applied control signals
- H01L29/739—Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
- H01L29/7391—Gated diode structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0638—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本发明涉及功率半导体器件技术领域,尤其涉及一种累积型MOS沟道二极管结构,包括阴极金属、阳极金属、N型衬底、N型外延层、P区、N型源区及槽栅组,所述N型衬底、N型外延层、P区、N型源区及槽栅设置在阴极金属与阳极金属之间,所述N型衬底一端与阴极金属接触,另一端与N型外延层的一端接触,N型外延层的另一端部分与P区接触,N型源区设置在阳极金属、P区及槽栅组之间并分别与部分阳极金属、部分P区及部分槽栅组接触,部分所述槽栅组及部分P区分别与部分阳极金属接触。本发明的累积型MOS沟道二极管结构通过P区、N型源区与阳极金属形成欧姆接触,使得具有比肖特基势垒更低的势垒高度,有利于降低其在正向导通时的压降。
Description
【技术领域】
本发明涉及功率半导体器件技术领域,尤其涉及一种累积型MOS沟道二极管结构。
【背景技术】
市面上的PIN二极管在正向导通是压降较高,并且双极载流子导电使得PIN二极管的反向恢复时间较长,开关特性较差,而肖特基势垒二极管的反向时间较短,具有较好的开关特性,但由于肖特基势垒中存在镜像电荷,在反向偏压增大时,会使得肖特基势垒的降低,导致反向漏电流随着反向偏压的增大而增大。
因此,现有技术,存在不足,需要改进。
【发明内容】
为克服上述的技术问题,本发明提供了一种累积型MOS沟道二极管结构。
本发明解决技术问题的方案是提供一种累积型MOS沟道二极管结构,包括阴极金属、阳极金属、N型衬底、N型外延层、P区、N型源区及槽栅组,所述N型衬底、N型外延层、P区、N型源区及槽栅设置在阴极金属与阳极金属之间,所述N型衬底一端与阴极金属接触,另一端与N型外延层的一端接触,N型外延层的另一端部分与P区接触,N型源区设置在阳极金属、P区及槽栅组之间并分别与部分阳极金属、部分P区及部分槽栅组接触,部分所述槽栅组及部分P区分别与部分阳极金属接触。
优选地,所述槽栅组包括槽栅及槽栅氧化层,所述槽栅氧化层呈半包结构,所述槽栅氧化层的部分外表面与部分N型外延层接触,所述槽栅氧化层的内表面与槽栅接触,所述槽栅氧化层还分别与阳极金属及N型源区接触,所述N型源区通过与槽栅氧化层接触实现与槽栅组接触。
优选地,所述累积型MOS沟道二极管结构还包括N型沟道,所述N型沟道设置在N型外延层、N型源区、P区及槽栅组之间并分别与N型外延层、N型源区、P区及槽栅组接触。
优选地,所述累积型MOS沟道二极管结构为宽禁带材料二极管。
优选地,所述N型外延层的厚度为1-12μm,其掺杂浓度为1×1015/cm3~1×1017/cm3;所述N型源区的深度为0.1-1μm,其掺杂浓度为1×1017/cm3~1×1021/cm3。
优选地,所述N型沟道的掺杂浓度为1×1015/cm3~1×1017/cm3,且所述N型沟道区的掺杂浓度不低于N型外延层的掺杂浓度。
优选地,所述槽栅的深度为0.5-3μm,所述槽栅氧化层的厚度为40-90nm。
优选地,所述P区的深度为1-4μm且大于槽栅的深度,其掺杂浓度为1×1017/cm3~1×1020/cm3。
优选地,所述P区与槽栅的宽度比取值范围为1-2。
优选地,所述阳极金属包括一体成型的连接部及两个凸起部,两个所述凸起部设置在连接部的两端且凸起方向朝向阴极金属所在方向,所述P区包括P区接触槽,所述P区接触槽分别与凸起部靠近阴极金属的一端及靠近另一凸起部的一端接触,所述P区接触槽的深度为0-3μm。
相对于现有技术,本发明的累积型MOS沟道二极管结构具有如下优点:
本发明的累积型MOS沟道二极管结构通过P区、N型源区与阳极金属形成欧姆接触,使得具有比肖特基势垒更低的势垒高度,有利于降低其在正向导通时的压降;摒弃了MOS结构中的P阱,在正向偏置时,无需等到沟道反型,具有更低的开启电压。槽栅起到吸引电子的作用,在阳极金属时间正向偏压时,槽栅附近形成电子的累积层,使得N型沟道处的电子密度提升,有利于减少N型沟道的电子,降低正向导通的压降;其在反向偏置时,阴极金属施加反向偏压,P区与N型外延层形成PN结的耗尽区将槽栅完全屏蔽,以对槽栅进行保护,同时PN结的耗尽区的形成,也可保证具有低数量级的漏电流。
【附图说明】
图1是本发明累积型MOS沟道二极管结构的具体结构简图。
图2是本发明累积型MOS沟道二极管结构一变形实施例的具体结构简图。
附图标记说明:
10、累积型MOS沟道二极管结构;11、阴极金属;12、阳极金属;13、N型衬底;14、N型外延层;15、P区;16、N型源区;17、槽栅组;18、N型沟道;171、槽栅;172、槽栅氧化层;
20、累积型MOS沟道二极管结构;21、阴极金属;22、阳极金属;23、N型衬底;24、N型外延层;25、P区;26、N型源区;27、槽栅组;28、N型沟道;221、连接部;222、凸起部;251、P区接触槽。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
请参阅图1,本发明提供一种累积型MOS沟道二极管结构10,包括阴极金属11、阳极金属12、N型衬底13、N型外延层14、P区15、N型源区16、槽栅组17及N型沟道18,N型衬底13、N型外延层14、P区15、N型源区16、槽栅组17及N型沟道18设置在阴极金属11与阳极金属12之间,其中P区15N型源区16及N型沟道18均设置为两个,N型衬底13的一端与阴极金属11接触,另一端与N型外延层14的一端接触,N型外延层14的另一端分别与槽栅组17、P区15及N型沟道18接触,两个N型沟道18及两个P区15设置在槽栅组17的两侧,且N型沟道18设置在N型外延层14、N型源区16、P区15及槽栅组17之间,N型沟道18还分别与N型源区16、P区15及槽栅组17接触,N型源区16设置在P区15、N型沟道18、槽栅组17及阳极金属12之间,N型源区16还分别与部分P区15、部分阳极金属12及部分槽栅组17接触,槽栅组17与部分阳极金属12接触。
优选地,本发明的累积型MOS沟道二极管结构10为宽禁带材料二极管,具体可为碳化硅二极管或氮化镓二极管,包括但不限于此,其也可为其他具体种类的宽禁带材料二极管,具体可实际进行选取。
进一步地,N型外延层14的厚度为1-12μm,其掺杂浓度为1×1015/cm3~1×1017/cm3;N型源区16的深度为0.1-1μm,其掺杂浓度为1×1017/cm3~1×1021/cm3;N型沟道18的掺杂浓度为1×1015/cm3~1×1017/cm3。在本发明中,优选N型沟道18区的掺杂浓度不低于N型外延层14的掺杂浓度。
进一步地,槽栅组17还包括槽栅171及槽栅氧化层172,其中槽栅氧化层172呈半包结构,槽栅氧化层172的外表面分别与部分N型外延层14、N型源区16及N型沟道18接触,槽栅氧化层172的内表面与槽栅171接触,槽栅氧化层172及槽栅171还分别与阳极金属12接触。
优选地,槽栅171的深度为0.5-3μm,槽栅氧化层172的厚度为40-90nm;P区15的深度为1-4μm且大于槽栅171的深度,P区15与槽栅171的宽度比的取值范围为1-2,其中P区15的掺杂浓度为1×1017/cm3~1×1020/cm3。
此结构的累积型MOS沟道二极管结构10相较于肖特基势垒二极管在反向恢复时间上基本一致,但在正向导通压降比上低0.1-0.5V,同时的反向漏电流低2个数量级。
优选地,本发明的阳极金属12的结构为平板型。
请参阅图2,作为累积型MOS沟道二极管结构10的一种变形累积型MOS沟道二极管结构20,本变形实施例的累积型MOS沟道二极管结构20均包括阴极金属21、阳极金属22、N型衬底23、N型外延层24、P区25、N型源区26、槽栅组27及N型沟道28,其中阴极金属21、N型衬底23、N型外延层24、N型源区26、槽栅组27及N型沟道28之间的连接关系及尺寸、掺杂浓度与第一实施例一致。两者的区别在于本变形实施例积型MOS沟道二极管结构的阳极金属22包括连接部221及两个凸起部222,P区25还包括P区接触槽251。连接部221呈平板型,两个凸起部222一体成型与连接部221的两端且凸起部222的凸起方向朝向阴极金属21所在的方向,P区接触槽251分别与凸起部222靠近阴极金属21的一端及靠近另一凸起部222的一端接触。优选地P区接触槽251的深度为0-3μm。本发明实施例结构的累积型MOS沟道二极管结构20相较于肖特基势垒二极管在反向恢复时间上基本一致,但在正向导通压降比上低0.2-0.4V,同时的反向漏电流低2-3个数量级。
相对于现有技术,本发明的累积型MOS沟道二极管结构具有如下优点:
本发明的累积型MOS沟道二极管结构通过P区、N型源区与阳极金属形成欧姆接触,使得具有比肖特基势垒更低的势垒高度,有利于降低其在正向导通时的压降;摒弃了MOS结构中的P阱,在正向偏置时,无需等到沟道反型,具有更低的开启电压。槽栅起到吸引电子的作用,在阳极金属时间正向偏压时,槽栅附近形成电子的累积层,使得N型沟道处的电子密度提升,有利于减少N型沟道的电子,降低正向导通的压降;其在反向偏置时,阴极金属施加反向偏压,P区与N型外延层形成PN结的耗尽区将槽栅完全屏蔽,以对槽栅进行保护,同时PN结的耗尽区的形成,也可保证具有低数量级的漏电流。
以上所述仅为本发明的较佳实施例,并非因此限制本发明的专利范围,凡是在本发明的构思之内所作的任何修改,等同替换和改进等均应包含在本发明的专利保护范围内。
Claims (10)
1.一种累积型MOS沟道二极管结构,其特征在于:所述累积型MOS沟道二极管结构包括阴极金属、阳极金属、N型衬底、N型外延层、P区、N型源区及槽栅组,所述N型衬底、N型外延层、P区、N型源区及槽栅设置在阴极金属与阳极金属之间,所述N型衬底一端与阴极金属接触,另一端与N型外延层的一端接触,N型外延层的另一端部分与P区接触,N型源区设置在阳极金属、P区及槽栅组之间并分别与部分阳极金属、部分P区及部分槽栅组接触,部分所述槽栅组及部分P区分别与部分阳极金属接触。
2.如权利要求1所述的累积型MOS沟道二极管结构,其特征在于:所述槽栅组包括槽栅及槽栅氧化层,所述槽栅氧化层呈半包结构,所述槽栅氧化层的部分外表面与部分N型外延层接触,所述槽栅氧化层的内表面与槽栅接触,所述槽栅氧化层还分别与阳极金属及N型源区接触,所述N型源区通过与槽栅氧化层接触实现与槽栅组接触。
3.如权利要求1所述的累积型MOS沟道二极管结构,其特征在于:所述累积型MOS沟道二极管结构还包括N型沟道,所述N型沟道设置在N型外延层、N型源区、P区及槽栅组之间并分别与N型外延层、N型源区、P区及槽栅组接触。
4.如权利要求1所述的累积型MOS沟道二极管结构,其特征在于:所述累积型MOS沟道二极管结构为宽禁带材料二极管。
5.如权利要求1所述的累积型MOS沟道二极管结构,其特征在于:所述N型外延层的厚度为1-12μm,其掺杂浓度为1×1015/cm3~1×1017/cm3;所述N型源区的深度为0.1-1μm,其掺杂浓度为1×1017/cm3~1×1021/cm3。
6.如权利要求3所述的累积型MOS沟道二极管结构,其特征在于:所述N型沟道的掺杂浓度为1×1015/cm3~1×1017/cm3,且所述N型沟道区的掺杂浓度不低于N型外延层的掺杂浓度。
7.如权利要求2所述的累积型MOS沟道二极管结构,其特征在于:所述槽栅的深度为0.5-3μm,所述槽栅氧化层的厚度为40-90nm。
8.如权利要求2所述的累积型MOS沟道二极管结构,其特征在于:所述P区的深度为1-4μm且大于槽栅的深度,其掺杂浓度为1×1017/cm3~1×1020/cm3。
9.如权利要求2所述的累积型MOS沟道二极管结构,其特征在于:所述P区与槽栅的宽度比取值范围为1-2。
10.如权利要求1所述的累积型MOS沟道二极管结构,其特征在于:所述阳极金属包括一体成型的连接部及两个凸起部,两个所述凸起部设置在连接部的两端且凸起方向朝向阴极金属所在方向,所述P区包括P区接触槽,所述P区接触槽分别与凸起部靠近阴极金属的一端及靠近另一凸起部的一端接触,所述P区接触槽的深度为0-3μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011223439.2A CN112349772A (zh) | 2020-11-05 | 2020-11-05 | 累积型mos沟道二极管结构 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011223439.2A CN112349772A (zh) | 2020-11-05 | 2020-11-05 | 累积型mos沟道二极管结构 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN112349772A true CN112349772A (zh) | 2021-02-09 |
Family
ID=74428327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011223439.2A Pending CN112349772A (zh) | 2020-11-05 | 2020-11-05 | 累积型mos沟道二极管结构 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112349772A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113823679A (zh) * | 2021-11-23 | 2021-12-21 | 成都蓉矽半导体有限公司 | 栅控二极管整流器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102623513A (zh) * | 2011-01-31 | 2012-08-01 | 万国半导体股份有限公司 | 用于快速开关的带有可控注入效率的二极管结构 |
CN103441151A (zh) * | 2013-08-27 | 2013-12-11 | 无锡市芯茂微电子有限公司 | 一种低正向压降的二极管 |
CN104393056A (zh) * | 2014-11-10 | 2015-03-04 | 电子科技大学 | 一种积累型二极管 |
CN106876461A (zh) * | 2015-12-14 | 2017-06-20 | 现代自动车株式会社 | 半导体器件及半导体器件的制造方法 |
CN109119490A (zh) * | 2018-08-24 | 2019-01-01 | 电子科技大学 | 一种复合结构的槽栅二极管 |
CN110739345A (zh) * | 2019-08-30 | 2020-01-31 | 电子科技大学 | 自偏置分裂栅沟槽型功率mosfet器件 |
CN111312802A (zh) * | 2020-02-27 | 2020-06-19 | 电子科技大学 | 低开启电压和低导通电阻的碳化硅二极管及制备方法 |
-
2020
- 2020-11-05 CN CN202011223439.2A patent/CN112349772A/zh active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102623513A (zh) * | 2011-01-31 | 2012-08-01 | 万国半导体股份有限公司 | 用于快速开关的带有可控注入效率的二极管结构 |
CN103441151A (zh) * | 2013-08-27 | 2013-12-11 | 无锡市芯茂微电子有限公司 | 一种低正向压降的二极管 |
CN104393056A (zh) * | 2014-11-10 | 2015-03-04 | 电子科技大学 | 一种积累型二极管 |
CN106876461A (zh) * | 2015-12-14 | 2017-06-20 | 现代自动车株式会社 | 半导体器件及半导体器件的制造方法 |
CN109119490A (zh) * | 2018-08-24 | 2019-01-01 | 电子科技大学 | 一种复合结构的槽栅二极管 |
CN110739345A (zh) * | 2019-08-30 | 2020-01-31 | 电子科技大学 | 自偏置分裂栅沟槽型功率mosfet器件 |
CN111312802A (zh) * | 2020-02-27 | 2020-06-19 | 电子科技大学 | 低开启电压和低导通电阻的碳化硅二极管及制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113823679A (zh) * | 2021-11-23 | 2021-12-21 | 成都蓉矽半导体有限公司 | 栅控二极管整流器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0902981B1 (en) | Schottky barrier rectifier | |
JP5372002B2 (ja) | メサ構造とメサ段差を含むバッファ層とを備えた電力半導体デバイス | |
US10103227B2 (en) | Method for manufacturing a power semiconductor device | |
KR100937276B1 (ko) | 반도체 디바이스 및 그 제조 방법 | |
AU2007248544B2 (en) | Semiconductor device with surge current protection and method of making the same | |
US8154026B2 (en) | Silicon carbide bipolar semiconductor device | |
US8269262B2 (en) | Vertical junction field effect transistor with mesa termination and method of making the same | |
JP2014056942A (ja) | 電力用半導体装置 | |
US9236434B2 (en) | Semiconductor device and manufacturing method thereof | |
CN105977289A (zh) | 具有可控通态电压的功率半导体整流器 | |
JP2017508300A (ja) | ワイドバンドギャップ半導体材料用igbt構造 | |
US20150311325A1 (en) | Igbt structure on sic for high performance | |
KR20230050726A (ko) | Mosfet 소자 및 그 제조 방법 | |
CN115295547A (zh) | 一种低损耗可逆导的碳化硅场效应功率晶体管器件 | |
CN112349772A (zh) | 累积型mos沟道二极管结构 | |
CN110534582B (zh) | 一种具有复合结构的快恢复二极管及其制造方法 | |
Wang et al. | Comprehensive design and numerical study of GaN vertical MPS diodes towards alleviated electric field crowding and efficient carrier injection | |
US20220246771A1 (en) | Vertical conduction electronic device comprising a jbs diode and manufacturing process thereof | |
TW201926719A (zh) | 具有異質接面的垂直式功率電晶體 | |
EP3682479A1 (en) | Feeder design with high current capability | |
CN112242449B (zh) | 一种基于SiC衬底沟槽型MPS二极管元胞结构 | |
CN114551586A (zh) | 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法 | |
CN112216746A (zh) | 碳化硅半导体器件 | |
CN112563317B (zh) | 氮化镓功率器件及其制造方法 | |
CN219575647U (zh) | 氧化镓肖特基二极管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20210209 |