CN112259446A - 高效制备氮化镓衬底的方法 - Google Patents

高效制备氮化镓衬底的方法 Download PDF

Info

Publication number
CN112259446A
CN112259446A CN202011129338.9A CN202011129338A CN112259446A CN 112259446 A CN112259446 A CN 112259446A CN 202011129338 A CN202011129338 A CN 202011129338A CN 112259446 A CN112259446 A CN 112259446A
Authority
CN
China
Prior art keywords
gallium nitride
silicon substrate
flow rate
thick film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011129338.9A
Other languages
English (en)
Inventor
修向前
李悦文
张�荣
谢自力
陈鹏
刘斌
郑有炓
李红梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd
Original Assignee
Nanjing University
Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University, Electric Power Research Institute of State Grid Shandong Electric Power Co Ltd filed Critical Nanjing University
Priority to CN202011129338.9A priority Critical patent/CN112259446A/zh
Publication of CN112259446A publication Critical patent/CN112259446A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种高效制备氮化镓衬底的方法,其特征在于:在硅衬底正反两面上用卤化物气相外延法生长氮化镓厚膜,控制生长条件,使双面氮化镓厚膜的厚度基本相同,酸或碱溶液腐蚀去除硅衬底,可以得到两片氮化镓厚膜衬底。本发明提出了利用硅衬底正反双面同时外延GaN厚膜,控制生长条件使得两面外延的氮化镓厚度相等或相近、分布均匀,这样两面外延的氮化镓对于硅衬底的应力减弱或相互抵消,从而得到高质量低应力GaN厚膜的方法。生长完成后的样品在碱溶液或酸溶液中进行腐蚀即可得到2片氮化镓衬底。

Description

高效制备氮化镓衬底的方法
技术领域
本发明涉及到一种高效制备氮化镓衬底的方法,属于半导体材料技术领域。
背景技术
以GaN及InGaN、AlGaN合金材料为主的III-V族氮化物材料(又称GaN基材料)是近几年来国际上倍受重视的新型半导体材料。GaN基材料是直接带隙宽禁带半导体材料,具有1.9—6.2eV之间连续可变的直接带隙,优异的物理、化学稳定性,高饱和电子漂移速度,高击穿场强和高热导率等优越性能,在短波长半导体光电子器件和高频、高压、高温微电子器件制备等方面具有重要的应用,用于制造比如蓝、紫、紫外波段发光器件、探测器件,高温、高频、高场大功率器件,场发射器件,抗辐射器件,压电器件等。
GaN单晶的熔点高达2300℃,分解点在900℃左右,生长需要极端的物理环境,而且大尺寸GaN单晶无法用传统晶体生长的方法得到。所以大多数的GaN薄膜都是在异质衬底上外延得到的。目前应用于半导体技术的GaN主要是采用异质外延方法在蓝宝石、SiC或Si等衬底上制备。在异质外延中,由于GaN材料和异质衬底之间存在较大的晶格失配和热膨胀系数失配,得到的GaN外延层中会有应力并产生处于108-109/cm2量级的位错密度,这些缺陷降低了外延层的质量,限制了GaN材料的热导率、电子饱和速度等参数,大大影响了器件的可靠性、成品率,而且巨大的应力会造成GaN厚膜和异质衬底裂成碎片,因而无法应用。
异质衬底如蓝宝石或硅上外延氮化镓时要经历升温-外延-降温的过程,外延失配起源于异质衬底和氮化镓晶格常数的不同产生的晶格失配,热失配起源于外延过程中升温或降温时因为二者热膨胀系数的不同导致的热应力。无论是采用何种异质外延设备,高温条件下外延完成后,氮化镓薄膜从大于1000摄氏度的高温降至室温的过程中产生的热失配应力,远大于初始高温条件下外延时产生的晶格失配。因此,生长氮化镓厚膜后降温过程产生的应力会导致样品弯曲、氮化镓薄膜产生裂纹甚至碎裂。
控制硅上氮化镓外延应力的方法有很多,比如低温氮化铝缓冲层、高低温氮化铝缓冲层、两步法生长等。但是这些方法不能完全消除应力,需要创新性的思路来研发低成本、工艺简单、高成品率的技术和方法来获得低应力氮化镓薄膜。
发明内容
本发明的目的是提供一种高效制备氮化镓衬底的方法。
本发明采取的技术方案为:
一种高效制备氮化镓衬底的方法,其特征在于:在硅衬底正反两面上用卤化物气相外延法生长氮化镓厚膜,控制生长条件,使双面氮化镓厚膜的厚度基本相同,碱溶液或酸溶液腐蚀去除硅衬底,得到两片氮化镓厚膜衬底。
优选的,在硅衬底正反两面先生长缓冲层,再用卤化物气相外延法生长氮化镓厚膜。
优选的,所述缓冲层为氮化镓层,或者氮化铝层。
优选的,其步骤包括:
(1)清洗硅衬底;
(2)将硅衬底置于HVPE反应器中,低温区升温至850~1000℃,高温区升温至450~650℃,开始在硅衬底双面生长氮化镓,厚度为100-1000nm;
(3)氮化镓的生长完成后,保持氨气流量不变,关闭氯化氢,高温区升温至1000~1100℃,调整氨气流量,开启氯化氢,开始双面生长氮化镓厚膜,生长到所需的厚度后,关闭氨气和氯化氢,缓慢降至室温(降温速率10-20℃/分钟),取出样品;
(4)将样品置于碱溶液或酸溶液中,腐蚀去除硅衬底,得到两片氮化镓厚膜。
优选的,步骤(2)中气体流量分别:NH3流量为1000sccm,NH3载气氮气流量为2000sccm,通入镓舟的HCl流量为5-10sccm,HCl载气氮气为500sccm,总氮气为15000sccm,反应腔体压力为一个大气压。
优选的,步骤(3)中气体流量分别:NH3流量为1500sccm,NH3载气氮气流量为1000sccm,通入镓舟的HCl流量为20-100sccm,HCl载气氮气流量为500sccm,总氮气为15000sccm,反应腔体压力为一个大气压。
优选的,其步骤包括:
(1)清洗硅衬底;
(2)在硅衬底双面沉积氮化铝薄膜,厚度为100-1000nm,得到硅基氮化铝模板;
(3)将硅基氮化铝模板置于HVPE反应器中,在氨气气氛保护下开始升温,低温区升温至850-900℃,高温区升温至1000~1100℃,温度稳定10分钟后,开启氯化氢,开始双面生长氮化镓厚膜,生长到所需的厚度后,关闭氨气和氯化氢,缓慢降至室温,取出样品;
(4)将样品置于碱或酸溶液中,腐蚀去除硅衬底,得到两片氮化镓厚膜。
优选的,所述步骤(2)中在硅衬底双面沉积氮化铝薄膜的方法为金属有机物化学气相沉积、脉冲激光沉积、卤化物气相外延、磁控溅射等生长方法。
优选的,所述步骤(3)中气体流量分别:NH3流量为2500sccm,NH3载气流量为1000sccm,通入镓舟的HCl流量为20-100sccm,HCl载气流量为500sccm,总氮气为15000sccm,反应腔体压力为一个大气压。
所述酸溶液为氢氟酸与硝酸混合溶液,所述碱溶液为氢氧化钠溶液或氢氧化钾溶液。
因现有的GaN一般生长在异质衬底如蓝宝石或硅片等上面,晶格失配和热失配会引起GaN外延层中存在较大的应力,无论采用机械抛光或者激光剥离去除异质衬底,应力仍然存在于GaN材料中。应力的存在会造成GaN基材料和器件性能的降低。本发明提出了利用利用硅衬底在正反两面同时外延GaN厚膜,控制生长条件使得两面外延的氮化镓厚度相等或相近、分布均匀,这样两面氮化镓对于硅衬底的应力减弱或相互抵消,从而得到低应力高质量的GaN厚膜的方法。生长完成后的样品在碱溶液或酸溶液中进行腐蚀即可得到2片氮化镓衬底。本发明方法步骤简单,不仅可以实现低应力氮化镓薄膜外延,而且可以实现多片同时生长,每一片衬底可以同时产出两片GaN厚膜,提高产量,且在现有HVPE反应器中即可进行,无需对设备进行大的改进。
附图说明
图1为本发明的GaN厚膜在硅衬底上双面生长的结构示意图。
图2为实施例1中在立式HVPE反应器中生长GaN薄膜的示意图。
图3为实施例2中在卧式HVPE反应器中生长GaN薄膜的示意图。
具体实施方式
本发明无需改变原有HVPE反应腔体结构。HVPE反应室由腔体管和多支气体导管组成,气体导管位于腔体管的入口部份,用于将反应气体送至生长区的外延生长衬底处,加热系统采用电阻炉或者射频加热方式均可。一般为双温区结构,分为金属源区(低温区)和生长区(高温区)。HCl和金属源反应,生成的气体产物进入生长区,在衬底表面和NH3混合发生反应,形成GaN。尾气及反应尘埃通过抽气系统抽出。金属源区温度从850-1000摄氏度(生长GaN厚膜时温度一般为850-900摄氏度),生长区温度从450-1100摄氏度(生长GaN厚膜时温度一般为1000-1100摄氏度)。载气气体导管在周围分布。载气采用氮气或者氩气或者氢气及氢气和氮气混合气体。
实施例1
一种高效制备低应力高质量GaN衬底的方法,其步骤包括:
1、对2英寸硅衬底进行清洗和处理,经过丙酮、乙醇超声清洗5分钟,用氢氟酸去除表面氧化物,去离子水冲洗及高纯氮气吹干处理。
2、硅衬底放入立式HVPE反应器中后,低温区升温至850℃,高温区升温至600℃,在此温度下生长GaN层。气体流量分别:NH3流量为1000sccm,NH3载气氮气流量为2000sccm,通入镓舟的HCl流量为10sccm,HCl载气氮气流量为500sccm。总氮气为15000sccm。反应腔体压力1个大气压。生长时间1分钟。
3、低温GaN层生长完成后,保持氨气流量不变,关闭氯化氢。高温区升温至1000℃,开启氯化氢,即可开始生长GaN。气体流量分别:NH3流量为1500sccm,NH3载气氮气流量为1000sccm,通入镓舟的HCl流量为20sccm,HCl载气氮气流量为500sccm。总氮气为15000sccm。反应腔体压力1个大气压。
4、生长4小时后,关闭氨气和氯化氢,按照10℃/分钟速率缓慢降至室温,取出样品。本实施例中生长速率为100微米/小时。将样品置于的1M的氢氧化钠或氢氧化钾溶液中,放置30-60分钟后即可去除硅衬底,得到2片氮化镓衬底。适当温度的碱溶液可以更快的去除硅衬底。
实施例2
一种高效制备低应力高质量GaN衬底的方法,其步骤包括:
1、2英寸硅衬底,在其上采用其他方法例如使用MOCVD、PLD、HVPE、磁控溅射镀膜设备等双面外延氮化铝,得到硅基氮化铝模板。
2、硅基氮化铝模板放入卧式HVPE反应器中后,低温区升温至900℃,高温区升温至1100℃,在此温度下生长GaN。气体流量分别:NH3流量为1500sccm,NH3载气为氮气,流量为1000sccm;通入镓舟的HCl流量为20sccm,HCl载气为氮气,流量为500sccm。总氮气为15000sccm。反应腔体压力1个大气压。
3、生长4小时后,关闭氨气和氯化氢,按照20℃/分钟速率缓慢降至室温,取出样品。本实施例中生长速率为100微米/小时。
将样品置于50%氢氟酸+70%硝酸1:1混合溶液中,放置15分钟后即可去除硅衬底,得到2片氮化镓衬底。

Claims (10)

1.一种高效制备氮化镓衬底的方法,其特征在于:在硅衬底正反两面上用卤化物气相外延法生长氮化镓厚膜,控制生长条件,使双面氮化镓厚膜的厚度基本相同,酸溶液或碱溶液腐蚀去除硅衬底,得到两片氮化镓厚膜衬底。
2.根据权利要求1所述的高效制备氮化镓衬底的方法,其特征在于:在硅衬底正反两面先生长缓冲层,再用卤化物气相外延法生长氮化镓厚膜。
3.根据权利要求2所述的高效制备氮化镓衬底的方法,其特征在于:所述缓冲层为氮化镓缓冲层,或者氮化铝缓冲层。
4.根据权利要求3所述的高效制备氮化镓衬底的方法,其特征在于:其步骤包括:
(1)清洗硅衬底;
(2)将硅衬底置于HVPE反应器中,低温镓源区升温至850~1000℃(常用温度850℃),高温生长区升温至450~650℃,开始在硅衬底双面生长氮化镓,厚度为100-1000nm;
(3)低温氮化镓层的生长完成后,保持氨气流量不变,关闭氯化氢,高温区升温至1000~1100℃,调节氨气流量,开启氯化氢,开始双面生长氮化镓厚膜,生长到所需的厚度后,关闭氨气和氯化氢,缓慢降至室温,降温速率为10-20℃/分钟,取出样品;
(4)将样品置于酸溶液或碱溶液中,腐蚀去除硅衬底,得到两片氮化镓厚膜。
5.根据权利要求4所述的高效制备氮化镓衬底的方法,其特征在于:步骤(2)中气体流量分别:NH3流量为1000sccm,NH3载气氮气流量为2000sccm,通入镓舟的HCl流量为5-10sccm,HCl载气氮气流量为500sccm,总氮气为15000sccm,反应腔体压力为一个大气压,缓冲层生长时间为1-5分钟。
6.根据权利要求4所述的高效制备氮化镓衬底的方法,其特征在于:步骤(3)中气体流量分别:NH3流量为2500sccm,NH3载气氮气流量为1000sccm,通入镓舟的HCl流量为20-100sccm,HCl载气氮气流量为500sccm,总氮气为15000sccm,反应腔体压力为一个大气压。
7.根据权利要求3所述的高效制备氮化镓衬底的方法,其特征在于:其步骤包括:
(1)清洗硅衬底;
(2)在硅衬底双面沉积氮化铝薄膜,厚度为100-1000nm,得到硅基氮化铝模板;
(3)将硅基氮化铝模板置于HVPE反应器中,在氨气保护下开始升温,低温镓源区升温至850-1000℃,高温区升温至1000~1100℃,稳定一段时间后,开启氯化氢,开始双面生长氮化镓厚膜,生长到所需的厚度后,关闭氨气和氯化氢,缓慢降至室温,降温速率为10-20℃/分钟,取出样品;
(4)将样品置于碱溶液或酸溶液中,腐蚀去除硅衬底,得到两片氮化镓厚膜。
8.根据权利要求7所述的高效制备氮化镓衬底的方法,其特征在于:所述步骤(2)中在硅衬底双面沉积氮化铝薄膜的方法为金属有机物化学气相沉积、脉冲激光沉积、卤化物气相外延、磁控溅射生长方法。
9.根据权利要求7所述的高效制备氮化镓衬底的方法,其特征在于:所述步骤(3)中气体流量分别:NH3流量为2500sccm,NH3载气流量为1000sccm,通入镓舟的HCl流量为20-100sccm,HCl载气流量为500sccm,总氮气为15000sccm,反应腔体压力为一个大气压。
10.根据权利要求4或7所述的高效制备氮化镓衬底的方法,其特征在于:所述酸溶液为氢氟酸与硝酸混合溶液,所述碱溶液为氢氧化钠溶液或氢氧化钾溶液。
CN202011129338.9A 2020-10-21 2020-10-21 高效制备氮化镓衬底的方法 Pending CN112259446A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011129338.9A CN112259446A (zh) 2020-10-21 2020-10-21 高效制备氮化镓衬底的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011129338.9A CN112259446A (zh) 2020-10-21 2020-10-21 高效制备氮化镓衬底的方法

Publications (1)

Publication Number Publication Date
CN112259446A true CN112259446A (zh) 2021-01-22

Family

ID=74263685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011129338.9A Pending CN112259446A (zh) 2020-10-21 2020-10-21 高效制备氮化镓衬底的方法

Country Status (1)

Country Link
CN (1) CN112259446A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345798A (zh) * 2021-06-01 2021-09-03 中科汇通(内蒙古)投资控股有限公司 一种SiC基片外延制备GaN的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779910A (zh) * 2004-11-25 2006-05-31 中国科学院半导体研究所 在硅衬底上生长氮化镓自支撑衬底材料的方法
US20070243652A1 (en) * 2006-04-14 2007-10-18 Applied Materials, Inc. Stacked-substrate processes for production of nitride semiconductor structures
CN104143497A (zh) * 2013-05-08 2014-11-12 上海华虹宏力半导体制造有限公司 GaN外延或GaN衬底的制作方法
CN104178806A (zh) * 2014-08-20 2014-12-03 中国科学院半导体研究所 悬挂式双面外延生长装置
CN105845798A (zh) * 2015-01-16 2016-08-10 北京大学 无翘曲ⅲ族氮化物复合衬底的制备方法和衬底放置装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1779910A (zh) * 2004-11-25 2006-05-31 中国科学院半导体研究所 在硅衬底上生长氮化镓自支撑衬底材料的方法
US20070243652A1 (en) * 2006-04-14 2007-10-18 Applied Materials, Inc. Stacked-substrate processes for production of nitride semiconductor structures
CN104143497A (zh) * 2013-05-08 2014-11-12 上海华虹宏力半导体制造有限公司 GaN外延或GaN衬底的制作方法
CN104178806A (zh) * 2014-08-20 2014-12-03 中国科学院半导体研究所 悬挂式双面外延生长装置
CN105845798A (zh) * 2015-01-16 2016-08-10 北京大学 无翘曲ⅲ族氮化物复合衬底的制备方法和衬底放置装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113345798A (zh) * 2021-06-01 2021-09-03 中科汇通(内蒙古)投资控股有限公司 一种SiC基片外延制备GaN的方法
CN113345798B (zh) * 2021-06-01 2022-07-12 中科汇通(内蒙古)投资控股有限公司 一种SiC基片外延制备GaN的方法

Similar Documents

Publication Publication Date Title
US20200181799A1 (en) Method for Preparing GaN Substrate Material
CN107611004B (zh) 一种制备自支撑GaN衬底材料的方法
CN113235047B (zh) 一种AlN薄膜的制备方法
CN109097834B (zh) 多孔网状结构GaN单晶薄膜、其制备方法及应用
CN108428618B (zh) 基于石墨烯插入层结构的氮化镓生长方法
CN116169222A (zh) 一种AlN模板及其制备方法
CN213905295U (zh) 一种大尺寸SiC衬底低应力GaN薄膜
KR100450781B1 (ko) Gan단결정제조방법
CN105755536A (zh) 一种采用AlON缓冲层的氮化物的外延生长技术
CN112259446A (zh) 高效制备氮化镓衬底的方法
TWI547585B (zh) 氮化鋁銦薄膜的成長方法
CN112687527A (zh) 一种大尺寸SiC衬底低应力GaN薄膜及其外延生长方法
JP2003332234A (ja) 窒化層を有するサファイア基板およびその製造方法
CN105006427A (zh) 一种利用低温过渡层生长高质量氮化镓外延结构的方法
CN105762061A (zh) 一种氮化物的外延生长方法
JP2000281499A (ja) GaN単結晶の作製方法
CN110983436B (zh) 反应腔预处理方法及氮化铝外延层制备方法
CN103882526B (zh) 在SiC衬底上直接生长自剥离GaN单晶的方法
CN112233969A (zh) 制备低应力GaN薄膜的方法
CN113410352B (zh) 一种复合AlN模板及其制备方法
CN113948390B (zh) 一种基于衬底背面外延层的硅基AlGaN/GaN HEMT及制备方法
JP4084539B2 (ja) Iii族窒化物系化合物半導体の結晶成長基板の製造方法
CN113964034B (zh) 一种基于衬底背面GeSnSi外延层的硅基AlGaN/GaN HEMT及制备方法
CN114262938B (zh) (010)面氧化镓单晶在制备非极性GaN衬底中的应用
CN114293251B (zh) 制备高质量多孔GaN模板晶体的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210122