CN1122379A - 以镍和铁为主要成分的超合金的金属制件的钝化方法 - Google Patents

以镍和铁为主要成分的超合金的金属制件的钝化方法 Download PDF

Info

Publication number
CN1122379A
CN1122379A CN95107091A CN95107091A CN1122379A CN 1122379 A CN1122379 A CN 1122379A CN 95107091 A CN95107091 A CN 95107091A CN 95107091 A CN95107091 A CN 95107091A CN 1122379 A CN1122379 A CN 1122379A
Authority
CN
China
Prior art keywords
superalloy
vapour deposition
chemical vapour
coefficient
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95107091A
Other languages
English (en)
Other versions
CN1083018C (zh
Inventor
P·布劳廷
P·尼西奥
F·洛必塔尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of CN1122379A publication Critical patent/CN1122379A/zh
Application granted granted Critical
Publication of CN1083018C publication Critical patent/CN1083018C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/14Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils in pipes or coils with or without auxiliary means, e.g. digesters, soaking drums, expansion means
    • C10G9/18Apparatus
    • C10G9/20Tube furnaces
    • C10G9/203Tube furnaces chemical composition of the tubes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Inorganic Insulating Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

用作反应器壁或炉壁构成材料的、以镍、铁为主要成分的超合金的金属表面的钝化方法,其中,超合金中与含有高温碳氢化合物或含有高温氧化气体的腐蚀性气氛接触的面中至少有一个面被依次覆盖至少两个层,这两个层由构成它们的元素连续化学汽相淀积而成。外相,即直接与腐蚀性气氛接触的相由至少一种硅化合物化学汽相淀积而成,而介于超合金表面与外层之间的一个或多个淀积层由元素周期表中一种金属或准金属的至少一种化合物化学汽相淀积而成。这些层的膨胀系数由超合金的膨胀系数值逐渐降至外层的膨胀系数值。

Description

以镍和铁为主要成分的超合金的金属 制件的钝化方法
本发明涉及以镍、铁为主要成分的超合金的金属制件的钝化方法。该钝化作用涉及这些金属制件的表面。本发明还涉及至少部分表面经本专利申请的钝化方法处理过的金属制品。运用本发明的方法可以得到较之未经处理的制件在高温下抗氧化气氛性能更好而且对于碳氢化合物的行为例如渗碳作用及焦化作用大为减弱的金属制件。
本方法尤其可限制制件的外表面与氧化气氛接触时所受的氧化腐蚀,还可限制与高温碳氢化合物接触时发生的渗碳作用与焦化作用。这种方法极有利地用于处理工业生产中使用的反应器、炉尤其是管式炉的表面。在本说明书中carburation(渗碳作用)和cementation(渗碳作用)这两个词被看作是同义词。
更具体地说,本方法可以限制碳氢化合物在热裂化反应器中以及在碳氢化合物加热至高温、例如350℃以上的高温的管式炉中的焦化作用。
本领域技术人员都知道,也就是在此温度以上,才在上述反应器器壁和/或炉管壁上出现焦化反应。本发明的方法尤其适用于那些在没有稀释剂的情况下或在除水蒸气外的稀释剂、如氢气、碳氢化合物或碳氢化合物馏分存在的情况下实施蒸汽裂化、热裂解的装置。
本发明的方法也适用于那些用于实施催化脱氢、蒸汽催化转化、碳氢化合物或碳氢化合物馏分的减粘裂化的装置。
大量资料描述了在使碳氢化合物在高温下与器壁接触的各种反应中,焦碳形成反应过程。这种焦化现象尤其在碳氢化合物的热裂化范围内获得大量的描述和研究。特别可列举一篇重要论文,即1990年FROMENT教授发表于期刊《Review of ChemicalEngineering》第6卷,第4号292至328页上的“Coke formationin the thermal cracking of Hydrocarbon”。还可列举出一篇更近的由MM.BILLAUD,BROUTIN,BUSSON,GUERET和WELL执笔的论文,该论文的第一部分以“Coke Formation duringHydrocarbons Pyrolysis”为题于1992年发表于杂志《INSTITUTFRANCAIS DU PETROLE》(法兰西石油学院)47卷,第4号,537页至549页上,其第二部分以同一标题于1993年发表于同一杂志48卷,第2号115页至125页上。
综合先有技术的观点,可以说碳氢化合物的热裂化时焦碳的形成是一个包含了各种机理的复杂现象,其中至少一个机理包含了由存在于实施上述方法的装置壁上的镍、铁或钴等金属元素的氧化物催化的反应。主要为了适应这些装置壁上的高热而使用的耐火超合金中通常含有大量的此类金属元素。这种催化机理举足轻重:观测表明,如果该机理受到抑制,则在蒸汽裂化中,因为实施此方法所需的炉子除焦而导致的两次停工之间的时间间隔可增加至少约3倍。
一些资料提到了能抑制催化焦碳形成的方法。特别可以列举专利US-A-5,208,069,该专利描述了通过在反应器管子表面上能形成一个陶瓷材料薄层的情况下原位(也就是在最终安装好的装置中)分解硅酮的不含氧的有机金属衍生物,达到钝化与碳氢化合物接触的反应器管子的金属表面的方法。在这种方法中,淀积是在大气压力或低负压下进行的,但通常情况下,运用这种方法不能在整个管子上均匀淀积,这是因为淀积的增厚速度在管子的整个长度上不是均一的。因此厚度、或淀积质量沿着管子有所变化。由于这些变化,就有可能在管子上出现一些厚度很大因而粘合力小的区域和/或一些碳化硅淀积质量差因而粘合力也小的区域。硅的有机金属衍生物的气相淀积进行时的压力太大(按该专利的实施例),不能获得均匀的淀积,因为气体扩散距离要比在真空、也就是例如在小于10+4帕的压力下要小得多。而且,淀积的碳化硅是一种膨胀系数小的化合物,而所用的超合金的膨胀系数通常要高得多,这样,随着时间的推移及加热与冷却的周期变化,碳化硅层至少在某些部位其密封性有可能丧失,其结果是导致碳氢化合物与超合金接触,引起设备焦化速度的加快,这种可能性是不容忽视的。
在专利US-A-5,242,574中也描述了反应器壁的钝化方法,该反应器壁由铝含量很高(占重量的4%至6%)的、以镍、铁为主要成分的超合金构成。这种钝化方法通过合金表面的预氧化形成一个金属氧化物层,从而形成构成合金的金属的氧化物。该钝化可以由以下的事实得到解释:基质中铝的存在是有益的,这是因为铝的存在可以通过简单的选择性部分氧化(在该专利中所述的氧气分压和温度条件下)即形成稳定的氧化铝表层。通常,用这种方法不能得到在组成和其它物理特性方面都很均匀的保护层。而且,这种钝化方法只是在铝含量很高的超合金中才易于实施。
而且,在使用铝含量高的合金时,往往会形成组成为Ni3Al的金属间相γ′。该金属间相在高温使用时形成,这就脆化了这种材料:可观察到这种材料的老化,其抗蠕变强度随时间的推移而降低。这种现象导致使用这种材料的最高温度为100℃,低于以镍、铁为主要成分、只含有少量铝或只含有极少量铝(例如低于总重量的0.5%)的超合金的最高使用温度。
此外,在焊接操作时,基质中铝的存在会引起晶界中金属间相的析出,这不利于保持良好的机械性能(出现裂纹或断裂)。象所有铝含量高于大约3%的以镍为主要成分的超合金一样,这种材料的焊接操作是很棘手的,因为这些材料都被认为是很难焊接的(依据E.BRADLEY的“Welding of Superalloys”Superalloys-a technical guide,1988,13章,197至220页)。
而且,基质中铝的存在使得覆盖层很难粘合到材料上,在这种材料上通过化学汽相淀积(缩略为CVD,英语Chemical VaporDeposition的首字母)(如专利US-A-5,242,574中所述)得到的保护层附着性差、尤其是耐循环加热性能差。
本发明提出一种钝化含有少量铝或不含铝的超合金的金属表面的方法,该方法能够至少部分减少先有技术方法的缺点,并得到粘着性、均一性均好、耐循环加热性能强的保护层。用本发明方法得到的保护层的优点可以通过对已经过先有技术的钝化处理的金属表面的氧化和/或焦化试验及对已经过本发明方法的钝化处理的金属表面的氧化和/或焦化试验得到测定,这正如下文说明本专利申请的实施例中表明的一样。
在最通常形式中,本发明涉及含有3%(重量)以下、优选1%(重量)以下、并且往往0.5%(重量)以下铝的、以镍、铁为主要成分的超合金的金属表面的钝化方法,所述表面与含有高温碳氢化合物的气氛接触,或与含有高温的即通常高于200℃、且经常高于500℃的氧化气体的气氛接触。这种方法尤其可用于使用上文定义的超合金建造碳氢化合物热裂化或催化裂化炉或反应器时的情况。本发明的方法的特征在于:用作反应器壁或诸如管式炉等炉的壁的构成材料的超合金在它与含有高温碳氢化合物或含有高温氧化气体的腐蚀性气氛接触的面中的至少一个面上、且经常是所有的面上被依次覆盖至少两个层,这两个层由构成它们的元素的连续化学汽相淀积而得,外相即直接与腐蚀性气氛接触的相由至少一种硅化合物的化学汽相淀积而得,而淀积在超合金表面与外层之间的一个或多个层由元素周期表的一种金属或准金属的至少一种化合物、最好是元素周期表第四族金属的化合物,如钛或锆的化合物,其中最好是钛的化合物的化学汽相淀积而得,选择上述的一个或多个层,使这些层的膨胀系数由超合金的膨胀系数值逐渐降至外层的膨胀系数值。一个或多个中间层至少有两方面功能:提高这样形成的覆盖层整体的附着性及抗热冲击性能。这个或这些层也限制了超合金与外层间的相互扩散。
通常,所用的超合金的膨胀系数从大约10×10-6至大约25×10-6-1(k-1),由硅化合物构成的外层的膨胀系数严格低于超合金的膨胀系数,从大约2×10-6-1至大约10×10-6-1。一个或多个中间层的膨胀系数通常介于4×10-6至12×10-6-1之间,总是比超合金的膨胀系数低,而总是比外层的膨胀系数高。
在本发明的一种具体实施形式中,超合金的表面与外层之间只覆盖一个中间层。
通过化学汽相淀积得到的中间覆盖层或者是化学计量组成的,或者是固体溶液。通常,这些化学计量的化合物选自碳化钛TiC、氮化钛TiN、氮化铝。通常,固体溶液选自一般式为TiuAlvNw(其中u、v和w为正数,u往往是介于大约0.4至大约0.62之间的数,v和w可以相同或不相同,介于大约0和大约1之间)的氮化合物和一般式为TixCyNz(其中x、y、z是正数,x往往是介于大约0.35与大约0.55之间的数,y与z可以相同或不相同,介于大约0与大约1之间)的钛的碳氮化合物。
在本发明的一种具体实施形式中,所用的超合金的成分中至少含有0.1%(重量)的碳,直接与超合金接触的、通过化学汽相淀积得到的第一覆盖层包含至少一种化学计量的化合物或至少一种选自TiC和TixCyNz(x、y、z的定义同上)的固体溶液。
在本发明的一种具体实施形式中,与腐蚀性气氛接触的外层包含至少一种化学计量的化合物或至少一种由Si-Al-O-N-C体系构成的固体溶液。“体系”这个词是本领域技术人员在化学汽相淀积方面常用的一个词。“体系”这个词在本说明书中表示所有由体系中各元素构成的化学计量化合物或固体溶液。
在本发明的另一种具体实施形式中,与腐蚀性气氛接触的外层包含至少一种选自式SiC的碳化硅和式Si3N4的氮化硅的化学计量的化合物。外层也可含有这两种化合物的混合物。
尽管通过化学汽相淀积得到的覆盖层可以根据本领域技术人员熟知的传统技术得到,但是为了获得附着性、均一性均良好且耐循环加热性能好的覆盖层,优选在高于或等于大约800℃,并往往是在约900℃至约1100℃的温度下进行化学汽相淀积。淀积通常在低于大气压力、且经常在约100至约90,000帕的压力、最好是在约1,000至10,000帕的压力下进行。用于化学汽相淀积的气体混合物的摩尔流量(在淀积反应器内部)通常是约1×10-6摩尔每平方厘米每秒钟(摩尔.cm-2.s-1)至约1×10-2摩尔.cm-2,s-1。在碳化钛覆盖层中,气相中的C/Ti原子比通常为约0∶1至约150∶1,且往往是约0∶1至约50∶1。当气相中无含碳化合物时,碳来自超合金。
本发明的金属表面钝化方法尤其适用于获得碳氢化合物蒸汽裂化炉管的内壁(内壁和外壁都可)的保护层。这一或这些保护层既可以在管束安装之后,在蒸汽裂化炉运转前的第一阶段在炉内直接实现,也可以在管束安装在化学汽相淀积处理炉内之前在炉外实现。在炉外处理的情况下,覆盖层可以一个部分一个部分地实现,也可以几个部分几个部分实现。
化学汽相淀积为本领域技术人员熟知,在本说明书也不再详述。例如,在形成以硅为主要成分的覆盖层时,可使用硅烷、烷基硅烷、氨基烷基硅烷、卤代烷基硅烷、卤代硅烷或硅氮烷进行淀积。例如可使用氯代烷基硅烷或氯代硅烷。在形成碳化硅覆盖层情况下,例如可通过分解硅烷或用氢气等还原三氯甲基硅烷等氯代烷基硅烷来进行CVD淀积。在形成以钛为主要成分的覆盖层时,可使用同类化合物,如卤化钛,尤其是四氯化钛。当用一种或多种卤化钛淀积碳化钛时,可用氢气等还原物质来还原这一或这些卤化物。CVD淀积通常是在氢气存在下,在诸如气相中的氢/金属原子比为约5∶1至约300∶1,且往往是约10∶1至约50∶1的条件下进行。
通常,每一覆盖层的厚度为约0.1×10-6米至约30×10-6米。一个或多个中间层的厚度常常小于外层的厚度。例如在覆盖层包括两层的情况下,中间层的厚度为约0.15×10-6米至约5×10-6米,而外层的厚度为约1×10-6米至约30×10-6米,且往往为约6×10-6米至约25×10-6米。
常用的超合金中含有0.2%(重量)至0.6%的碳、0.5%至2%的锰、0.5%至2%的硅、30%至40%的镍和20%至30%的铬,也可能含有其它一些金属,如铌、钛或锆,将重量补充至100%的余额是铁。用于说明本发明而在实施例中给出的试验是在用Manaurite XM做成的管上进行的,Manaurite XM是一种超合金,其中含有33%(重量)至38%的镍、23%至28%的铬、1%至2%的硅、1%至1.5%的锰和0.3%至0.6%的碳以及将重量补充至100%余额的铁。
本发明还涉及一种含有以镍、铁为主要成分的超合金的制品,超合金中铝含量低于3%(重量),最好低于1%、且往往低于0.5%,并且超合金包含依据上文描述的方法所制成的钝化覆盖层。
下面的实施例将说明本发明及其较之先有技术,特别是依据欧洲专利EP-B-476,027所述技术的优点。
A管由Manaurite XM制成,用于比较。B管由只覆盖了碳化钛的Manaurite XM制成,用于比较。C管由覆盖了第一层碳化钛和本发明制得的碳化硅外层的Manaurite XM制成。最后,D管由只覆盖了碳化硅的Manaurite XM制成,用于比较。
石脑油的蒸汽裂化试验在水蒸汽存在下,在热裂化管出口处表面温度为1048℃的条件下,在一个试验装置上进行,该试验装置依次安装了四根尺寸相同、组成不同(其组成如上文所述)的管,这些管的覆盖层的获得如下文所述。在这些实验过程中,用燃烧气加热管子。在试验装置上,在500℃下、在TLX型线形热交换器内间接进行淬火。
无覆盖层的A管的膨胀系数为19.1×10-6-1
B管有一厚度为5×10-6米的碳化钛覆盖层,此覆盖层按下文所述方法获得。在一个反应器的热壁上进行CVD淀积。淀积室由石墨制成。在还原气氛中用电阻将淀积室加热至1,000℃。气体混合物注入炉子上部,用质量流量计确定供入每种气体的量。将在标准压力与温度条件为液态的四氯化钛预加热,以便能在气态下确定它的供入量。各种气体在注入淀积炉前先混合。在淀积室中与基质反应后,借助于适于气体的腐蚀性的泵将产生的气体及残余的气体抽出。在4千帕压力下通入10分钟气流进行淀积。气流由通入速度为3.7×10-7尔·厘米-2·秒-1的TiCl4、通入速度为2.5×10-6摩尔·厘米-2·秒-1的CH4、通入速度为1.5×10-5摩尔·厘米-2·秒-1的H2组成。碳化钛淀积层的膨胀系数为7×10-6-1
C管上的碳化钛覆盖层的厚度为2×10-6m,此覆盖层的制法同上,但淀积时间为4小时。在碳化钛淀积之后,用同一炉,将温度保持在930℃,淀积厚度为20×10-6米的碳化硅层。在4千帕压力下通入40小时气流来进行淀积。气流由通入速度为4×10-7摩尔·厘米-2·秒-1的三氯甲基硅烷SiCH3Cl3和通入速度为8×10-6摩尔·厘米-2·秒-1的氢气H2组成。碳化硅淀积层的膨胀系数为4×10-6-1
D管上的碳化硅覆盖层厚度为20×10-6米,制法同上。
下表列出了得到的结果,还列出了裂化物料的性质。
                 表
                 A管   B管   C管   D管尺寸内径(毫米)           30    30    30    30长度(米)             10    10    10    10操作条件石脑油流量(千克/小时)80    80    80    80水蒸气流量(千克/小时)40    40    40    40温度管子进口(摄氏度)     600   600   600   600管子出口(摄氏度)     933   933   933   933(绝对)压力出口(兆帕)          0.155  0.155 0.155 0.155停留时间(毫秒)       130   130   130   130石脑油性质密度                              0.705ASTM蒸馏初沸点(摄氏度)                    36终沸点(摄氏度)                    193石脑油成分(%重量)%正构链烷烃                      43.27%异构链烷烃                      36.81%环烷烃                          14.97%芳香族化合物                    4.95
实验开始时管子出    1048 1048 1048 1048
口的表面温度(摄氏度)
管子出口的焦        50    23  4    39
化速度(克/小时·平方米)
拆下每根管子后,目视检查表明:D管的仅由碳化硅构成的覆盖层开裂了。B管及C管的覆盖层完好无损。可以看到,与没有覆盖层的管子相比,使用覆盖了碳化物的管子时,焦化速度极低,而且当用本发明方法来覆盖管子时,焦化速度是最最低的。

Claims (13)

1.用作反应器壁或炉壁构成材料的、铝含量低于3%(重量)的、以镍、铁为主要成分的超合金的金属表面的钝化方法,其特征在于超合金在它与含有高温碳氢化合物或含有高温氧化气体的腐蚀性气氛接触的面中的至少一个面上被依次覆盖至少两个层,这两个层由构成它们的元素的连续化学汽相淀积而得,外相即直接与腐蚀性气氛接触的相由至少一种硅化合物的化学汽相淀积而得,而淀积在超合金表面与外层之间的一个或多个层由元素周期表的一种金属或准金属的至少一种化合物的化学汽相淀积而得,选择所述的一个或多个层,使这些层的膨胀系数由超合金的膨胀系数值逐渐降至外层的膨胀系数值。
2.根据权利要求1的方法,其中所用的超合金是一种以镍、铁为主要成分、膨胀系数介于约10×10-6至约25×10-6-1的合金,且其中所述合金为两个层覆盖,中间层的膨胀系数介于约4×10-6至约12×10-6-1,外层的膨胀系数介于约2×10-6至约10×10-6-1
3.根据权利要求1或2的方法,其中由化学汽相淀积而成的中间层是化学计量的组合物,或者是固体溶液。
4.根据权利要求3的方法,其中中间层选自碳化钛TiC、氮化钛TiN、氮化铝、一般式为TiuAlvNw的氮化物(其中u、v、w是正数)以及一般式为TixCyNz的钛的碳氮化合物(其中x、y、z是正数)。
5.根据权利要求1至4之一的方法,其中所用的超合金的组成中含至少0.1%(重量)的碳,而且由化学汽相淀积而得的、与超合金直接接触的第一覆盖层包含至少一种化学计量的化合物或至少一种选自TiC和TixCyNz的固体溶液。
6.根据权利要求1至5之一的方法,其中与腐蚀性气氛直接接触的外层是由至少一种化学计量型的化合物经化学汽相淀积而成的覆盖层,或是由至少一种由Si-Al-O-N-C体系构成的固体溶液构成的覆盖层。
7.根据权利要求6的方法,其中与腐蚀性气氛直接接触的外层是以碳化硅、氮化硅或它们的混合物为主要成分的覆盖层。
8.根据权利要求1至7之一的方法,其中化学汽相淀积在高于或等于约800℃的温度下、在约100帕至约90,000帕的压力下进行。
9.根据权利要求8的方法,其中压力介于约1,000帕至10,000帕。
10.根据权利要求1至9之一的方法在覆盖碳氢化合物蒸汽裂化炉炉管至少一个内壁中的应用。
11.根据权利要求10的应用,其中蒸汽裂化炉炉管的钝化在将管束安装到蒸汽裂化炉中之前在炉外进行。
12.根据权利要求10的应用,其中蒸汽裂化炉炉管的钝化在将管束安装到蒸汽裂化炉中之后于炉内进行。
13.含有以铝含量低于3%(重量)的、以镍、铁为主要成分的超合金,且具有依据权利要求1至8之一的方法制得的钝化覆盖层的制品。
CN95107091A 1994-06-24 1995-06-23 以镍和铁为主要成分的超合金的金属制件的钝化方法 Expired - Fee Related CN1083018C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9407907 1994-06-24
FR9407907A FR2721622B1 (fr) 1994-06-24 1994-06-24 Méthode de passivation de pièces métalliques en super-alliage à base de nickel et de fer.

Publications (2)

Publication Number Publication Date
CN1122379A true CN1122379A (zh) 1996-05-15
CN1083018C CN1083018C (zh) 2002-04-17

Family

ID=9464715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95107091A Expired - Fee Related CN1083018C (zh) 1994-06-24 1995-06-23 以镍和铁为主要成分的超合金的金属制件的钝化方法

Country Status (8)

Country Link
US (1) US6524402B1 (zh)
EP (1) EP0688889B1 (zh)
JP (1) JPH0849056A (zh)
KR (1) KR100340781B1 (zh)
CN (1) CN1083018C (zh)
AT (1) ATE195983T1 (zh)
DE (1) DE69518586T2 (zh)
FR (1) FR2721622B1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1300358C (zh) * 2002-03-15 2007-02-14 埃克森美孚研究工程公司 防金属尘化的合金
CN100432283C (zh) * 1999-05-14 2008-11-12 日立金属株式会社 稀土金属基永磁铁

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69706850T2 (de) 1996-06-13 2002-05-16 Siemens Ag Artikel mit schutzschicht, enthaltend eine verbesserte verankerungsschicht und seine herstellung
US20050255329A1 (en) * 2004-05-12 2005-11-17 General Electric Company Superalloy article having corrosion resistant coating thereon
DE102017100725A1 (de) * 2016-09-09 2018-03-15 Aixtron Se CVD-Reaktor und Verfahren zum Reinigen eines CVD-Reaktors
RU2628309C1 (ru) * 2016-11-22 2017-08-17 Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют") Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177179A (ja) * 1984-02-23 1985-09-11 Toshiba Corp 黒色装飾品
JPH0762232B2 (ja) * 1988-06-15 1995-07-05 株式会社ライムズ 被覆複合部材
JPH0297659A (ja) * 1988-09-30 1990-04-10 Sumitomo Electric Ind Ltd セラミック被覆耐エロージヨン部材
FR2662704B2 (fr) * 1989-06-08 1992-08-14 Inst Francais Du Petrole Utilisation d'alliages a base de nickel dans un procede de craquage thermique d'une charge petroliere et reacteur pour la mise en óoeuvre du procede.
FR2648145B1 (fr) 1989-06-08 1991-10-04 Inst Francais Du Petrole Utilisation d'alliages a base de nickel dans un procede de craquage thermique d'une charge petroliere et reacteur pour la mise en oeuvre du procede
IT1241922B (it) * 1990-03-09 1994-02-01 Eniricerche Spa Procedimento per realizzare rivestimenti di carburo di silicio
JPH0463279A (ja) * 1990-07-02 1992-02-28 Chiyoda Corp 熱cvdによるその場金属コーティング方法
US5208069A (en) 1991-10-28 1993-05-04 Istituto Guido Donegani S.P.A. Method for passivating the inner surface by deposition of a ceramic coating of an apparatus subject to coking, apparatus prepared thereby, and method of utilizing apparatus prepared thereby
US5424095A (en) * 1994-03-07 1995-06-13 Eniricerche S.P.A. Ceramic vapor deposited coating using a steam-containing carrier gas and non-alkoxy silane precursors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432283C (zh) * 1999-05-14 2008-11-12 日立金属株式会社 稀土金属基永磁铁
CN1300358C (zh) * 2002-03-15 2007-02-14 埃克森美孚研究工程公司 防金属尘化的合金

Also Published As

Publication number Publication date
EP0688889B1 (fr) 2000-08-30
US6524402B1 (en) 2003-02-25
FR2721622B1 (fr) 1997-11-21
FR2721622A1 (fr) 1995-12-29
JPH0849056A (ja) 1996-02-20
KR960001166A (ko) 1996-01-25
DE69518586D1 (de) 2000-10-05
EP0688889A1 (fr) 1995-12-27
DE69518586T2 (de) 2001-01-04
KR100340781B1 (ko) 2002-10-31
ATE195983T1 (de) 2000-09-15
CN1083018C (zh) 2002-04-17

Similar Documents

Publication Publication Date Title
Symoens et al. State-of-the-art of coke formation during steam cracking: Anti-coking surface technologies
Albright et al. Mechanistic model for formation of coke in pyrolysis units producing ethylene
US5805973A (en) Coated articles and method for the prevention of fuel thermal degradation deposits
Towfighi et al. Coke formation mechanisms and coke inhibiting methods in pyrolysis furnaces
US4099990A (en) Method of applying a layer of silica on a substrate
EP1398079A2 (en) Method and coating system for reducing carbonaceous deposits on surfaces exposed to hydrocarbon fuels at elevated temperatures
EP0608081B1 (en) Coated articles and method for the prevention of fuel thermal degradation deposits
CN101724827A (zh) 减少乙烯裂解炉炉管结焦并提高乙烯选择性的方法
CN1083018C (zh) 以镍和铁为主要成分的超合金的金属制件的钝化方法
US6482311B1 (en) Methods for suppression of filamentous coke formation
Jambor et al. FORMATION OF COKE DEPOSITS AND COKE INHIBITION METHODS DURING STEAM CRACKING.
Gong et al. Preparation of Al2O3 coating on TiN coating by polymer-assisted deposition to improve oxidation resistance in coking inhibition applications
GB2234530A (en) Heat treatment of high temperature steels
US5169515A (en) Process and article
CA2420229C (en) Stainless steel and stainless steel surface
EP0110486B1 (en) Installation (plant) for thermo-cracking a hydrocarbon starting material to alkene, shell and tube heat exchanger for use in such an installation and process for manufacturing shell and tube heat exchanger
JPH11323498A (ja) 耐コ―クス化特性を含む適用における僅かに合金となされた鋼の使用法
US5922192A (en) Apparatus and process for reducing coking of heat exchange surfaces
Sayyedan et al. Anti-coking and anti-carburizing behavior of amorphous AlPO4 coating
CN102251225B (zh) 一种减少烃类裂解炉炉管结焦的处理方法及涂层预处理液
GB2233672A (en) High temperature treatment of stainless steals used in high temperature reactors
Yan et al. Proposal of a new mechanism of ammonia on the coking inhibition of n-decane under supercritical conditions
US6322879B1 (en) Protecting metal from carbon
US20120149962A1 (en) In situ removal of iron complexes during cracking
Wu et al. Coking of HP tubes in ethylene steam cracking plant and its mitigation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee