CN112246260A - 一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法 - Google Patents

一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法 Download PDF

Info

Publication number
CN112246260A
CN112246260A CN202011129979.4A CN202011129979A CN112246260A CN 112246260 A CN112246260 A CN 112246260A CN 202011129979 A CN202011129979 A CN 202011129979A CN 112246260 A CN112246260 A CN 112246260A
Authority
CN
China
Prior art keywords
znti
composite material
deionized water
stirring
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011129979.4A
Other languages
English (en)
Inventor
程龙
王少富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202011129979.4A priority Critical patent/CN112246260A/zh
Publication of CN112246260A publication Critical patent/CN112246260A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/343Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the pharmaceutical industry, e.g. containing antibiotics
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ag/Ag3PO4/ZnTi‑LDH复合材料的制备方法,包括下述步骤:首先将硝酸锌和氯化钛水热反应得到ZnTi‑LDH,之后将ZnTi‑LDH与硝酸银、磷酸氢二钠反应得到Ag/Ag3PO4/ZnTi‑LDH复合材料。所述方法成本低、操作简单、高效节能,得到的复合材料应用于光催化降解制药废水中的非那西汀,具有优异的光催化性能和稳定性。

Description

一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法
技术领域
本发明应用于光催化降解制药废水的非那西汀,具体涉及一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法。
背景技术
在过去快速发展的几十年里,水污染已经成为一个值得注意的问题,废水的种类是多样化的,其中制药废水的量占了很大一部分,而非那西汀(PNT)作为最典型的镇痛药,是制药废水中最典型的污染物,包含有非那西汀的废水,严重的影响了水生环境和人类的健康。制药废水因其自身稳定的性质和复杂的结构,仅仅依靠环境自身的修复、物理吸附和光解的方法,它是很困难完全将其移除,而不产生二次污染。通过半导体催化剂来降解这些污染物是一个有前景的办法。LDHs作为一类重要的无机层状材料,由于其自身多项独特的结构和性能,使其在能源与环境领域成为了一种开创性的光催化材料,得到了广泛的关注和深入的研究,其中ZnTi-LDH作为一种优异的光催化材料,被广泛研究。同时,有研究表明磷酸银(Ag3PO4)其在可见光照射下水分解性能和染料降解性能是目前所知光催化剂的数十倍,所以可以考虑将Ag3PO4与ZnTi-LDH复合合成复合材料以提高催化剂的光催化性能。但Ag3PO4/ZnTi-LDH稳定性不好,Ag3PO4/ZnTi-LDH复合光催化剂由于光生电子将部分不稳定正磷酸银不可逆还原为金属银,因此导致Ag3PO4/ZnTi-LDH催化剂可能部分失活。如果在Ag3PO4/ZnTi-LDH催化剂上沉积银就可以很好地解决掉这个问题。
发明内容
本发明的目的在于提供一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,所述的Ag/Ag3PO4/ZnTi-LDH复合材料包括以下原料:硝酸银、氯化钛、硝酸锌、尿素、磷酸二氢钠和氨水。其制备方法有以下步骤:
(1)将硝酸锌、氯化钛和尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,水热反应,之后用去离子水洗涤,80℃下干燥12h;
(2)将步骤(1)产物加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,再逐滴加入硝酸银溶液,搅拌30min,之后逐滴加入磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h。
(3)将步骤(2)产物分散在40ml去离子水中,超声30min,随后在磁力搅拌的条件下,用500W的氙灯照射,反应后用去离子水和无水乙醇洗涤,80℃下真空干燥6h。
优选的,所述步骤(1)中氯化钛和硝酸锌以及尿素的体积质量比为1ml:(4-6)g:(10-15)g。
优选的,所述步骤(1)中水热反应的温度为100-150℃,反应时间为36-60h。
优选的,所述步骤(2)中步骤(1)产物和硝酸银、磷酸二氢钠的质量体积比为1g:(2-4)ml:(2-4)ml。
优选的,所述步骤(3)中氙灯照射的时间为1-3h。
与现有技术相比,本发明具有的有益效果如下:
本发明提供了一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,所述工艺非常简单,得到的Ag/Ag3PO4/ZnTi-LDH复合材料具有优异的光催化性能,Ag/Ag3PO4/ZnTi-LDH复合材料中ZnTi-LDH其带隙较宽,使其光催化性能受到一定的限制,而通过Ag3PO4的负载,对材料进行改性,使材料具有异质结结构,异质结结构可以减少光生电子和空穴的复合,加快电子和空穴的转移速度,而且异质结结构具有更大的比表面积,增强了材料的光催化性能,另外,紫外光诱导将贵金属Ag纳米颗粒沉积在Ag3PO4/ZnTi-LDH异质结结构上,使电子被Ag捕获就没有多余的来还原分解Ag3PO4,并且最后还会形成等离子体,从而提升了材料的稳定性。本发明制备的Ag/Ag3PO4/ZnTi-LDH复合材料成本低、处理方法简单,能有效净化制药污水中的非那西汀。
本发明原料简单,易于获取,并且对环境友好。
附图说明
图1为本发明实施例1制备的Ag/Ag3PO4/ZnTi-LDH复合材料的扫描电子显微镜(SEM)图。
图2为本发明实施例1制备的Ag/Ag3PO4/ZnTi-LDH复合材料与对比例1-3所得产物对非那西汀的去除率与时间关系曲线(a:实施例1;b:对比例1;c:对比例2;d:对比例3)。
具体实施方案
实施例1:
一种Ag/Ag3PO4/ZnTi-LDH复合材料,具体包括以下制备步骤:
(1)将0.22ml氯化钛、1.19g硝酸锌和3g尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,在130℃水热反应48h,之后用去离子水洗涤,80℃下干燥12h;
(2)将0.4g步骤(1)产物加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,再逐滴加入1ml硝酸银溶液,搅拌30min,之后逐滴加入1ml磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h。
(3)将步骤(2)产物分散在40ml去离子水中,超声30min,随后在磁力搅拌的条件下,用500w的氙灯照射2h,反应后用去离子水和无水乙醇洗涤,80℃下真空干燥6h。
从图1可以看出实施例1制备的Ag/Ag3PO4/ZnTi-LDH复合材料呈三维薄片状,长宽大概为1-3μm,厚度大概为几十纳米,聚集在一起形成了3D分层结构。这种分层结构使会产生大量的空隙,使得样品具有更大的比表面积,有利于物质的传输还增强了与反应物的接触,促进了反应的进行。
实施例2:
一种Ag/Ag3PO4/ZnTi-LDH复合材料,具体包括以下制备步骤:
(1)将0.2ml氯化钛、0.8g硝酸锌和2g尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,在100℃水热反应36h,之后用去离子水洗涤,80℃下干燥12h;
(2)将0.4g步骤(1)产物加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,再逐滴加入0.8ml硝酸银溶液,搅拌30min,之后逐滴加入0.8ml磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h。
(3)将步骤(2)产物分散在40ml去离子水中,超声30min,随后在磁力搅拌的条件下,用500w的氙灯照射1h,反应后用去离子水和无水乙醇洗涤,80℃下真空干燥6h。
实施例3:
一种Ag/Ag3PO4/ZnTi-LDH复合材料,具体包括以下制备步骤:
(1)将0.2ml氯化钛、1.2g硝酸锌和2.5g尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,在150℃水热反应60h,之后用去离子水洗涤,80℃下干燥12h;
(2)将0.4g步骤(1)产物加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,再逐滴加入1.6ml硝酸银溶液,搅拌30min,之后逐滴加入1.6ml磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h。
(3)将步骤(2)产物分散在40ml去离子水中,超声30min,随后在磁力搅拌的条件下,用500w的氙灯照射3h,反应后用去离子水和无水乙醇洗涤,80℃下真空干燥6h。
实施例4:
一种Ag/Ag3PO4/ZnTi-LDH复合材料,具体包括以下制备步骤:
(1)将0.22ml氯化钛、1.19g硝酸锌和3g尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,在130℃水热反应48h,之后用去离子水洗涤,80℃下干燥12h;
(2)将0.4g步骤(1)产物加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,再逐滴加入1.6ml硝酸银溶液,搅拌30min,之后逐滴加入1.6ml磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h。
(3)将步骤(2)产物分散在40ml去离子水中,超声30min,随后在磁力搅拌的条件下,用500w的氙灯照射3h,反应后用去离子水和无水乙醇洗涤,80℃下真空干燥6h。
对比例1:
(1)将0.22ml氯化钛、1.19g硝酸锌和3g尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,在130℃水热反应48h,之后用去离子水洗涤,80℃下干燥12h;
(2)将0.4g步骤(1)产物加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,再逐滴加入1ml硝酸银溶液,搅拌30min,之后逐滴加入1ml磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h。
对比例2:
将0.22ml氯化钛、1.19g硝酸锌和3g尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,在130℃水热反应48h,之后用去离子水洗涤,80℃下干燥12h。
对比例3:
(1)将1ml硝酸银溶液加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,,搅拌30min,之后逐滴加入1ml磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h。
本发明中选用非那西汀溶液模拟制药废水中的非那西汀。将0.05g的实施例1和对比例1-3所制备的材料分别置于100ml烧杯中,分别加入100ml10mM/L的非那西汀溶液,在连续搅拌下将混合物在紫外光照射后,每隔10min取出5ml样品通过离心机分离得到上清液。通过使用UV分光光度计分析上清液非那西汀的浓度,由此计算去除率,作出光催化时间与非那西汀去除率关系曲线图。
利用紫外分光光度计测量非那西汀的浓度,首先以去离子水作为参照,配置不同浓度的标准溶液,利用紫外分光光度计测定溶液浓度,将浓度-吸光度标准曲线在最佳波长下绘制备用,在接下来的实验过程中,吸附后的非那西汀浓度由吸光度标准曲线计算得出,如果遇到超出最大测试浓度的非那西汀溶液,则需要通过稀释到最大值以下再进行测量,尽量减小测量误差。
Figure BDA0002734833560000051
如图2所示,可以看出由实施例1所制备的Ag/Ag3PO4/ZnTi-LDH复合材料对溶液中非那西汀的去除率在10min时就达到80%以上,吸附效果逐步提高最终趋于稳定,最终达到95%,以上说明本发明制备的材料对非那西汀有优异的吸附性。并且实施例1的去除率明显高于对比例1-3,说明Ag/Ag3PO4/ZnTi-LDH复合材料相比对比例的吸附性能有很大提升。

Claims (6)

1.一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,其特征在于,所述复合材料的制备方法包括以下步骤:
(1)将硝酸锌、氯化钛和尿素加入100ml去离子水中,磁力搅拌1h,之后将混合溶液移入聚四氟乙烯反应釜中,水热反应,之后用去离子水洗涤,80℃下干燥12h;
(2)将步骤(1)产物加入40ml去离子水中,搅拌20min,之后加入氨水调节PH至10,再逐滴加入硝酸银溶液,搅拌30min,之后逐滴加入磷酸二氢钠溶液,搅拌4h,反应结束后,用去离子水洗涤,60℃下真空干燥12h;
(3)将步骤(2)产物分散在40ml去离子水中,超声30min,随后在磁力搅拌的条件下,用500W的氙灯照射,反应后用去离子水和无水乙醇洗涤,80℃下真空干燥6h。
2.如权利要求1所述的一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,其特征在于,所述步骤(1)中氯化钛和硝酸锌以及尿素的体积质量比为1ml:(4-6)g:(10-15)g。
3.如权利要求1所述的一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,其特征在于,所述步骤(1)中水热反应的温度为100-150℃,反应时间为36-60h。
4.如权利要求1所述的一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,其特征在于,所述步骤(2)中步骤(1)产物和硝酸银、磷酸二氢钠的质量体积比为1g:(2-4)ml:(2-4)ml。
5.如权利要求1所述的一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,其特征在于,所述步骤(3)中氙灯照射的时间为1-3h。
6.如权利要求1-5所述的一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法,其特征在于,所述Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法制备的复合材料应用于光催化降解制药污水中的非那西汀。
CN202011129979.4A 2020-10-21 2020-10-21 一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法 Pending CN112246260A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011129979.4A CN112246260A (zh) 2020-10-21 2020-10-21 一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011129979.4A CN112246260A (zh) 2020-10-21 2020-10-21 一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN112246260A true CN112246260A (zh) 2021-01-22

Family

ID=74263761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011129979.4A Pending CN112246260A (zh) 2020-10-21 2020-10-21 一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN112246260A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116099390A (zh) * 2022-11-14 2023-05-12 石河子大学 一种混合维度材料PNT@NiCo-LDH及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489323A (zh) * 2011-11-23 2012-06-13 北京化工大学 基于光催化分解水制备氢气的水滑石光催化剂及其制备方法
CN106732734A (zh) * 2017-01-16 2017-05-31 广西民族大学 一种Z型g‑C3N4@Ag@Ag3PO4复合光催化剂的制备方法
CN107899590A (zh) * 2017-10-27 2018-04-13 江苏大学 金属Ag纳米颗粒沉积NiCo‑LDH复合光催化剂的制备及其应用
CN109277106A (zh) * 2018-09-17 2019-01-29 安徽建筑大学 一种Ag/Ag3PO4/硅藻土复合可见光光催化剂及其制备方法
CN109289884A (zh) * 2018-11-30 2019-02-01 太原理工大学 一种银-磷酸银-三氧化钨三元复合纳米光催化材料及其制备方法和应用
CN109865523A (zh) * 2019-04-10 2019-06-11 安徽建筑大学 一种降解罗丹明b的复合光催化剂的制备方法
CN110711598A (zh) * 2019-10-25 2020-01-21 齐鲁工业大学 一种银/磷酸银/碳化钛三元复合材料及其制备方法与应用
WO2020082410A1 (zh) * 2018-10-23 2020-04-30 北京化工大学 一种负载型双金属核壳结构催化剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489323A (zh) * 2011-11-23 2012-06-13 北京化工大学 基于光催化分解水制备氢气的水滑石光催化剂及其制备方法
CN106732734A (zh) * 2017-01-16 2017-05-31 广西民族大学 一种Z型g‑C3N4@Ag@Ag3PO4复合光催化剂的制备方法
CN107899590A (zh) * 2017-10-27 2018-04-13 江苏大学 金属Ag纳米颗粒沉积NiCo‑LDH复合光催化剂的制备及其应用
CN109277106A (zh) * 2018-09-17 2019-01-29 安徽建筑大学 一种Ag/Ag3PO4/硅藻土复合可见光光催化剂及其制备方法
WO2020082410A1 (zh) * 2018-10-23 2020-04-30 北京化工大学 一种负载型双金属核壳结构催化剂及其制备方法
CN109289884A (zh) * 2018-11-30 2019-02-01 太原理工大学 一种银-磷酸银-三氧化钨三元复合纳米光催化材料及其制备方法和应用
CN109865523A (zh) * 2019-04-10 2019-06-11 安徽建筑大学 一种降解罗丹明b的复合光催化剂的制备方法
CN110711598A (zh) * 2019-10-25 2020-01-21 齐鲁工业大学 一种银/磷酸银/碳化钛三元复合材料及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
XIALIN PENG ET AL.: "Fabrication of a novel high photocatalytic Ag/Ag3PO4/P25(TiO2) heterojunction catalyst for reducing electron-hole pair recombination and improving photo-corrosion", 《MATERIALS RESEARCH EXPRESS》 *
YANPING ZHU ET AL.: "Plasmonic Ag coated Zn/Ti-LDH with excellent photocatalytic activity", 《APPLIED SURFACE SCIENCE》 *
范海波: "硅藻土负载磷酸银基催化剂及可见光下降解染料性能研究", 《中国优秀硕士学位论文全文数据库(工程科技Ⅰ辑)》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116099390A (zh) * 2022-11-14 2023-05-12 石河子大学 一种混合维度材料PNT@NiCo-LDH及其制备方法与应用

Similar Documents

Publication Publication Date Title
Hassani et al. Monodisperse cobalt ferrite nanoparticles assembled on mesoporous graphitic carbon nitride (CoFe2O4/mpg-C3N4): a magnetically recoverable nanocomposite for the photocatalytic degradation of organic dyes
Yu et al. The distinct role of boron doping in Sn 3 O 4 microspheres for synergistic removal of phenols and Cr (vi) in simulated wastewater
CN108311164B (zh) 一种铁改性光催化材料及其制备方法和应用
CN108404960B (zh) 一种硫铟锌金氮化碳二维层状复合光催化剂的制备方法
CN110102312B (zh) 一种一维氧化亚铜/银/氧化锌纳米棒光催化复合材料及其制备方法与应用
Zhou et al. Fabrication of a Z-scheme nanocomposite photocatalyst for enhanced photocatalytic degradation of ibuprofen under visible light irradiation
Yang et al. Preparation of TiO 2/SiO 2 composite oxide and its photocatalytic degradation of rhodamine B
CN110237834A (zh) 一种碳量子点/氧化锌可见光催化剂的制备方法
CN109529898A (zh) 黑磷/钨酸铋纳米复合材料及其制备方法与在废气处理中的应用
Núñez et al. Nitric oxide removal by action of ZnO photocatalyst hydrothermally synthesized in presence of EDTA
Yao et al. Efficient degradation of ciprofloxacin by Co3O4/Si nanoarrays heterojunction activated peroxymonosulfate under simulated sunlight: Performance and mechanism
CN109692698B (zh) 一种催化还原NOx的Bi/Ti3C2纳米片状光催化剂及其制备方法
Chai et al. Enhanced visible-light photocatalytic activity with Fe2O3–ZnO@ C/g-C3N4 heterojunction: characterization, kinetics, and mechanisms
Chen et al. Synthesis of micro-nano Ag3PO4/ZnFe2O4 with different organic additives and its enhanced photocatalytic activity under visible light irradiation
Liu et al. Fabrication of magnetic core–shell Fe3O4@ SiO2@ Bi2O2CO3–sepiolite microspheres for the high-efficiency visible light catalytic degradation of antibiotic wastewater
CN112246260A (zh) 一种Ag/Ag3PO4/ZnTi-LDH复合材料的制备方法
Sanni et al. Tailored synthesis of Ag/AgBr nanostructures coupled activated carbon with intimate interface interaction for enhanced photodegradation of tetracycline
Wang et al. Hydrothermal supramolecular preorganization synthesis of multi-morphological g-C3N4/Fe2O3 for photocatalytic removal of indoor formaldehyde under visible light
Yang et al. 2D/2D Ti3C2/Bi4O5Br2 nanosheet heterojunction with enhanced visible light photocatalytic activity for NO removal
CN101670283A (zh) 电子束辐照制备二氧化钛/多壁碳纳米管复合光催化剂的方法
CN106984346A (zh) 一种磷酸银复合磷酸铋光催化剂的制备方法
CN115582130B (zh) 光芬顿催化剂的制备方法及其在有机废水处理中的应用
CN103418394A (zh) 微波加热法合成镍掺杂钒酸铟纳米晶光催化剂的方法及其在可见光下分解水的应用
CN104826639A (zh) 磷酸银/还原石墨烯/二氧化钛纳米复合材料及制备方法
CN109095546A (zh) 一种光催化处理废水协同制取氢气的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210122

RJ01 Rejection of invention patent application after publication