RU2628309C1 - Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей - Google Patents

Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей Download PDF

Info

Publication number
RU2628309C1
RU2628309C1 RU2016145637A RU2016145637A RU2628309C1 RU 2628309 C1 RU2628309 C1 RU 2628309C1 RU 2016145637 A RU2016145637 A RU 2016145637A RU 2016145637 A RU2016145637 A RU 2016145637A RU 2628309 C1 RU2628309 C1 RU 2628309C1
Authority
RU
Russia
Prior art keywords
reactor
coating
parts
thermal treatment
chemical
Prior art date
Application number
RU2016145637A
Other languages
English (en)
Inventor
Юрий Павлович Шкретов
Александр Иванович Минаков
Марат Саитович Зарыпов
Original Assignee
Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют") filed Critical Акционерное общество "Научно-производственный центр газотурбостроения "Салют" (АО НПЦ газотурбостроения "Салют")
Priority to RU2016145637A priority Critical patent/RU2628309C1/ru
Application granted granted Critical
Publication of RU2628309C1 publication Critical patent/RU2628309C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Изобретение относится к технологиям и оборудованию для нанесения покрытий на детали при их химико-термической обработке. Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей включает формирование на внутренних поверхностях реактора защитного покрытия, химически нейтрального к рабочей среде. Первоначально при формировании защитного покрытия проводят от 3 до 10 штатных циклов нанесения покрытия на детали с получением на внутренних поверхностях реактора покрытия из рабочего агента, используемого при проведении химико-термической обработки, после чего проводят холостой цикл работы реактора, при котором в полость реактора подают окислитель для образования оксидного слоя на поверхности полученного покрытия. Холостой цикл повторяют через каждые 30-50 штатных циклов химико-термической обработки. Обеспечивается повышение качества наносимого на детали покрытия за счет устранения переноса отложений рабочих агентов с внутренних поверхностей реактора на детали.

Description

Изобретение относится к технологиям и оборудованию для нанесения покрытий на детали и может быть использовано для исключения влияния отложений компонентов рабочей среды, осаждающихся на внутренних поверхностях реактора, на качество наносимого на детали покрытия при их химико-термической обработке (ХТО).
Из уровня техники известно, что покрытия на деталях формируются, в основном, в реакторах газоциркуляционных установок за счет протекания химических реакций диспропорционирования или обмена (см., например, Б.Н. Арзамасов. «Химико-термическая обработка металлов и сплавов в активированных газовых средах». М.: Машиностроение, 1979).
Типичными представителями таких установок являются, например, газоциркуляционные установки типа УМДП, ДА-2М, УЦЛ-1, конструкция которых защищена соответственно патентами РФ №5437411, №5459211, №2305141 С. Данные установки оснащены ректорами, представляющими собой оснащенные системой нагрева муфели колпакового, шахтного или элеваторного типа и основание, на котором смонтированы вентилятор, устройство для формирования потока рабочей газовой среды, например хлоридной, подставки для размещения деталей, источник диффундирующих элементов (хрома, алюминия и пр.). Упомянутые узлы и детали изготовлены из жаропрочных сплавов.
Опыт эксплуатации газоциркуляционных установок при получении алитированных, хромированных и хромоалитированных диффузионных покрытий на деталях, например выполненных из никелевых сплавов рабочих лопаток турбины газотурбинного двигателя (ГТД), показал, что основными факторами, влияющими на активность протекания химических реакций в реакторе и обеспечивающими получение диффузионных покрытий в хлоридной газовой среде заданной толщины, структуры и химического состава, являются температура, время выдержки, давление и скорость рабочего газового потока, а также соотношение поверхности подлежащих ХТО деталей, например лопаток турбины высокого давления (ТВД), и поверхности источника диффундирующих элементов, например алюминия в виде жидкого расплава или хрома в виде гранул или чешуек.
В процессе ХТО деталей, например при их алитировании, внутренние поверхности реактора насыщаются алюминием, осаждающимся на внутренние поверхности реактора из рабочей среды. Постепенно на этих внутренних поверхностях образуется насыщенный алюминием слой, содержащий в зависимости от концентрации в нем алюминия на никелевых сплавах фазы Ni3Al, NiAl, Ni2Al3, а на стали - фазы Fe3Al, FeAl, FeAl3, Fe2Al5 с различной, постепенно, по мере увеличения толщины слоя, возрастающей активностью алюминия.
Этот слой, при последующих проводимых в реакторе штатных технологических циклах алитирования деталей, выступает в качестве дополнительного источника диффундирующего элемента - алюминия, в связи с чем необходимо проводить корректировку штатных технологических режимов получения покрытия. Без учета этого фактора невозможно получать диффузионные покрытия заданного качества по толщине и химическому составу. При этом весьма сложно оценивать динамику образования такого слоя и определять его химическую активность, которая, по мере эксплуатации реактора, постоянно меняется.
Так, например, при алитировании лопаток ТВД ГТД в условиях серийного производства в процессе эксплуатации установки режимы алитирования необходимо постоянно корректировать. В результате, исходя из опыта эксплуатации, штатная температура в реакторе с 1020°С снижается до 980°С, время насыщения - с 4 часов до 2,0-2,5 часов. Естественно, что такая корректировка режимов в серийном производстве требует дополнительных исследований и материальных затрат для подтверждения идентичности получаемых покрытий, что, тем не менее, не гарантирует их качества.
Таким образом, проблема получения качественных покрытий на деталях при ХТО связана не только с подбором технологических параметров - температуры выдержки, давления и скорости движения рабочей газовой среды, количества источников насыщаемых элементов, например алюминия и хрома при алитировании и хромировании соответственно, но и с необходимостью учета дополнительного фактора - наличия алюминия или хрома на внутренних поверхностях реактора, контактирующих с рабочей газовой средой и выступающих в качестве дополнительных источников этих элементов.
Данная проблема решается различным образом.
Так, например, известны решения, в которых образованный на внутренних поверхностях реактора слой периодически удаляют механическими средствами.
Известна установка для нанесения покрытий из порошкообразного материала на детали, содержащая камеру для размещения в ней деталей, в полости камеры размещено очищающее устройство, предназначенное для очищения внутренних поверхностей камеры от продуктов напыления, выполненное в виде жесткого носителя, имеющего возможность перемещения в полости камеры, носитель снабжен механическими очищающими элементами, выполненными в виде скребков из эластичного материала, гибко прилегающих к внутренним поверхностям камеры и очищающих их при перемещении, при этом очищающее устройство оснащено вакуумной системой для удаления продуктов очистки из полости камеры (см. патент РФ №2072901, кл. В05В 15/12, 1997 г.).
В результате анализа известной установки необходимо отметить, что такая очистка требует периодической остановки реактора для его обслуживания, причем в процессе очистки возможны повреждения стенок реактора, а главное - механическая очистка не гарантирует полного удаления отложений с внутренних поверхностей реактора.
Другим направлением решения данной проблемы является выполнение всех или некоторых внутренних поверхностей реактора, контактирующих с рабочей газовой средой, из материала, который не вступает в химические реакции с рабочей газовой средой, например хлоридной.
Так, реактор и входящие в него узлы и детали могут быть изготовлены из высокотемпературной керамики (см., например, патент РФ №2128624 С), которая не вступает в химические реакции с рабочей газовой средой, например хлоридной. Однако это принципиальное решение вызывает ряд непреодолимых трудностей из-за габаритов данных реакторов и других узлов и деталей, требований к герметичности и других очевидных причин, в связи с чем его реализация на практике вызывает большие сложности.
Наиболее перспективным направлением решения данной проблемы является создание на внутренних поверхностях реактора защитного слоя, который инертен к рабочей газовой среде.
Так, например, известен способ защиты стенок форкамеры газодинамической установки от воздействия высокоэнтальпийного рабочего газа, основанный на образовании защитного газового пристеночного потока, обеспечивающего защиту материала стенок форкамеры от воздействия рабочего газа (см. авторское свидетельство СССР №1840957, кл. G01M 9/00, 2014 г.).
В результате анализа известного способа необходимо отметить, что его реализация связана со значительными трудностями, обусловленными сложностью организации процесса циркуляции воздушного потока защитной среды и обеспечения его заданных параметров в течение длительного времени.
Известен способ защиты внутренних поверхностей реактора, реализованный в устройстве для металлотермического восстановления алюминия, согласно которому на внутренние стенки реактора, с целью их защиты от воздействия рабочей газовой среды, наносят защитное покрытие (см. патент РФ №2476613, кл. С22В 21/04, 2012 г.) - наиболее близкий аналог.
В результате анализа известного решения необходимо отметить, что данное покрытие по мере эксплуатации установки подвергается эрозии, в связи с чем защитные свойства покрытия снижаются, и необходима периодическая остановка реактора для восстановления (замены) покрытия.
Техническим результатом настоящего изобретения является повышение качества наносимого на детали покрытия за счет устранения переноса отложений рабочих агентов с внутренних поверхностей реактора на детали.
Указанный технический результат обеспечивается тем, что в способе защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей, включающем формирование на внутренних поверхностях реактора защитного покрытия, химически нейтрального к рабочей среде, новым является то, что для формирования защитного покрытия первоначально проводят от 3 до 10 штатных циклов нанесения покрытия на детали, получая на внутренних поверхностях реактора покрытие из рабочего агента, используемого при проведении химико-термической обработки, после чего проводят холостой цикл работы реактора, при котором в полость реактора подают окислитель для образования оксидного слоя на поверхности полученного покрытия, причем проведение холостого цикла повторяют через каждые 30-50 штатных циклов химико-термической обработки.
Заявленный способ основан на получении на внутренних поверхностях реактора защитного покрытия, которое химически нейтрально к рабочему агенту. Особенностью заявленного способа является то, что данное покрытие формируют в процессе эксплуатации реактора при проведении ХТО деталей на режимах, характерных для ХТО. Для формирования защитного покрытия используют компоненты рабочей среды, подаваемой в рабочий объем реактора при проведении ХТО. После формирования покрытия достаточной толщины осуществляют получение на нем оксидного слоя за счет окисления, например, воздухом, получая на внутренних поверхностях реактора химически нейтральный слой оксидов металлов, например оксида алюминия (Al2O3), оксида хрома (Cr2O3), шпинели (Al2O3⋅Cr2O3).
Заявленный способ осуществляют следующим образом.
Первоначально проводят серию из 3-10 штатных технологических процессов ХТО (алитирования, хромирования или хромоалитирования). Как показал опыт эксплуатации установок, при проведении такого количества штатных процессов влияние насыщенных алюминием или хромом внутренних поверхностей реактора на технологический процесс алитирования (хромирования или хромоалитирования) несущественно, так как толщина отложений компонентов рабочей среды на внутренних поверхностях реактора незначительна и не оказывает существенного влияния на качество наносимых покрытий, но, в то же время, достаточна для получения на них оксидного слоя.
После окончания данной серии проводят холостой (без загрузки изделий) нагрев реактора с напуском в реактор окислителя - воздуха давлением, не превышающим 1 атмосферу. Окислитель, вступая в химическую реакцию окисления с полученным на внутренних поверхностях реактора покрытием, образует на наружной его поверхности оксидный слой из оксидов алюминия (Al2O3), оксидов хрома (Cr2O3), шпинели (Al2O3⋅Cr2O3). Данный слой является химически нейтральным по отношению к компонентам рабочей среды, используемым для проведения ХТО.
После проведения холостого нагрева реактора с напуском воздуха и получения оксидного слоя возобновляют проведение штатных технологических процессов алитирования, хромирования или хромоалитирования.
При этом полученный на внутренних поверхностях реактора оксидный слой препятствует дальнейшему насыщению алюминием или хромом внутренней поверхности реактора, что обеспечивает получение на деталях покрытий заданного качества.
В процессе эксплуатации установки полученный оксидный слой постепенно разрушается, поэтому необходимо своевременно периодически повторять холостой нагрев реактора с напуском окислителя для восстановления оксидного слоя.
Как показали исследования, такой холостой нагрев целесообразно повторять после каждых 30-50 штатных технологических процессов ХТО.
Заявленный способ реализовали в соответствии с технологией алитирования лопаток ТВД ГТД на циркуляционной установке УЦЛ-1, реактор которой представляет собой муфель шахтного типа, муфель оснащен герметичной крышкой, в которой размещен центробежный вентилятор с электрическим приводом, внутри муфеля установлены решетки для размещения источника алюминия (для алитирования) - гранул алюминия А-99, источник рабочей газовой среды - хлорид алюминия AlCl3 и обрабатываемые детали. Муфель, крышка и другие узлы и детали реактора изготовлены из жаропрочного никелевого сплава ХН78Т.
Для контроля насыщения внутренних поверхностей реактора алюминием процесс алитирования выполняли вместе с загруженными в реактор образцами (всего восемь образцов), выполненными в виде пластин из никелевого сплава ХН78Т размерами 200×200×12 мм.
Алитирование проводилось при следующих технологических режимах: температура в реакторе 1000-1050°С; время 4-6 часов; скорость вентилятора 1000 об/мин; поверхность расплава алюминия - 300-500 мм2; давление рабочей хлоридной среды 1-10 мм рт.ст.; диффундирующий элемент - алюминий А-99; источник хлоридной среды - хлорид алюминия AlCl3 безводный.
После окончания каждого технологического цикла проводили контроль толщины покрытия двух образцов.
После проведения первого и второго технологических циклов ХТО измеренная толщина покрытия компонентов рабочей среды на образцах №1 и №2 составила 2-6 мкм.
После проведения третьего технологического цикла ХТО измеренная толщина покрытия компонентов рабочей среды на образцах №3 и №4 (после трех технологических циклов) составила 8-10 мкм.
После этого было проведено еще пять технологических циклов ХТО, измеренная толщина покрытия компонентов рабочей среды на образцах №5 и №6 (после восьми технологических циклов) составила 15-18 мкм.
Далее было проведено еще два технологических цикла ХТО, измеренная толщина покрытия компонентов рабочей среды на образцах №7 и №8 (после десяти технологических циклов) составила 15-20 мкм.
Параллельно после каждого технологического цикла проводилось исследование качества нанесенного на детали покрытия, в результате чего было установлено, что после первого и второго технологических циклов ХТО качество покрытия деталей полностью соответствует требованиям. После третьего технологического цикла ХТО показатели толщины покрытия и его химического состава находились в пределах поля допуска. После четвертого-десятого технологических циклов ХТО показатели толщины покрытия, его химического состава и плотности находились на границах поля допуска.
Дальнейшее проведение ХТО с получением качественных покрытий было возможно только при изменении режимов технологического процесса.
После проведения десятого цикла ХТО образцы были загружены в реактор установки для проведения совместного окислительного нагрева при температуре и времени выдержки штатного технологического процесса алитирования. После проведения холостого цикла образцы были исследованы, в результате чего было установлено:
- на образцах №1 и №2 имеются пятна различного цвета, представляющие оксиды Al2O3 и NiO. Последний (NiO) из-за недостаточной толщины легко скалывается и не способен служить надежной защитой от последующего насыщения алюминием;
- на образцах №3-8 образовался слой окислов (Al2O3) и шпинели (Al2O3⋅Cr2O3) однородного цвета.
Далее все образцы вместе с обрабатываемыми деталями проходили штатные процессы алитирования в реакторе установки. Через каждые 10 технологических циклов выполняли оценку состояния окислительного слоя образцов внешним осмотром. О состоянии покрытия судили по отсутствию пятнистости на поверхности образцов.
По результатам исследований было установлено следующее:
- после 10 циклов алитирования на поверхности образцов №1 и №2 имела место пятнистость, что свидетельствовало о неэффективности защитных свойств имеющегося окисленного слоя от алитирования;
- после 30 циклов алитирования выявлена пятнистость на поверхности образцов №3 и №4;
- после 50 циклов алитирования выявлена пятнистость на поверхности образцов №5-8.
На основании проведенных исследований установлено, что оптимальными условиями для формирования защитного оксидного слоя на внутренних поверхностях реактора окислительным нагревом реактора являются следующие:
- первичный окислительный нагрев для формирования оксидного слоя целесообразно осуществлять после проведения 3-10 технологических процессов ХТО, когда гарантированно сформировано на внутренних поверхностях реактора покрытие рабочего агента, используемого для проведения ХТО;
- последующие окислительные нагревы для восстановления оксидного слоя целесообразно осуществлять после проведения каждых 30-50 технологических процессов ХТО, когда полученный на внутренних поверхностях реактора защитный оксидный слой в значительной степени подвержен эрозии.
Таким образом, использование реактора газоциркуляционных установок с защитным оксидным слоем на его внутренних поверхностях, полученным в соответствии с заявленным способом, препятствует дополнительному насыщению диффундирующими элементами деталей при проведении ХТО и предотвращает перенос рабочих компонентов с поверхностей реактора на детали, что позволяет устранить из числа технологических факторов, влияющих на процессы ХТО, площадь внутренней поверхности реактора, насыщенную диффундирующими элементами.
Предложенный способ позволяет повысить стабильность технологии и качество получаемых жаростойких диффузионных покрытий на деталях при их ХТО, в частности при алитировании, хромировании или хромоалитировании, а также повысить ресурс реактора газоциркуляционных установок.
Весьма важно также и то, что получение защитного покрытия осуществляется при использовании штатных технологических режимов, используемых при ХТО. Это значительно упрощает осуществление способа и сводит к минимуму простои реактора.

Claims (1)

  1. Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей, включающий формирование на внутренних поверхностях реактора защитного покрытия, химически нейтрального к рабочей среде, отличающийся тем, что первоначально при формировании защитного покрытия проводят от 3 до 10 штатных циклов нанесения покрытия на детали с получением на внутренних поверхностях реактора покрытия из рабочего агента, используемого при проведении химико-термической обработки, после чего проводят холостой цикл работы реактора, при котором в полость реактора подают окислитель для образования оксидного слоя на поверхности полученного покрытия, причем холостой цикл повторяют через каждые 30-50 штатных циклов химико-термической обработки.
RU2016145637A 2016-11-22 2016-11-22 Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей RU2628309C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016145637A RU2628309C1 (ru) 2016-11-22 2016-11-22 Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016145637A RU2628309C1 (ru) 2016-11-22 2016-11-22 Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей

Publications (1)

Publication Number Publication Date
RU2628309C1 true RU2628309C1 (ru) 2017-08-17

Family

ID=59641799

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016145637A RU2628309C1 (ru) 2016-11-22 2016-11-22 Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей

Country Status (1)

Country Link
RU (1) RU2628309C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524402B1 (en) * 1994-06-24 2003-02-25 Institut Francais Du Petrole Passivation method for metallic articles of nickel and iron-based superalloy
RU74637U1 (ru) * 2008-03-31 2008-07-10 Открытое акционерное общество "Корпорация ВСПМО-АВИСМА" Установка для нанесения термодиффузионного покрытия на поверхность реторты для получения губчатого титана
RU2367717C2 (ru) * 2007-11-09 2009-09-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ нанесения термодиффузионного титанового покрытия на поверхность реторты для получения губчатого титана и установка для его осуществления
RU2403967C2 (ru) * 2004-03-23 2010-11-20 Велосис, Инк. Защищенные поверхности сплавов в микроканальных устройствах, катализаторы, катализаторы на основе оксида алюминия, катализаторы-полупродукты и способы изготовления катализаторов и микроканальных устройств
RU2555311C2 (ru) * 2013-08-05 2015-07-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ нанесения покрытия на поверхность реторты, используемой для получения губчатого титана и установка для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524402B1 (en) * 1994-06-24 2003-02-25 Institut Francais Du Petrole Passivation method for metallic articles of nickel and iron-based superalloy
RU2403967C2 (ru) * 2004-03-23 2010-11-20 Велосис, Инк. Защищенные поверхности сплавов в микроканальных устройствах, катализаторы, катализаторы на основе оксида алюминия, катализаторы-полупродукты и способы изготовления катализаторов и микроканальных устройств
RU2367717C2 (ru) * 2007-11-09 2009-09-20 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ нанесения термодиффузионного титанового покрытия на поверхность реторты для получения губчатого титана и установка для его осуществления
RU74637U1 (ru) * 2008-03-31 2008-07-10 Открытое акционерное общество "Корпорация ВСПМО-АВИСМА" Установка для нанесения термодиффузионного покрытия на поверхность реторты для получения губчатого титана
RU2555311C2 (ru) * 2013-08-05 2015-07-10 Открытое Акционерное Общество "Корпорация Всмпо-Ависма" Способ нанесения покрытия на поверхность реторты, используемой для получения губчатого титана и установка для его осуществления

Similar Documents

Publication Publication Date Title
US20070125459A1 (en) Oxide cleaning and coating of metallic components
CN112430802B (zh) 复杂内腔叶片氟离子清洗及铝化物涂层制备的方法及装置
Chikada et al. Fabrication technology development and characterization of tritium permeation barriers by a liquid phase method
RU2628309C1 (ru) Способ защиты внутренних поверхностей реактора от насыщения компонентами рабочей среды при химико-термической обработке деталей
Kornienko et al. Microstructure and properties of Ni-Al coatings obtained by conventional and high-velocity atmospheric plasma spraying
Yang et al. High temperature oxidation resistance of arc ion plating NiCoCrAlY coating modified via laser shock peening
UA58503C2 (ru) Способ защиты высокотемпературных сплавов, содержащих железо, никель и хром, от высокотемпературной коррозии, вызванной цементацией или распылением металла
Xiang et al. Interface stability and microstructural evolution of the (Cr/CrN) 24-coated zirconium alloy under different thermal shock temperatures
Guo et al. Inhibition of metal dusting corrosion on Fe-based alloy by combined near surface severe plastic deformation (NS-SPD) and thermochemical treatment
EP2947174B1 (en) Method for slurry aluminide coating repair
Zhu et al. Effect of yttrium on intergranular embrittlement behavior of GH3535 alloy induced by tellurium
Liu et al. The mechanism of oxide whisker growth and hot corrosion of hot-dipped Al–Si coated 430 stainless steels in air–NaCl (g) atmosphere
RU2579404C2 (ru) Способ формирования защитного покрытия на поверхности металлической детали
Saaedi et al. Corrosion resistance of Ni‐50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere
RU2402633C1 (ru) Способ нанесения комбинированного жаростойкого покрытия
KR20190055659A (ko) 팩 시멘테이션을 이용한 메탈시트 볼 밸브의 표면코팅 방법 및 동 방법으로 형성되는 코팅막을 갖는 메탈시트 볼 밸브
Shirvani et al. The effect of aluminide coating on the steam oxidation behavior of SS321 steel at 700° C
RU2699332C1 (ru) Способ многокомпонентного диффузионного насыщения поверхности деталей из жаропрочных никелевых сплавов
Varghese et al. Degradation of thermally sprayed Al2O3 coatings in reactor-grade liquid-sodium and its mitigation by laser treatment
Abdeldaim et al. The effect of sol-gel Al2O3 interlayer on oxidation behaviour of TBC system
Wai et al. Deuterium permeation and lithium‑lead corrosion behaviors of ceramic‑iron joint coating
EP3093369B1 (en) Method for inner-contour passivation of steel surfaces of nuclear reactor
Lu et al. Corrosion behavior of candidate materials used for urea hydrolysis equipment in coal-fired selective catalytic reduction units
RU2286401C1 (ru) Способ защиты конструкционных сталей от коррозии в свинцовом теплоносителе и его расплавах
WO2015087011A1 (fr) Traitement anticorrosion d'un substrat métallique et substrat ainsi obtenu

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20190821