CN112260531A - 一种基于谐振开关电容变换器的降压pfc电路 - Google Patents

一种基于谐振开关电容变换器的降压pfc电路 Download PDF

Info

Publication number
CN112260531A
CN112260531A CN202011082247.4A CN202011082247A CN112260531A CN 112260531 A CN112260531 A CN 112260531A CN 202011082247 A CN202011082247 A CN 202011082247A CN 112260531 A CN112260531 A CN 112260531A
Authority
CN
China
Prior art keywords
resonant
capacitor
pfc circuit
inductor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011082247.4A
Other languages
English (en)
Other versions
CN112260531B (zh
Inventor
陈章勇
韩雨伯
刘翔宇
吴云峰
冯晨晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202011082247.4A priority Critical patent/CN112260531B/zh
Publication of CN112260531A publication Critical patent/CN112260531A/zh
Application granted granted Critical
Publication of CN112260531B publication Critical patent/CN112260531B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2176Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4291Arrangements for improving power factor of AC input by using a Buck converter to switch the input current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种基于谐振开关电容变换器的降压PFC电路,属于电力电子领域,该电路突破了传统谐振开关电容变换器应用于PFC电路时的增益限制,因此可以表现出良好的功率因数校正等性能。同时,结合谐振开关电容变换器的自身优势,实现高效率、高功率密度,因此在便携式设备的电源适配器等对变换器体积、效率要求较高的场合具有较高的应用价值。

Description

一种基于谐振开关电容变换器的降压PFC电路
技术领域
本发明属于电力电子技术领域,具体涉及一种基于谐振开关电容变换器的降压PFC电路。
背景技术
随着新能源汽车、消费电子和便携式设备的发展,人们从功率密度、输入输出范围等方面对电源适配器的性能提出了更高的要求。电源适配器在接入电网时需要满足一定的谐波标准,因此PFC(功率因数)电路常被用来作为电源适配器中的前端电路。通常情况下,PFC电路由PWM变换器构建,然而PWM变换器具有硬开关的特性不利于提高变换效率,同时PWM变换器中大电感的存在极大地限制了变换器的功率密度。所以,在一些要求高效率、高功率密度的应用场合,传统的基于PWM变换器的PFC电路难以满足需要。谐振开关电容变换器因其高效率、高功率密度等优势,如今受到广泛重视,但是传统的谐振开关电容变换器的电压增益通常会受到拓扑结构的限制,因此在应用于PFC电路时并不能表现出良好的特性。
发明内容
针对现有技术中的上述不足,本发明提供的一种基于谐振开关电容变换器的降压PFC电路解决了现有技术中效率以及功率密度的限制的问题。
为了达到上述发明目的,本发明采用的技术方案为:一种基于谐振开关电容变换器的降压PFC电路,包括与交流电压源连接的整流桥、输入滤波电感L1、输入滤波电容C1、开关管S1、开关管S2、谐振电感Lr1、谐振电感Lr2、谐振电容Cr、二极管D1、二极管D2、输出电容Cout和输出负载RL
所述输入滤波电感L1的一端与整流桥的输出正极连接,所述输入滤波电感L1的另一端分别与输入滤波电容C1的一端和开关管S1的漏极连接,所述开关管S1的源极分别与开关管S2的漏极和谐振电容Cr的一端连接,所述谐振电容Cr的另一端分别与二极管D1的正极和二极管D2的负极连接,所述二极管D2的正极分别与输出电容Cout的一端和输出负载RL的一端连接,所述开关管S2的源极与谐振电感Lr1的一端连接,所述二极管D1的负极与谐振电感Lr2的一端连接,所述整流桥的输出负极分别与输入滤波电容C1的另一端、谐振电感Lr1的另一端、谐振电感Lr2的另一端、输出电容Cout的另一端和输出负载RL的另一端连接。
进一步地,所述降压PFC电路的电压增益为:
Figure BDA0002719047310000021
其中,Vout表示输出负载RL的端电压,Vac_RMS表示交流电压源的有效输出值,A表示第一中间变量,α表示第二中间变量,m表示第三中间变量。
进一步地,所述第一中间变量A具体为:
Figure BDA0002719047310000022
所述第二中间变量α具体为:
Figure BDA0002719047310000023
所述第三中间变量m具体为:
m=fsCrRL
其中,π表示圆周率,fs表示开关频率,k表示谐振频率比,k=fr1/fr2,fr1表示谐振电感Lr1与谐振电容Cr的谐振频率,fr2表示谐振电感Lr2与谐振电容Cr的谐振频率。
进一步地,所述降压PFC电路的输入功率因数PF为:
Figure BDA0002719047310000031
其中,Vm表示输入电压的幅值。
进一步地,所述降压PFC电路的输入电流总谐波失真THD为:
Figure BDA0002719047310000032
本发明的有益效果为:
(1)本发明与现有的基于PWM变换器的PFC电路相比,可以实现更小的电感体积,从而提高变换器的功率密度。
(2)本发明与与现有的基于PWM变换器的PFC电路相比,可以实现开关管与二极管零电流开关,从而提高变换器的变换效率。
(3)本发明与突破现有谐振开关电容变换器拓扑结构的限制,应用于PFC电路中可以表现良好的工作特性,同时可以实现超宽的降压增益调节范围以适应全球各国的市电电压等级。
附图说明
图1为本发明提供的一种基于谐振开关电容变换器的降压PFC电路结构图;
图2为本发明提供的基于谐振开关电容变换器的降压PFC电路的第一种工作模态;
图3为本发明提供的基于谐振开关电容变换器的降压PFC电路的第二种工作模态;
图4为本发明提供的基于谐振开关电容变换器的降压PFC电路的第三种工作模态;
图5为本发明提供的基于谐振开关电容变换器的降压PFC电路在开关周期内的关键波形图;
图6为本发明提供的基于谐振开关电容变换器的降压PFC电路输入功率因数以及输入电流总谐波失真与电压增益的关系曲线;
图7为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在工频周期内的仿真波形图(交流输入电压Vac=90V);
图8为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在开关周期内的仿真波形图(交流输入电压Vac=90V);
图9为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在工频周期内的仿真波形图(交流输入电压Vac=110V);
图10为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在开关周期内的仿真波形图(交流输入电压Vac=110V);
图11为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在工频周期内的仿真波形图(交流输入电压Vac=220V);
图12为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在开关周期内的仿真波形图(交流输入电压Vac=220V);
图13为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在工频周期内的仿真波形图(交流输入电压Vac=270V);
图14为本发明提供的实施例中基于谐振开关电容变换器的降压PFC电路在开关周期内的仿真波形图(交流输入电压Vac=270V)。
具体实施方式
下面对本发明的具体实施方式进行描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
下面结合附图详细说明本发明的实施例。
如图1所示,一种基于谐振开关电容变换器的降压PFC电路,包括与交流电压源连接的整流桥、输入滤波电感L1、输入滤波电容C1、开关管S1、开关管S2、谐振电感Lr1、谐振电感Lr2、谐振电容Cr、二极管D1、二极管D2、输出电容Cout和输出负载RL
所述交流电压源设置于整流桥的两个输入端之间。
所述输入滤波电感L1的一端与整流桥的输出正极连接,所述输入滤波电感L1的另一端分别与输入滤波电容C1的一端和开关管S1的漏极连接,所述开关管S1的源极分别与开关管S2的漏极和谐振电容Cr的一端连接,所述谐振电容Cr的另一端分别与二极管D1的正极和二极管D2的负极连接,所述二极管D2的正极分别与输出电容Cout的一端和输出负载RL的一端连接,所述开关管S2的源极与谐振电感Lr1的一端连接,所述二极管D1的负极与谐振电感Lr2的一端连接,所述整流桥的输出负极分别与输入滤波电容C1的另一端、谐振电感Lr1的另一端、谐振电感Lr2的另一端、输出电容Cout的另一端和输出负载RL的另一端连接。
本发明的PFC电路在开关周期内的工作模态为:
模态1[t0-t1]:如图2所示,开关管S1导通,二极管D1零电流导通,谐振电容Cr和谐振电感Lr2参与谐振,输出电压Vout依靠输出电容Cout保持;
模态2[t1-t2]:如图3所示,开关管S1关断,开关管S2导通,二极管D1继续导通,二极管D2零电流导通,谐振电容Cr和谐振电感Lr1参与谐振,谐振电感Lr1中的电流正弦上升。谐振电感Lr2不再参与谐振,其电流线性下降至零;
模态3[t2-t3]:如图4所示,谐振电感Lr1中的电流继续谐振,直至谐振到零,二极管D2零电流关断。
与上述三种工作模态相对应,本发明提供的基于谐振开关电容变换器的PFC电路在开关周期内的关键波形图如图5所示。
基于上述模态分析,可以得到如下电压增益:
Figure BDA0002719047310000061
式中,
Figure BDA0002719047310000062
Figure BDA0002719047310000063
m=fsCrRL
fs为开关频率;RL为负载电阻的阻值;Vac_RMS为交流输入电压的有效值;Vout为直流输出电压。
对于开关周期内,本发明的PFC电路的输入电流平均值为:
Figure BDA0002719047310000064
式中,Vin表示某一开关周期内对应的输入电压平均值。
本发明的PFC电路在工频周期内的相关分析如下:
设置交流输入电压为vac(θ)=Vmsin(θ),其中Vm为交流输入电压的幅值,θ表示输入电压的相位。因为开关周期远小于工频周期,所以根据开关周期内的输入电流平均值,可得工频周期内输入电流瞬时值iin(θ)为:
Figure BDA0002719047310000065
式中,
Figure BDA0002719047310000066
Figure BDA0002719047310000071
表示中间变量。
由于降压模式的PFC交流输入电流存在死区角,设置死区角θ0为:
Figure BDA0002719047310000072
则本发明的降压PFC电路的输入功率Pin为:
Figure BDA0002719047310000073
工频下的输入电流有效值Iin_RMS为:
Figure BDA0002719047310000074
因此,可求得PF为:
Figure BDA0002719047310000075
输入电流中往往存在一定量的奇次谐波,奇次谐波的有效值通常表达为:
Figure BDA0002719047310000076
则输入电流的基波有效值Iin(1)为:
Figure BDA0002719047310000077
谐波电流有效值Iin(h)为:
Figure BDA0002719047310000078
故输入电流THD为:
Figure BDA0002719047310000079
基于上述表达式,PF值及输入电流THD与电压增益的关系曲线如图6所示。
在本实施例中,仿真参数设置为:交流输入Vac:90-270V,输入滤波电感L1=330μH,输入滤波电容C1=220nF,负载电阻RL=50Ω,谐振电感Lr1=5.5μH,谐振电感Lr2=22μH,谐振电容Cr=220nF,输出电容Cout=1000uF,变换器输出电压为50V,输出功率为50W。
如图7和图8所示的交流输入电压Vac=90V时的仿真波形,仿真所采用的参数:两个开关管驱动信号波形互补,开关频率为197kHz,开关管S1驱动信号占空比为0.319,输出电压50V。从上至下分别为交流输入电压Vac、交流输入电流Iin、直流输出电压Vout、谐振电感Lr1的电流ILr1、谐振电感Lr2的电流ILr2和谐振电容Cr的端电压VCr。该情况下,PF=0.96,输入电流THD=29.16%。
如图9和图10所示的交流输入电压Vac=110V时的仿真波形。仿真所采用的参数:两个开关管驱动信号波形互补,开关频率为215kHz,开关管S1驱动信号占空比为0.257,输出电压50V。从上至下分别为交流输入电压Vac、交流输入电流Iin、直流输出电压Vout、谐振电感Lr1的电流ILr1、谐振电感Lr2的电流ILr2和谐振电容Cr的端电压VCr。该情况下,PF=0.975,输入电流THD=22.85%。
如图11和图12所示的交流输入电压Vac=220V时的仿真波形。仿真所采用的参数:两个开关管驱动信号波形互补,开关频率为254kHz,开关管S1驱动信号占空比为0.122,输出电压50V。从上至下分别为交流输入电压Vac、交流输入电流Iin、直流输出电压Vout、谐振电感Lr1的电流ILr1、谐振电感Lr2的电流ILr2和谐振电容Cr的端电压VCr。该情况下,PF=0.993,输入电流THD=10.55%。
如图13和图14所示的交流输入电压Vac=2770V时的仿真波形。仿真所采用的参数:两个开关管驱动信号波形互补,开关频率为261kHz,开关管S1驱动信号占空比为0.098,输出电压50V。从上至下分别为交流输入电压Vac、交流输入电流Iin、直流输出电压Vout、谐振电感Lr1的电流ILr1、谐振电感Lr2的电流ILr2和谐振电容Cr的端电压VCr。该情况下,PF=0.994,输入电流THD=8.70%。
通过上述实验,可以看出本发明中所提出的PFC电路具有良好的功率因数校正性能,以及较小的输入电流THD。同时,该PFC电路可以实现满足各国市电电压等级的宽输入电压范围。

Claims (5)

1.一种基于谐振开关电容变换器的降压PFC电路,其特征在于,包括与交流电压源连接的整流桥、输入滤波电感L1、输入滤波电容C1、开关管S1、开关管S2、谐振电感Lr1、谐振电感Lr2、谐振电容Cr、二极管D1、二极管D2、输出电容Cout和输出负载RL
所述输入滤波电感L1的一端与整流桥的输出正极连接,所述输入滤波电感L1的另一端分别与输入滤波电容C1的一端和开关管S1的漏极连接,所述开关管S1的源极分别与开关管S2的漏极和谐振电容Cr的一端连接,所述谐振电容Cr的另一端分别与二极管D1的正极和二极管D2的负极连接,所述二极管D2的正极分别与输出电容Cout的一端和输出负载RL的一端连接,所述开关管S2的源极与谐振电感Lr1的一端连接,所述二极管D1的负极与谐振电感Lr2的一端连接,所述整流桥的输出负极分别与输入滤波电容C1的另一端、谐振电感Lr1的另一端、谐振电感Lr2的另一端、输出电容Cout的另一端和输出负载RL的另一端连接。
2.根据权利要求1所述的基于谐振开关电容变换器的降压PFC电路,其特征在于,所述降压PFC电路的电压增益为:
Figure FDA0002719047300000011
其中,Vout表示输出负载RL的端电压,Vac_RMS表示交流电压源的有效输出值,A表示第一中间变量,α表示第二中间变量,m表示第三中间变量。
3.根据权利要求2所述的基于谐振开关电容变换器的降压PFC电路,其特征在于,所述第一中间变量A具体为:
Figure FDA0002719047300000012
所述第二中间变量α具体为:
Figure FDA0002719047300000013
所述第三中间变量m具体为:
m=fsCrRL
其中,π表示圆周率,fs表示开关频率,k表示谐振频率比,k=fr1/fr2,fr1表示谐振电感Lr1与谐振电容Cr的谐振频率,fr2表示谐振电感Lr2与谐振电容Cr的谐振频率。
4.根据权利要求3所述的基于谐振开关电容变换器的降压PFC电路,其特征在于,所述降压PFC电路的输入功率因数PF为:
Figure FDA0002719047300000021
其中,Vm表示输入电压的幅值。
5.根据权利要求4所述的基于谐振开关电容变换器的降压PFC电路,其特征在于,所述降压PFC电路的输入电流总谐波失真THD为:
Figure FDA0002719047300000022
CN202011082247.4A 2020-10-12 2020-10-12 一种基于谐振开关电容变换器的降压pfc电路 Expired - Fee Related CN112260531B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011082247.4A CN112260531B (zh) 2020-10-12 2020-10-12 一种基于谐振开关电容变换器的降压pfc电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011082247.4A CN112260531B (zh) 2020-10-12 2020-10-12 一种基于谐振开关电容变换器的降压pfc电路

Publications (2)

Publication Number Publication Date
CN112260531A true CN112260531A (zh) 2021-01-22
CN112260531B CN112260531B (zh) 2022-04-01

Family

ID=74242950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011082247.4A Expired - Fee Related CN112260531B (zh) 2020-10-12 2020-10-12 一种基于谐振开关电容变换器的降压pfc电路

Country Status (1)

Country Link
CN (1) CN112260531B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115333359A (zh) * 2022-08-22 2022-11-11 电子科技大学 脉冲重叠时间调制谐振开关电容pfc变换器的升压方法
WO2022236825A1 (zh) * 2021-05-14 2022-11-17 华为数字能源技术有限公司 直流至直流变换器
CN117175928A (zh) * 2023-11-02 2023-12-05 中山市宝利金电子有限公司 高性能功率因数校正整流控制电路及开关电源

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1269616A1 (en) * 2000-03-24 2003-01-02 Slobodan Cuk Lossles switching converter with dc transformer
US6798675B1 (en) * 2003-06-13 2004-09-28 The United States Of America As Represented By The Secretary Of The Air Force Charging a capacitive energy store using energy trapping and adaptive clocking
JP2007188643A (ja) * 2006-01-11 2007-07-26 Mitsubishi Electric Corp 誘導加熱調理器
US20110169474A1 (en) * 2010-01-09 2011-07-14 Cuks, Llc Step-down switching PFC converter
JP2013055830A (ja) * 2011-09-05 2013-03-21 Chiba Univ マルチレベルインバータ回路
CN103296882A (zh) * 2013-05-29 2013-09-11 浙江大学 一种具有自动均压功能的dc-dc谐振变换器
CN105896993A (zh) * 2016-05-30 2016-08-24 西安交通大学 一种多单元二极管电容网络高增益隔离型直流变换器
EP3097636A1 (en) * 2014-01-22 2016-11-30 The University of Hong Kong Electronic apparatus and control method for high frequency ac to dc conversion
CN207884511U (zh) * 2018-03-15 2018-09-18 詹笑 一种带有软开关的高频感应加热电源
CN109274264A (zh) * 2018-11-21 2019-01-25 北京理工大学 一种宽调压范围的升压式谐振开关电容变换器
CN208461691U (zh) * 2018-06-19 2019-02-01 四川大学 一种电容隔离谐振式功率因数校正变换器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1269616A1 (en) * 2000-03-24 2003-01-02 Slobodan Cuk Lossles switching converter with dc transformer
US6798675B1 (en) * 2003-06-13 2004-09-28 The United States Of America As Represented By The Secretary Of The Air Force Charging a capacitive energy store using energy trapping and adaptive clocking
JP2007188643A (ja) * 2006-01-11 2007-07-26 Mitsubishi Electric Corp 誘導加熱調理器
US20110169474A1 (en) * 2010-01-09 2011-07-14 Cuks, Llc Step-down switching PFC converter
JP2013055830A (ja) * 2011-09-05 2013-03-21 Chiba Univ マルチレベルインバータ回路
CN103296882A (zh) * 2013-05-29 2013-09-11 浙江大学 一种具有自动均压功能的dc-dc谐振变换器
EP3097636A1 (en) * 2014-01-22 2016-11-30 The University of Hong Kong Electronic apparatus and control method for high frequency ac to dc conversion
CN105896993A (zh) * 2016-05-30 2016-08-24 西安交通大学 一种多单元二极管电容网络高增益隔离型直流变换器
CN207884511U (zh) * 2018-03-15 2018-09-18 詹笑 一种带有软开关的高频感应加热电源
CN208461691U (zh) * 2018-06-19 2019-02-01 四川大学 一种电容隔离谐振式功率因数校正变换器
CN109274264A (zh) * 2018-11-21 2019-01-25 北京理工大学 一种宽调压范围的升压式谐振开关电容变换器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WENHAO XIE等: "A Family of Dual Resonant Switched-Capacitor Converter With Passive Regenerative Snubber", 《 IEEE TRANSACTIONS ON POWER ELECTRONICS ( VOLUME: 35, ISSUE: 5, MAY 2020)》 *
涂文娟等: "DC/DC谐振开关电容变换器潜电路发生的一般规律分析", 《电工技术学报》 *
程红丽等: "开关电容boost-buck功率因数校正组合开关变换器", 《微电子学》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022236825A1 (zh) * 2021-05-14 2022-11-17 华为数字能源技术有限公司 直流至直流变换器
CN115333359A (zh) * 2022-08-22 2022-11-11 电子科技大学 脉冲重叠时间调制谐振开关电容pfc变换器的升压方法
CN115333359B (zh) * 2022-08-22 2024-05-14 电子科技大学 脉冲重叠时间调制谐振开关电容pfc变换器的升压方法
CN117175928A (zh) * 2023-11-02 2023-12-05 中山市宝利金电子有限公司 高性能功率因数校正整流控制电路及开关电源
CN117175928B (zh) * 2023-11-02 2024-02-02 中山市宝利金电子有限公司 高性能功率因数校正整流控制电路及开关电源

Also Published As

Publication number Publication date
CN112260531B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN112260531B (zh) 一种基于谐振开关电容变换器的降压pfc电路
Lai et al. A single-stage AC/DC converter based on zero voltage switching LLC resonant topology
CN113489308B (zh) 无输入电流死区的降压功率因数校正变换器及控制方法
CN201839208U (zh) Pfc/pwm二合一开关电源电路
CN112332652B (zh) 一种基于谐振开关电容变换器的无桥功率因数校正电路
CN116317528B (zh) 单级单相无桥倍压式cuk型pfc变换器
CN104218813A (zh) 电感电容复合利用的级联型谐振dc-dc变换电路
CN113765359B (zh) 一种多单元并联整合降压无桥pfc变换器
CN114039482A (zh) 一种具有无桥结构的单级谐振式功率因数校正电路
CN117458856B (zh) 双工作模态无桥降压型pfc变换器
CN116191858A (zh) 基于开关电感的Cuk型功率因数校正电路
CN116961400B (zh) 无输入二极管的高效无桥降压型pfc变换器
CN109742957A (zh) 一种双环全谐振型软开关变换器
CN110829823A (zh) 一种提高dcm升压pfc变换器临界电感的装置及方法
CN109309447B (zh) 恒定开关频率控制的crm降压pfc变换器
CN116961399B (zh) 基于输出反向的反激与降压单元的无桥降压型pfc变换器
CN109245547A (zh) 一种混合整流式零电压开关全桥直流变换器
CN110289755B (zh) 高功率因数DCM Buck-Flyback PFC变换器
CN116365900B (zh) 交流输入非对称式无桥降压型pfc变换器
CN116545253A (zh) 一种新型Buck功率因数校正变换器
CN115347785B (zh) 一种无输入滤波器的高效率光伏变换器
CN113726147B (zh) 一种输入并联输出串联无桥降压pfc变换器
CN215344368U (zh) 一种新型功率因数变换电路
CN211606392U (zh) 一种滞后臂辅助谐振电路
CN209930142U (zh) 一种基于双llc谐振电路的改进型三相混合整流器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220401