CN108311164B - 一种铁改性光催化材料及其制备方法和应用 - Google Patents

一种铁改性光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN108311164B
CN108311164B CN201710035330.8A CN201710035330A CN108311164B CN 108311164 B CN108311164 B CN 108311164B CN 201710035330 A CN201710035330 A CN 201710035330A CN 108311164 B CN108311164 B CN 108311164B
Authority
CN
China
Prior art keywords
iron
photocatalytic material
bismuth nitrate
reaction
potassium bromide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710035330.8A
Other languages
English (en)
Other versions
CN108311164A (zh
Inventor
王东升
耿欣
李文涛
肖峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN201710035330.8A priority Critical patent/CN108311164B/zh
Publication of CN108311164A publication Critical patent/CN108311164A/zh
Application granted granted Critical
Publication of CN108311164B publication Critical patent/CN108311164B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J35/39
    • B01J35/61
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation

Abstract

本发明公开了一种铁改性光催化材料及其制备方法和应用。所述制备方法是在含有铁盐和硝酸铋的溶液中,加入溴化钾溶液,高温反应后即得所述铁改性光催化材料。采用本发明的制备工艺能够成功制备出带有异质结的光催化剂,能够大大提高光催化效果;铁盐的引入能够增大光催化材料的比表面积,增强其吸附性能;在双氧水存在的条件下,光催化反应过程使得此催化材料表面铁元素在二价铁和三价铁之间形成链式反应,催化降解效果非常优异;操作方法简单易行,原料易得,成本低廉,在实际应用中推广实施的前景良好。

Description

一种铁改性光催化材料及其制备方法和应用
技术领域
本发明属于水处理技术领域,具体涉及一种铁改性光催化材料及其制备方法和应用。
背景技术
随着人类的活动,越来越多的新兴持久性有毒污染物进入水环境中。传统的水处理方法不能满足要求。幸运的是,高级氧化工艺已成功的用于处理含有新兴污染物的水体中。高级氧化工艺采用化学氧化剂(如过氧化氢、过硫酸铵、臭氧)、光化学和声化学技术,生成活性物种(如羟基自由基、超氧自由基、硫酸根自由基)。类芬顿反应产生的羟基自由基是对环境友好的且有较高的氧化还原电位。
羟基自由基的产生是由于二价铁催化分解双氧水,生成三价铁,同时,双氧水还原三价铁再生二价铁,产生了一个链式反应。然而,因为双氧水与三价铁的反应比与二价铁的慢得多,还原三价铁再生二价铁是总反应的限制步骤。为了提高污染物的降解效率,光的照射可以促进三价铁还原为二价铁。
溴氧化铋(BiOBr)作为可见光催化剂,由于其较高的催化活性和稳定性,被广泛关注。BiOBr具有层状正方氟氯铅矿(PbFCl)结构,这是由溴化双板与[Bi2O2]层交错而形成的。然而,BiOBr的带隙约为2.9eV,只能吸收部分可见光。为了克服这一缺点,采用多种方法改进材料,包括各种层次纳米结构的引入和卤素改性。此外,过渡金属的改性能够提高BiOBr的催化活性。最近的研究显示,对BiOBr进行过渡金属(Zn,Sn)改性,可以提高光催化活性,但在其表面的金属氧化物可以迅速降低其光催化活性。双氧水和光的存在可以激活催化活性位点,从而提高催化剂的催化活性。
综上所述,开发一种铁改性光催化材料对于提高双氧水存在下的光催化效率具有重要的意义,且在目前也已十分必要。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的目的是提供一种铁改性光催化材料及其制备方法和应用,以期解决前述现有技术中存在的至少部分技术问题。
(二)技术方案
为了实现上述目的,本发明一方面提供一种铁改性光催化材料的制备方法,其是在含有铁盐和硝酸铋的溶液中,加入溴化钾溶液,高温反应后即得所述铁改性光催化材料。
优选地,所述含有铁盐和硝酸铋的溶液由下述步骤得到:
(1)在氩气保护下,在含冰醋酸的乙二醇溶液中加入硝酸铋,搅拌直到硝酸铋全部溶解,配制成浓度为0.1mol/L的硝酸铋溶液;
(2)在氩气保护下,向步骤(1)得到的硝酸铋溶液中加入铁盐,搅拌直到铁盐全部溶解,即得到所述含有铁盐和硝酸铋的溶液。
其中,步骤(1)中,所述含冰醋酸的乙二醇溶液中,冰醋酸与乙二醇的体积比优选为1:10。
步骤(2)中,所述铁盐优选FeCl2·4H2O,其添加量优选5~40%,更优选20%,所述百分比为所述铁盐的物质的量占所述硝酸铋的物质的量的百分比。
优选地,所述的溴化钾溶液为在氩气保护下,在乙二醇溶液中加入溴化钾,搅拌直到溴化钾全部溶解,配制成浓度为0.1mol/L的溴化钾溶液。
优选地,所述的溴化钾溶液的添加量为100%,所述百分比为所述溴化钾溶液的体积占所述含有铁盐和硝酸铋的溶液的体积的百分比。
优选地,所述高温反应为在氩气保护下,于160摄氏度下进行密封反应,反应时间不少于12小时。
优选地,在所述反应后,还将反应体系自然冷却至室温,离心,然后采用无水乙醇与超纯水分别洗涤多次,冷冻干燥,得到所述铁改性光催化材料。
本发明的另一方面提供一种由前述制备方法制得的铁改性光催化材料。
本发明的又一方面还提供前述铁改性光催化材料在水处理中的应用。
(三)有益效果
相比现有技术,本发明的技术方案取得了下述有益效果:
1)采用本发明的制备工艺能够成功制备出带有异质结的光催化剂,能够大大提高光催化效果;
2)铁盐的引入能够增大光催化材料的比表面积,增强其吸附性能;
3)在双氧水存在的条件下,光催化反应过程使得此催化材料表面铁元素在二价铁和三价铁之间形成链式反应,催化降解效果非常优异;
4)操作方法简单易行,原料易得,成本低廉,在实际应用中推广实施的前景良好。
附图说明
图1显示BiOBr样品和x-FBB样品的XRD图谱(插图:在28°-34°范围内,{110}晶面衍射峰的位置图);
图2显示样品的SEM图谱:(a)BiOBr,(b)0.05-FBB,(c)0.1-FBB,(d)0.2-FBB,(e)0.4-FBB;0.2-FBB的SEM图谱(f),EDS图谱(g)和Mapping图谱(h);
图3a显示BiOBr样品和x-FBB样品的N2吸附-脱附等温线;图3b显示BiOBr样品和x-FBB样品的孔隙大小分布;
图4显示BiOBr样品和x-FBB样品的紫外-可见DRS光谱图;
图5a和图5b显示在可见光类芬顿催化反应中,制备的光催化剂对罗丹明B的降解随光照时间的变化,其中图5a显示RhB的浓度变化(C/C0),图5b显示伪一级动力学反应常数。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
为了说明本发明对水中污染物的光降解效果,本发明的研发人员考察了在双氧水存在的条件下,不同铁盐添加量下制备的光催化剂对罗丹明B的降解效果,以期更好地发挥该光催化剂对水中污染物的降解能力。
实施例1
在氩气的保护下,乙二醇中加入体积比为1:10的冰醋酸后,加入硝酸铋,搅拌直到硝酸铋全部溶解,配制成浓度为0.1mol/L的硝酸铋溶液;向上述溶液中加入Fe/Bi摩尔比为0,0.05,0.1,0.2,0.4的FeCl2·4H2O,搅拌直到铁盐全部溶解;所得的溶液中加入体积比为1:1的含有0.1mol/L溴化钾的乙二醇溶液。然后,将混合溶液在160摄氏度下反应不少于12小时。自然冷却至室温后,离心,采用无水乙醇与超纯水分别洗涤多次,冷冻干燥。
所得的样品用x-FBB表示,其中x(0.05,0.1,0.2,0.4)为Fe/Bi摩尔比,分别为0.05,0.1,0.2,0.4;未经过铁改性的样品为BiOBr样品。所有的操作均在氩气保护下完成。
图1为所制备的BiOBr样品和x-FBB样品的XRD图谱。可以看出,BiOBr样本的所有衍射峰均与四方相BiOBr的标准数据(JCPDS card no.09-0393)相匹配。然而,x-FBB样品可以与四方相BiOBr的标准数据(JCPDS card no.09-0393)和菱形相Bi(JCPDS card no.44-1246)相对应。x-FBB样品中,对应的Bi晶相的峰强度随样品中Fe含量的增加而增加。这表明,二价铁可以还原Bi3+至Bi0,从而有助于非晶相转变为结晶相,因此加入二价铁可以强化Bi金属单质的生长。无定形的Bi金属纳米粒子可能存在于BiOBr样品中。图1的插图为{110}晶面的衍射峰位置图。随着Fe/Bi摩尔比的增大,x-FBB样品的衍射峰位置稍转向更高的2θ值,其他峰位置也出现了类似的现象。这是因为,离子半径的差异导致了晶格参数的变化,二价铁离子半径(0.075nm)小于Bi3+的(0.103nm)。同时,掺杂的Fe可能通过取代Bi3+而进入BiOBr晶格中。
采用SEM分析了所制备的BiOBr样品和x-FBB样品的微观结构、形貌和粒度。图2展示了样品的扫描电镜图像。其中,图2a显示,直径约为8μm的BiOBr微球的外表面由小麦状的纳米颗粒所包裹着。图2b-2d显示,x-FBB微球,直径范围从3μm到5μm,看上去是由许多纳米薄片挤在一起所形成的。图2e显示,有一部分掺杂的微球被抑制生成。图2f-2h为0.2-FBB样品的化学元素映射分析,显示了Bi、O、Br和Fe元素在0.2-FBB样品表面分布均匀。这表明,铁离子的加入可以促进纳米片的生成。
图3a显示,通过N2吸附-脱附方法分析了样品的比表面积和孔隙率。等温线属于IV型曲线,在0.5-1.0p/p0间出现了明显的滞后环,属于典型的介孔材料。根据IUPAC建议,上述滞后环可以被归类为H3型循环,是一种由形成裂隙状孔洞的层状颗粒凝结(松散聚集)组成的材料。通过样品的N2吸附-脱附等温线计算其比表面积。如图3b所示,利用布鲁诺尔-埃米特-泰勒比表面积法(BET)测定,样品包含小介孔(3.6nm)和最大孔隙直径约为15nm的大介孔。表1中列出了,样品的孔径、孔隙体积和表面积,可以看出,它们随着Fe/Bi摩尔比的增大而增大。此结果可能归因于,所形成的纳米片状结构叠加后形成一种网状结构而导致的。
表1由吸附等温线和XPS得到的样品物理参数
Figure BDA0001212949710000051
通过紫外-可见分光光度计测定所得样品的光学特性。图4显示了BiOBr样品和x-FBB样品的紫外-可见DRS光谱。400nm波长附近吸光度的急剧增加说明,此处为纯BiOBr的直接带隙,禁带宽度为2.54eV。通过x-FBB样品的紫外-可见DRS图谱可以看出,这些样品发生了系统的红移,并在可见光及近红外区域的吸收量增加。从样品的颜色逐渐由白变红黄色这一现象,也可简单地得出这个结论。在可见光范围内吸收的加强,可以归因于氧空位和金属Bi的存在。
通过初始浓度为20mg/L的罗丹明的降解速率,来评价BiOBr样品和x-FBB样品的可见光类芬顿催化活性。图5a显示了在可见光类芬顿催化降解过程中,罗丹明B的浓度随光照时间的变化。空白实验显示,罗丹明B在没有催化剂存在的条件下,光降解量极低,几乎可以被忽略。在30分钟的吸附-解吸平衡后,吸附能力最强的催化剂为0.2-FBB,吸附效率为43%。60分钟的光照后,样品BiOBr、0.05-FBB、0.1-FBB、0.2-FBB和0.4-FBB对罗丹明B的降解效率分别为56.5%、46.8%、81.3%、99.0%和95.2%。采用伪一级动力学模型:ln(C/C0)=-kt来描述此催化降解过程,其中k是不同催化剂的表观速率常数,作为基本动力学参数。从图5b看出,样品BiOBr、0.05-FBB、0.1-FBB、0.2-FBB和0.4-FBB的动力学常数分别为0.0114min-1、0.0092min-1、0.0178min-1、0.0449min-1和0.0326min-1。这表明,在H2O2强化光催化反应中,0.2-FBB的催化性能最强。
在类芬顿反应和光催化反应中,样品0.05-FBB、0.1-FBB、0.2-FBB和0.4-FBB的动力学常数分别为0.00165min-1、0.00263min-1、0.00445min-1、0.00172min-1和0.00168min-1、0.00179min-1、0.00269min-1、0.0003min-1,这些远远低于它们在可见光类芬顿反应中的动力学常数。这表明,H2O2可以在可见光下,激活x-FBB样品的催化活性位点。
上述结果说明,本发明的方法制备的铁改性光催化材料能够对水体中的污染物进行高效的催化降解,具有良好的推广应用前景。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种铁改性光催化材料的制备方法,其特征在于,其是在含有铁盐和硝酸铋的溶液中,加入溴化钾溶液,高温反应后即得所述铁改性光催化材料,具体包括:
(1)在氩气保护下,在含冰醋酸的乙二醇溶液中加入硝酸铋,搅拌直到硝酸铋全部溶解,配制成浓度为0.1mol/L的硝酸铋溶液,其中冰醋酸与乙二醇的体积比为1:10;
(2)在氩气保护下,向步骤(1)得到的硝酸铋溶液中加入铁盐FeCl2·4H2O,搅拌直到铁盐全部溶解,即得到所述含有铁盐和硝酸铋的溶液,其中,所述铁盐FeCl2·4H2O的添加量为5~40%,所述百分比为所述铁盐的物质的量占所述硝酸铋的物质的量的百分比;
(3)在乙二醇溶液中加入溴化钾,搅拌直到溴化钾全部溶解,所述的溴化钾溶液的浓度为0.1mol/L;
(4)在氩气保护下,于160摄氏度下进行密封反应,反应时间不少于12小时;
(5)将反应体系自然冷却至室温,离心,然后采用无水乙醇与超纯水分别洗涤多次,冷冻干燥,即得到所述铁改性光催化材料;
其中,得到的所述铁改性光催化材料具有异质结,掺杂的铁元素通过取代三阶铋离子进入BiOBr晶格中,用以提高光催化材料的比表面积、吸附性能和光催化效果。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述铁盐FeCl2·4H2O的添加量为20%。
3.根据权利要求1所述的制备方法,其特征在于,所述的溴化钾溶液的添加量为100%,所述百分比为所述溴化钾溶液的体积占所述含有铁盐和硝酸铋的溶液的体积的百分比。
4.根据权利要求1~3任一项所述的制备方法制得的铁改性光催化材料,其特征在于,应用在双氧水存在的条件下,光催化反应过程中,所述双氧水使得所述铁改性光催化材料表面铁元素在二价铁和三价铁之间形成链式反应,用以提高催化降解效果。
5.权利要求4所述的铁改性光催化材料在水处理中的应用。
CN201710035330.8A 2017-01-18 2017-01-18 一种铁改性光催化材料及其制备方法和应用 Expired - Fee Related CN108311164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710035330.8A CN108311164B (zh) 2017-01-18 2017-01-18 一种铁改性光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710035330.8A CN108311164B (zh) 2017-01-18 2017-01-18 一种铁改性光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108311164A CN108311164A (zh) 2018-07-24
CN108311164B true CN108311164B (zh) 2021-11-26

Family

ID=62891176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710035330.8A Expired - Fee Related CN108311164B (zh) 2017-01-18 2017-01-18 一种铁改性光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108311164B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109675591B (zh) * 2018-12-17 2022-12-20 深圳信息职业技术学院 一种Fe(II)和或Cu(II)改性光催化材料的制备方法及其应用
CN110201687A (zh) * 2018-12-28 2019-09-06 阜阳师范学院 一种BiOX/ZnSn(OH)6复合光催化剂及其制备和应用
CN109794271B (zh) * 2019-01-28 2021-09-10 江苏大学 一种富氧缺陷超薄PbBiO2Br纳米片的制备方法及其用途
CN109772378B (zh) * 2019-03-28 2020-10-16 西南大学 制备高活性铁掺杂卤氧化铋光芬顿催化剂的方法及其产品和应用
CN111686770B (zh) * 2020-06-24 2023-01-31 延安大学 一种金属离子共掺杂BiOBr微球、制备方法及其应用
CN114082429A (zh) * 2021-11-24 2022-02-25 白银新大孚科技化工有限公司 一种镍掺杂卤氧化铋复合催化剂及其制备方法与应用
CN114405523A (zh) * 2021-12-22 2022-04-29 中国能源建设集团广东省电力设计研究院有限公司 一种铋系光催化材料及其制备方法与应用
CN114602516A (zh) * 2022-04-13 2022-06-10 华北理工大学 一种富含氧空位的Fe掺杂BiOBr光芬顿催化材料及其制备方法
CN115254152B (zh) * 2022-06-22 2023-06-30 中国科学技术大学苏州高等研究院 钴掺杂溴氧化铋催化剂在污染物选择性氧化降解中的应用
CN115722236A (zh) * 2022-09-22 2023-03-03 长沙理工大学 铁/溴氧化铋/钨酸铋复合光催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910673A (zh) * 2012-10-19 2013-02-06 中国科学院苏州纳米技术与纳米仿生研究所 一种BiOCl微花纳米光催化材料的制备方法
CN104383945A (zh) * 2014-12-09 2015-03-04 江南大学 一种黑色溴氧化铋光催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150174567A1 (en) * 2013-12-20 2015-06-25 Massachusetts Institute Of Technology Hybrid photocatalyst for wastewater remediation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102910673A (zh) * 2012-10-19 2013-02-06 中国科学院苏州纳米技术与纳米仿生研究所 一种BiOCl微花纳米光催化材料的制备方法
CN104383945A (zh) * 2014-12-09 2015-03-04 江南大学 一种黑色溴氧化铋光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Ag掺杂三维花状BiOBr光催化剂降解罗丹明B的研究;方琴琴等;《广州化工》;20140630;第42卷(第11期);100-102 *
H2O2协同花球状BiOBr催化剂可见光下降解4-氯苯酚的研究;陈晓芳等;《第十三届全国太阳能光化学与光催化学术会议论文集 》;20121026;320 *

Also Published As

Publication number Publication date
CN108311164A (zh) 2018-07-24

Similar Documents

Publication Publication Date Title
CN108311164B (zh) 一种铁改性光催化材料及其制备方法和应用
Cheng et al. One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties
Yang et al. Insights into the degradation mechanism of perfluorooctanoic acid under visible-light irradiation through fabricating flower-shaped Bi5O7I/ZnO nn heterojunction microspheres
Gao et al. A mild one-step method for enhancing optical absorption of amine-functionalized metal-organic frameworks
Xie et al. Sn 4+ self-doped hollow cubic SnS as an efficient visible-light photocatalyst for Cr (vi) reduction and detoxification of cyanide
Li et al. Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 pn junction as highly efficient visible-light photocatalyst for organic pollutants removal
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
Dutta et al. A study on the effect of transition metal (Ti4+, Mn2+, Cu2+ and Zn2+)-doping on visible light photocatalytic activity of Bi2MoO6 nanorods
Wang et al. Optimized design of BiVO4/NH2-MIL-53 (Fe) heterostructure for enhanced photocatalytic degradation of methylene blue and ciprofloxacin under visible light
Chen et al. Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/diatomite heterojunction composite for enhanced visible-light-driven photocatalytic activity and recyclability
Yang et al. Preparation of TiO 2/SiO 2 composite oxide and its photocatalytic degradation of rhodamine B
CN108187687B (zh) 一种光芬顿催化剂的制备方法
Wu et al. Acidification of potassium bismuthate for enhanced visible-light photocatalytic degradation ability: an effective strategy for regulating the abilities of adsorption, oxidation, and photocatalysis
Liu et al. Synthesis of a novel magnetic SnNb2O6/CoFe-LDH 2D/2D heterostructure for the degradation of organic pollutants under visible light irradiation
Qiu et al. Bismuth molybdate photocatalyst for the efficient photocatalytic degradation of tetracycline in water under visible-light irradiation
CN114471649B (zh) 一种三维多孔磁性γ-Fe2O3-Cd2+-Ni2+-Fe3+-LDHs异质结构材料的制备方法及其应用
Gao et al. Hydrothermal synthesis of series Cu-doped Bi2WO6 and its application in photo-degradative removal of phenol in wastewater with enhanced efficiency
Ivanova et al. Synthesis and application of layered titanates in the photocatalytic degradation of phenol
Dharmaraja et al. Investigation on photocatalytic activity of ZnS/NiFe2O4 NCs under sunlight irradiation via a novel two-step synthesis approach
Zhang et al. A RGO aerogel/TiO 2/MoS 2 composite photocatalyst for the removal of organic dyes by the cooperative action of adsorption and photocatalysis
Liu et al. Mesocrystalline TiO 2/sepiolite composites for the effective degradation of methyl orange and methylene blue
Su et al. Fabrication of magnetic Fe3O4@ SiO2@ Bi2O2CO3/rGO composite for enhancing its photocatalytic performance for organic dyes and recyclability
Li et al. Hydrothermal synthesis of Ag2O/Bi2O3 microspheres for efficient photocatalytic degradation of Rhodamine B under visible light irradiation
Plubphon et al. Rapid preparation of g-C3N4/Bi2O2CO3 composites and their enhanced photocatalytic performance
Peng et al. High-temperature sulfurized synthesis of MnxCd1− xS/S-kaolin composites for efficient solar-light driven H2 evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211126