CN112236661A - 颗粒浓度分析系统和方法 - Google Patents

颗粒浓度分析系统和方法 Download PDF

Info

Publication number
CN112236661A
CN112236661A CN201980037259.4A CN201980037259A CN112236661A CN 112236661 A CN112236661 A CN 112236661A CN 201980037259 A CN201980037259 A CN 201980037259A CN 112236661 A CN112236661 A CN 112236661A
Authority
CN
China
Prior art keywords
fluid
analysis system
working fluid
sample
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980037259.4A
Other languages
English (en)
Inventor
D·R·布克
D·D·布克
S·P·布克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SENSOR CO
Original Assignee
SENSOR CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SENSOR CO filed Critical SENSOR CO
Publication of CN112236661A publication Critical patent/CN112236661A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/065Investigating concentration of particle suspensions using condensation nuclei counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2252Sampling from a flowing stream of gas in a vehicle exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Abstract

本发明涉及一种用于测试流体样本中的颗粒浓度的颗粒浓度分析系统,诸如发动机的尾气中所存在的发动机排放物颗粒浓度。所述颗粒浓度分析系统包括凝聚粒子计数器,所述凝聚粒子计数器具有饱和腔室、凝聚器,和激光光学粒子计数器。所述分析系统还包括工作流体罐、工作流体泵和取样探头。所述系统向用户提供稳健分析系统以测试车辆排放物而无需对装置进行高级培训,因为所述装置受保护而免于误用。位置敏感传感器用于确保所述系统在所述系统倾倒或置于将产生错误结果的位置的情况下未受损。额外特征包括差分压力传感器、密封和可置换防篡改工作流体罐、溶剂回收系统、防作弊装置,和流体纯度传感器。

Description

颗粒浓度分析系统和方法
技术领域
本发明涉及一种用于分析颗粒浓度的系统,特别地涉及一种凝聚粒子计数器。
背景技术
发动机的排放物和空气质量标准对于地球日益重要,因为越来越多的车辆出现于高速公路和世界各地,并且环境污染源持续排放污染物。车辆发动机尾气的排放物测试为用于确保发动机不过度污染地球的全世界关注事项。目前测量系统通常为大的、昂贵的和耗时的。此外,需要对于所有污染物的大规模定期检查以确保发动机在其可用寿命中保持顺应性。测量排放物测试的另一关注事项为用于测试设施、技术人员或顾客通过允许周围空气渗入该测试并示出虚假合格而对测试进行“作弊”的可能性。
一种类型的排放物分析器为混合型凝聚粒子计数器(CPC)以用于10nm至200nm(纳米)的尺寸范围内的颗粒数量浓度的测量。此类粒子计数器用于确定发动机排放物中的颗粒浓度,用于监测环境空气质量,以及其中颗粒浓度为关注事项的其它应用。CPC要求以工作流体的定期填充(例如,丁醇或异丙醇)。填充通常利用重力供给系统或注射器从外部罐来实现。
发明内容
下文涉及对于空气质量测试和分析所开发的低成本和低复杂性产品,诸如特别地与定期技术检测(PTI)相关联的排气管颗粒数量(PN)浓度测量。凝聚粒子计数器(CPC)通常用于执行空气质量测试和分析以对样本流体中的颗粒进行计数。CPC通常要求有经验操作者监测器械,例如,监测工作流体和确保工作流体始终充分地填充以及为足够纯的或未污染的。低成本排放物测试技术在机动车辆的定期技术检测(PTI)中的应用不仅需要低成本、可重复和准确测量装置,而且优选地需要自动化系统和测量检查以确认该装置是否适当地操作和正确地使用。
在本发明的一个方面,包括凝聚粒子计数器的颗粒浓度分析系统提供用以分析车辆排放物的样本中的颗粒浓度。该分析包括将取样探头插入车辆中,该车辆正测试并以规定测试序列(例如,空闲发动机操作)记录车辆排放物的颗粒数量浓度。在所记录水平高于适用标准的情况下,车辆将视为通过或未通过该排放物测试。
在一个方面,根据本发明的全集成颗粒浓度分析系统利用CPC(其联接取样探头)和周围空气调节系统来分析车辆排放物的样本中的颗粒浓度。分析系统可配置成确定车辆发动机在PTI颗粒数量(PN)测试期间是否通过或未通过,其中发动机空转。分析器还可配置成确定车辆发动机在PTI颗粒数量测试期间是否通过或未通过,其中车辆对于“停顿加速度”之后的三个1分钟样本进行测试,其中所测量最大允许颗粒数量小于250000#cm-3
在本发明的一个方面,车载诊断(OBD)系统与分析系统集成在一起,该分析系统配置成确保车辆“预热”并且准备进行PTI PN测试。在测试期间,记录OBD参数(RPM、冷却剂温度和质量气流速率)和PN浓度两者的每秒数据以有利于额外数据评估以及PTI PN通过或未通过结果。
混合型CPC(以气溶胶流(样本流)进行操作)保持与饱和空气的源分开并且在输送通过凝聚器之前混合。全流型CPC(以装载颗粒(样本)空气进行操作)穿过由工作流体所环绕的加热芯吸物以变得饱和。对于全流型和混合型CPC两者,超饱和蒸汽凝聚于样本颗粒上并使它们生长至约5pm至10pm微滴。这些微滴然后通过喷嘴进行聚集,穿过激光束,并且由光散射粒子计数器(诸如脉冲检测电子器件)进行计数。混合型CPC提供相比于全流型CPC的有益属性,包括无与饱和器或芯吸物相关联的性能降级,因为芯吸物未受样本颗粒污染,这样随着时间得到较低超饱和水平。
饱和器可与凝聚器和测量光学器件机械地脱离,从而改善稳健性,包括对于由振动、取向等所引起的工作流体的光学器件污染的显著较低敏感性。
分析系统包括电子控制器,该电子控制器具有专用微处理器以用于CPC的控制。此外,分析系统可配有用于数据存储的微计算机的低成本套件、无线通信(WiFi)系统、蓝牙通信对车载诊断系统适配器、HTML驱动图形用户界面,和用以允许该系统单独用于各种应用的额外系统。任选地,分析系统的CPC包括三通电磁阀以定期地从CPC凝聚器排空流体。
在一个方面,分析系统包括额外部件以增加功能性和效率,包括HEPA过滤器(用于过滤稀释和饱和器流)、外部罐工作流体罐、微处理器控制泵、扩散筛网(用以将该系统从d50增加至23nm)、取样软管和取样探头。任选地,分析系统包括第二稀释器以将颗粒数量浓度范围扩展至6000000个颗粒每立方厘米(#/cm3)。然而,250000#/cm3以上的浓度向缺陷柴油和汽油颗粒过滤器提供了可靠指示。用于移除半挥发性颗粒的蒸发器管也可包括于分析系统内。
颗粒分析器可校准以满足ISO 27891:2015的性能标准。然而,利用CPC技术的固有线性和性能可预测性,远远减小的校准范围(具有小或不具有损害效应)可用于提供对应显著成本减少。颗粒分析器还可配置成满足或超过《瑞士联邦空气污染管制条例(Switzerland Confederation Ordinance on Air Pollution Control)》(OAPC)814.318.142.1的瑞士PTI性能标准。SR 814.318.142.1为唯一当前既定PTI PN方案。分析系统的CPC可配置成以小于三(3)秒的tio-tgo响应进行操作。
对于如ISO 27891校准方法所反映的良好设计CPC以及校准之间的年度间隔,操作降级因数基本上为零。相比之下,基于扩散的PN测量系统或扩散充电器(DC)通常在正常操作期间易于由于多种源(诸如阱和电晕源的污染)而降级。在用于排放物颗粒浓度分析的感兴趣典型尺寸范围中,CPC不具有颗粒尺寸相关性;然而DC具有显著尺寸相关性,并且当颗粒进行预充电时(例如,在处理系统之后的选择性催化还原(SCR)中),可表现出不稳定结果。
样本毛细管可包括在内以测量分析系统的各种部件处的流体流,这减小或消除了对于单独流校准的需求。通过测量横穿限制部的压力所确定的流体或气体流量通常需要单独校准。然而,低成本皮下注射针头(即,毛细管)的极其紧密工程和表面公差通过压降向流测量提供了紧密控制而无校准。混合型CPC通常配置由总共4个流中的至少3个或4个,这些流实时进行测量(诸如提取流、样本流、排空流,和/或饱和器流)。每个流测量需要较昂贵压力传感器或压力变换器。混合型CPC通常通过从总尾气减去饱和器流和排空流而测量样本流。此类方法要求总尾气流、饱和器流和排空流的极其准确流校准以减小所确定样本流的误差。样本毛细管包括于分析系统内以测量和/或计算样本流,从而减少或消除潜在误差源并且减少分析器的复杂性和成本。利用三通电磁阀来排空CPC还可通过移除对于测量排空流的需求而减少或消除复杂性和成本。
替代在每个测量点处包括压力变换器,单个压力变换器或压力传感器可用于通过使每个压力源循环以确定压力差而测量两个压力源之间的压力差并然后计算系统中的压力。第一压力P1和第二压力P2可通过以P1或P2的源的定期循环而测量压力响应P进行确定。压力响应P=P1+P2,因此在正常操作期间,Pl=P-P2,并且在P1源关闭的情况下,P2=P。单个差分压力变换器(替代两个依赖性变换器)减小了对于压力响应测量所需的响应的复杂性,因为用以关闭压力源所需的电子器件为较简单的,并且耗费每种复杂压力变换器的成本的一部分。隔离一个压力源和对两者进行测量之间的间隔可基于压力信号的稳定性而确定和设定。
CPC的效率通过所实现的超饱和水平来确定,该超饱和水平取决于饱和器和凝聚器之间的温度差。实际上,并非周围空气的所有颗粒经历或实现相同超饱和水平,因此光学粒子计数器的效率以较低超饱和水平逐渐地降低。较低超饱和水平产生较小颗粒尺寸,该较小颗粒尺寸相对较小可能由光学计数器检测到。待由光学计数器进行分析的颗粒的可接受较低截止尺寸通常定义为其中50%的所存在颗粒(d50)得以计数的颗粒尺寸。通常,较低截止颗粒尺寸为约15nm的直径。15nm的d50颗粒尺寸小于“机动车PMP”标准,该标准要求不小于23nm的颗粒的测量,并且因此较高d50在分析发动机尾气时为必需的。扩散筛网可将d50增加至可接受尺寸。
发动机排放显著量的二氧化碳(例如,在化学计量燃烧条件下操作的汽油发动机的16体积%的尾气气体中的预期浓度)。如果取样探头未完全地或正确地插入车辆排气管中,那么所测量二氧化碳将由于与周围空气混合而低于预期。这将潜在地引起“脏车”,由于发动机尾气颗粒以较洁净周围空气的稀释,该“脏车”将无法通过适当执行的尾气分析而合格。包括于分析系统内的二氧化碳传感器提供防作弊装置以防止用户有意地未将取样探头充分地插入车辆排气管中来使车辆“合格”。
在本发明的一个方面,CPC可配置成自动地调整激光测量区域中所存在的颗粒浓度的所记录计数。该调整称为“一致性校正因数”。高颗粒浓度可中断测试,并且减小分析系统的准确性。样本流体中的颗粒浓度越高,一个以上的所生长样本颗粒微滴处于激光测量区域中的可能性越高,其中光学器件可对测量区域中的一个以上的颗粒的仅一者进行“计数”。导致计数缺失。作为实例,高颗粒浓度可以流体体积的30000颗粒每立方厘米(#cm-3)的浓度存在。自动校正的应用允许CPC以R2>0.99的线性和小于15%的最大一致性校正因数测量至多30000#cm-3。CPC具有最大颗粒浓度,其在该最大颗粒浓度下可对流中的颗粒进行准确地计数,该最大浓度称为单计数模式(非稀释)的上限浓度。例如,CPC可具有30000#cm-3的单计数模式的上限浓度,该上限浓度可以包括于分析系统内的扩散筛网或稀释器进行增加。
因此,本发明的颗粒浓度分析系统提供了一种稳健分析系统,该稳健分析系统包括粒子计数器以用于执行样本流体的颗粒浓度分析,诸如发动机尾气PTI颗粒数量测试。颗粒浓度分析系统可配置用于测试实施和用于非现场测试,诸如发动机测试领域。分析系统可用于各种环境,包括用于车辆发动机尾气分析、发电厂尾气分析、周围环境空气质量分析,和其它环境。分析系统包括密封工作流体罐和安全位置开关以防止在测试过程期间和在分析系统的运输期间的损坏、误用和污染。分析系统包括压力传感器和流传感器以测量、验证和校准该分析系统来确保以该分析系统所执行的测试满足预定质量要求。溶剂回收系统可包括在内以从测试流体流回收工作流体来减小工作流体消耗率,以减少整体流体消耗并增加测试数量,这些测试可在未将工作流体重新填充于分析系统中的情况下执行。分析系统包括自动工作流体重新填充系统以监测和重新填充工作流体(随着其在测试期间消耗)以减少处置和污染,该污染可通过工作流体的手动重新填充而引入。额外特征包括蒸发器管、喷射器稀释器、扩散筛网和精确毛细管;该蒸发器管用于在排入周围环境中之前蒸发挥发性颗粒;该喷射器稀释器用以稀释样本流中的颗粒的浓度以增加光学粒子计数器的效率;该扩散筛网用于在进入凝聚粒子计数器之前选择性地移除极小颗粒;该精确毛细管用于简单低成本流验证。
在结合附图查看下述说明书时,本发明的这些和其它目标、优点、目的和特征将变得更显而易见。
附图说明
图1为根据本发明的颗粒浓度分析系统的示意图;
图2为根据本发明的颗粒浓度分析系统的流程图;
图3为根据本发明的颗粒浓度分析系统的后正视图;
图4为根据本发明的颗粒浓度分析系统的前正视图;
图5为用于监测颗粒浓度分析系统中的系统流的毛细管流监测器的剖视图;
图6为颗粒浓度分析系统的用于排空的三通电磁阀的剖视图;
图6a为处于“常开”配置的图6的三通电磁阀的详细视图;
图6b为处于“常闭”配置的图6的三通电磁阀的详细视图;
图7为颗粒浓度分析系统中的用于回收工作流体的冷却溶剂回收系统的剖视图;
图8为示出颗粒浓度分析系统的校准的流程图;
图9为根据本发明的用于测试车辆的排放物所制备的颗粒浓度分析系统的透视图;
图10为根据本发明的颗粒浓度分析系统的分解透视图;
图11为根据本发明的颗粒浓度分析系统的剖视图;和
图11A为图11的颗粒浓度分析系统的另一剖视图,示出了颗粒浓度分析系统的饱和器的部件和内容物。
具体实施方式
现参考附图和其中所描述的例示性实施例,提供了一种用于分析流体中的颗粒浓度的系统10,包括凝聚粒子计数器(CPC)12,以分析样本流体或气溶胶来确定样本中的颗粒浓度或颗粒数量(图1)。分析系统10可适于分析各种形式的流体或气溶胶样本(包括发动机废气、周围大气、发电废气等),包括用于定期技术检查(PTI)。分析系统10配置成与工作流体(诸如异丙醇(IPA))一起操作以使得周围空气流超饱和。饱和周围空气流与样本空气混合,并且周围空气和样本空气的混合物然后穿过凝聚器,超饱和周围空气在该凝聚器中凝聚至样本空气流中的颗粒上以使样本空气流中的颗粒生长来使它们通过光学粒子计数器可视。分析系统10包括工作流体填充或重新填充系统16以用于监测工作流体并将其自动地填充或重新填充于分析系统10中。工作流体填充系统16包括泵18以用于将足够满水平的工作流体填充于分析系统10中并维持。工作流体罐20包括于颗粒分析系统10内以将工作流体的源提供至分析系统10。分析系统10可适用于测试设施中,其中经培训操作者可监测并维持系统10。任选地,分析系统10可适于方便用作自包含式、便携式且稳健的颗粒分析系统10a,诸如农场设备的测试领域(参见图4和图9)。
CPC 12配置成与工作流体(诸如异丙醇(IPA))一起操作以使周围空气流超饱和。在图1的所示实施例中,CPC为混合型CPC,使得周围空气流在饱和器块或流体饱和腔室22中以工作流进行超饱和,无关于样本流体(例如,发动机尾气)。在实现超饱和之后,饱和周围空气在饱和器块22和凝聚器24之间与流体、空气或气溶胶的样本流混合。饱和周围空气流和样本空气流可在凝聚器24的上游的混合腔室25中,在凝聚器24中,或在饱和流和样本流的混合联结部27处进行混合。周围空气流和样本空气流的混合物然后穿过凝聚器24,超饱和周围空气在凝聚器24凝聚至样本空气流中的颗粒上以使样本空气颗粒生长来使它们对于光学粒子计数器14可视。饱和周围空气至样本空气颗粒上的凝聚引起样本空气颗粒生长成较大液滴,诸如尺寸为5微米至10微米(μm)的液滴。流体或空气过滤器23(诸如HEPA过滤器)可包括于饱和器22的上游的分析系统10内以从周围空气过滤无用颗粒,此类无用颗粒可干扰分析的结果。
生长颗粒聚集或穿过喷嘴28,喷嘴28在光学粒子计数器14的进口侧14a处或附近具有宽广端部并且具有邻近激光束30的较窄端部。喷嘴28将生长颗粒流以大体均匀流引导通过激光束30和光学计数器14的光场。通过利用光散射性质(诸如以脉冲检测电子器件),光学计数器14通过激光器30对作为颗粒流的生长颗粒进行计数以确定样本流体流中所存在的样本空气颗粒的数量。在穿过激光器30和光学粒子计数器14之后,所分析流体流从光学计数器14的尾气侧14b排出。
在图1和图2的所示实例中,颗粒分析系统10包括自动工作流体填充系统16以自动地监测工作流体并且填充于饱和器22中(随着其在经HEPA过滤的周围空气流的饱和期间耗尽)。流体填充系统16包括工作流体泵18和工作流体罐20。泵18从工作流体罐20抽吸工作流体并且将其泵送至饱和器块22的贮存器部分26中。如图1所示,泵18为蠕动泵。贮存器液位传感器32设置于贮存器部分26处以监测饱和器22中工作流体的液位。液位传感器32与泵18电子通信以维持饱和器22中工作流体的足够水平来确保分析系统10的适当操作。自动填充系统16缓解了技术人员的流体处置并且减小了工作流体的污染的发生率。
分析系统10可包括与泵18和液位传感器32通信的电子控制器34,电子控制器34基于接收自液位传感器32的信息而控制泵18。控制器34包括适于控制分析系统10的软件。嵌入式计算机可提供有软件控制器34以有利于基于网络无线通信、图形用户界面或第三方装置(例如,蓝牙车载诊断系统或基于USB的GPS模块)与分析系统10的集成来控制或监测系统10。电子控制器包括开关35以选择性地操作分析系统10中的不同泵。
工作流体罐20在CPC 12和分析系统10的正常使用期间需要定期重新填充和/或置换。工作流体可为吸湿的和可燃的,使得工作流体的安全处置为重要的。工作流体罐20可密封(诸如以可自密封盖(例如,以隔膜)),使得其在倾倒的情况下未溢出,并且使得罐20中的吸湿工作流体未暴露于可污染工作流体的水蒸汽。当密封罐20移除时,自密封盖(未示出)包含罐20中的流体并且缓解了污染和安全问题。任选地,如下文进一步详细地描述,工作流体罐20可包括分子筛以从工作流体移除水。
工作流体罐20和工作流体泵18与CPC 12流体连通。流体罐20和流体泵18可与CPC12隔开。罐20和泵18可与待置换或重新填充的CPC 12断开连接。任选地,工作流体泵18联接至饱和器块22并且工作流体罐20与工作流体泵18隔开,使得罐20可与待置换或重新填充的泵18断开连接。在另一个实施例中,外壳36包含并支撑CPC 12和流体填充系统16以提供自包含式分析系统10a(图4和图9)。系统10a的工作流体罐20可从该系统移除以进行重新填充或置换。任选地,系统10a的工作流体罐20可从外部罐进行重新填充,使得从外壳36的移除为非必需的。
在一个实施例中,分析系统10中所用的工作流体为99%以上的异丙醇(IPA)。其它流体可用于工作流体,诸如正丁醇。工作流体需维持于高纯度(例如,99%以上纯的)。工作流体中的杂质(例如,水)可改变蒸汽压力/温度关系并且引起分析系统10的不准确读数。饱和器22中所生成的IPA蒸汽的量和纯度对于稳定且准确测量结果为至关重要的。异丙醇、正丁醇和其它工作流体为吸湿的,并且因此可随着时间而吸收水,这降低了分析系统10的分析效率。工作流体罐20可供应有吸水材料(未示出)以防止或消除工作流体的污染或劣化。工作流体罐20中的吸水材料可为罐20中的3A分子筛以从进入饱和器22之前的周围空气移除任何水污染并且从而延长工作流体使用寿命。
在分析系统10的正常操作条件下,工作流体消耗率可为1ml至2ml每小时。如所示,饱和器块贮存器26具有10ml的液体工作流体的容量。由于工作流体的低消耗率,分析系统10能够在延长时段内操作,而无需重新填充或置换工作流体罐20。1ml至2ml每小时的工作流体消耗率在连续操作的约五(5)和十(10)小时之间得出。例如,对于五(5)分子PTI测试,可执行约60次至120次PTI测试,而无需重新填充饱和器块贮存器26。工作流体罐20将分析器的操作持续时间延迟到至多数个月,并且工作流体罐20的容纳可选择成适应较短或较长的测试周期。
在一个实施例中,分析系统10包括CPC 12的上游的至少一个扩散筛网(未示出)以改善测试成果质量。CPC 12的上游的扩散筛网包括在内以增加分析系统10对于当前建立的23nm的“机动车PMP”标准的响应。所需扩散筛网的数量可选择成满足不同d50截止点。
CPC 12可配置成自动地调整激光测量区域30a中所存在的颗粒浓度的所记录计数。该调整(“一致性校正因数”)允许光学计数器14对颗粒进行准确地计数,甚至当样本流体中的颗粒的浓度高时。在无补充稀释手段的情况下,并且利用一致性校正因数,CPC 12能够校准并验证至多30000#cm-3(表示分析系统10的单计数模式(未稀释)的上限浓度)的分析。
在图2的所示实施例中,分析系统包括喷射器稀释器40以有利于对于至多约600000#cm-3的浓度的单颗粒计数。稀释空气泵42包括于喷射器稀释器40的上游以将稀释空气流通过稀释器输入端40a提供至喷射器稀释器40。喷射器稀释器40可配置成将流体的样本流正常地稀释至20:1稀释比率。喷射器稀释器40可调整以修改稀释比率。喷射器稀释器40还能够通过将样本流与经过滤周围稀释空气混合而克服与测试车辆和发动机相关联的湿度问题,该发动机排放高浓度的水蒸汽(例如,汽油发动机)。任选地,为测试高于约600000#cm-3的颗粒浓度,额外喷射器稀释器(未示出)可配有分析系统10。例如,具有10:1稀释比率的额外稀释喷射器稀释器可将分析系统10的浓度上限扩展至6000000#cm-3。过滤器40(诸如HEPA过滤器)可联接喷射器稀释器40以过滤进入喷射器稀释器40之前的周围空气。
喷射器稀释器40和额外喷射器稀释器的关键流和压力通过控制器34进行监测和控制。任选地,喷射器稀释器40联接至CPC 12的外部部分,并且经由从CPC 12块至喷射器稀释器40的热传递向CPC 12块提供冷却。在一个实施例中,喷射器稀释器40与CPC集成在一起,使得稀释器40的机械气动管路(未示出)完全受约束并且因此不要求颗粒缺失的独特验证。
分析系统10可包括蒸发器管(未示出)以用于样本流中的半挥发性颗粒在将样本流与饱和流混合并进入凝聚器24之前的移除。蒸发器在约300℃下操作,并且能够具有95%以上的半挥发性颗粒移除效率,诸如95%以上的四十烷的移除效率。分析系统10可以处于活动或停用配置的蒸发器进行操作,该蒸发器例如有利于探究记录虚假车辆PTI不合格的可能性,该虚假车辆PTI不合格由车辆或发动机在测试期间的半挥发性纳米颗粒的间歇释放所引起。当分析系统10配置由额外喷射器稀释器和发生器管时,分析系统10满足《瑞士联邦空气污染管制条例(Switzerland Confederation Ordinance on Air PollutionControl)》(OAPC)814.318.142.1的瑞士PTI性能标准。
尾气或提取泵44包括于分析系统10内以在已于光学传感器14处进行分析之后将流体抽吸离开CPC 12。提取泵44可连接至凝聚器24的排空端口45以根据需要对CPC 12进行排空。提取泵与电子控制器34电子通信,并且可操作来打开和关闭以使CPC 12排气,以补充分析系统10中的流体流,以对分析系统10进行排空,或以测量分析系统10的各个部件处的压力值。
分析系统10包括至少一个差分压力传感器或压力变换器以通过定期地控制压力的源(例如,将泵打开或关闭)而测量两个独立压力并确定每个单独压力。图2的所示实施例的分析系统10包括具有两个压力测量端口46a和46b的差分压力传感器46。两个独立压力P1和P2可通过以P1或P2的源的定期循环而测量压力响应(P)进行确定。压力响应P=P1+P2,因此在正常操作期间,Pl=P-P2,并且在P1源关闭的情况下,P2=P。差分压力传感器46减小了对于压力响应测量所需的响应的复杂性,因为用以关闭稀释泵42或尾气泵44所需的电子器件34为较简单的,并且耗费复杂压力变换器的成本的一部分。隔离一个压力源和对两者进行测量之间的间隔可通过压力信号的稳定性进行确定和设定。
参考图2,压力传感器46测量由尾气泵44所引起的负压和由稀释空气泵42所引起的正压。泵42,44利用泵控制器电子器件44进行控制。在正常操作条件下,压力传感器46记录两个源(稀释泵42和尾气泵44)之间的总压力差。当稀释空气泵42由控制器34定期地关闭时,所记录的压力仅为由尾气泵44所引起的压力。差值可用于在正常操作条件下确定或计算稀释空气泵压力。
在图5的所示实施例中,具有精确毛细管50的流量测量装置或差分压力传感器48包括在内以用于流量测量来减小或消除对于分析系统10的各种流动路径中的单独流量校准的需求。当气体流量通过横穿限制部(诸如,提取孔口52)的压力的测量进行确定时,可能需要单独流量校准。精确制造毛细管50(诸如皮下注射针头)制造成紧密工程和表面公差并且通过压降向流量测量提供紧密控制公差,而无需进行校准。由毛细管所确定的具有对应差分压降的流量54示于图5中。
待由分析系统10来分析的样本流(例如,发动机尾气)通过包括样本流精确毛细管的样本差分压力传感器56进行直接地测量。样本流可利用样本传感器56的样本毛细管58进行直接地测量,从而减少潜在误差源并且减小分析系统10的复杂性和成本。
如图2和图6所示,三通电磁阀60包括在内以调控分析系统10中的流体流,并且可适于对分析系统10的CPC 12进行排空,诸如从凝聚器24处的排空部45。三通阀60消除了对于排空流的实时测量的需求。三通电磁阀60选择性地可操纵以从凝聚器24定期地排空流体(图6)。三通电磁阀60由控制器34控制以将流动路径从“常开”位置60a定期地切换至“常闭”位置60b(参见图6A和图6B)。三通电磁阀60包括对CPC 12的排空端口45、提取孔口52和提取泵44的流体连接部。
CPC 12的提取流和排空流保护气相和液相两者的工作流体。在图7的所示实施例中,分析系统10包括溶剂或工作流体回收系统64以从提取流和排空流回收气相和液相工作流体。回收系统64联接工作流体罐20以将所回收工作流体返回至工作流体罐20来在分析系统10中重复使用。尾气泵44将提取流和排空流泵送至溶剂回收系统64的回收入口端口66。回收系统64包括通气孔68,通气孔68配置成使蒸汽或气体从回收系统64以及从工作流体罐20进行通气。回收系统64减小了蒸汽的浓度,该蒸汽通过通气孔68进行释放以回收一些工作流体并且减小整体工作流体消耗率。如图7所示,溶剂回收系统64包括冷却换热器70(诸如,珀尔帖装置)以使工作流体蒸汽在溶剂回收系统64内部凝聚,该凝聚工作流体通过重力回落并经引导返回至工作流体罐20。
图7所示的分析系统10包括工作流体罐液位传感器72以用于监测工作流体罐20中的工作流体的液位,和工作流体罐填充端口74以重新填充工作流体罐20。罐传感器72将罐20中的工作流体的液位通信至控制器34,控制器34然后可通过将流体从外部流体罐(未示出)抽吸至工作流体罐20而控制工作流体泵18来重新填充工作流体罐20。任选地,控制器34可向操作者提供工作流体罐20需进行重新填充的信号或警示。包括于分析系统10内的排空端口76允许用户排空工作流体罐20,诸如以用于系统10的清洁或运输。
如图3至图4的所示实施例中所示,分析系统10和10a包括可选择校准端口78,80以有利于分析系统10的各种部件的手动或自动校准,而无需内部器械访问或分析系统10的拆卸或拆开。可选择端口78配置用于CPC 12校准,并且可选择端口80配置用于CPC 12和喷射器稀释器40的组合校准。分析系统10的校准通过引入具有已知基准颗粒数量和尺寸的气溶胶或流体来执行。可选择端口78,80可连接至校准系统82,校准系统82配置成确定分析系统10的校准状态并且校准误校准分析系统10(图8)。
校准系统82包括校准歧管84、可控制数据管理分析软件系统86、基准颗粒发生器或源88,和基准颗粒计数装置90。数据管理系统86与基准颗粒发生器88和基准颗粒计数装置90电子通信。校准歧管84联接至一个或多个分析系统10的可选择端口78,80。联接至校准系统82的每个分析系统10与数据管理系统86电子通信。校准系统82由数据管理系统86进行控制以校准或验证分析系统10。基准颗粒发生器88生成具有均匀颗粒数量和颗粒尺寸的校准流体流。基准粒子计数器90分析该校准流体流以确定正由颗粒发生器88所生成的均匀颗粒数量和颗粒尺寸。校准系统82和校准歧管84可配置成利用一个基准颗粒发生器88和一个基准颗粒计数装置90而并行地校准或验证多个装置或系统10。
分析系统10包括气体传感器系统92以用于流量校准或验证。气体传感器系统92能够通过确定基准气体的基准流中的颗粒数量而提供流量、测量、校准和验证,该基准气体具有以百万分率为单位的已知颗粒密度。气体传感器系统92包括气体传感器94以有利于系统流量的检查。气体传感器94具有百万分率(ppm)测量范围,诸如0ppm至10000ppm之间。在示例性实施例中,二氧化碳的已知浓度作为基准气体通过基准气体入口或输入端口96引入至分析系统10中。基准气体中的颗粒与喷射器稀释器40的稀释空气混合或以其稀释,并且然后以CPC饱和器22的饱和空气来进一步稀释或与之混合。基准气体的浓度可在喷射器稀释器40的尾气处或CPC尾气52处进行测量,并且所测量浓度可以基准气体的已知浓度进行计算以验证分析系统10的稀释比率和流量。例如,如果具有10000ppm的已知浓度的基准二氧化碳气体通过输入端96引入系统中并且穿过喷射器稀释器40,喷射器稀释器40记录如通过系统电子器件模块34所测量、计算和记录的20::1稀释比率,那么喷射器稀释器40的尾气处的浓度应为500ppm(l0,000ppm÷20)。在CPC 52的尾气出口处,二氧化碳的浓度将进一步减小CPC样本流量54除以饱和器流量的比率(随着其进入CPC饱和器22)。如果以CO2传感器94所测量的浓度处于喷射器稀释器40尾气或CPC尾气52处的预期二氧化碳浓度的预定界限(例如,<5%)内,那么流和分析系统10得以验证。
二氧化碳传感器94可适于检查,插入至发动机(例如,车辆的尾气管)中的取样探头98正确地插入(参见图9)。取样探头98在样本管线真空输入端口112处经由取样管线或软管99连接至分析系统10,并且从源(诸如,尾气管)收集或接收样本流体(例如,发动机尾气)。取样探头98与分析系统10可脱离,使得分析系统10能够通过样本输入端口112直接地接收样本流体。发动机排放显著量的二氧化碳(例如,在化学计量燃烧条件下操作的汽油发动机的16体积%)。如果取样探头98未完全地或正确地插入车辆排气管中,那么所测量二氧化碳将由于与周围空气混合而低于预期。这将潜在地引起“脏车”,由于发动机尾气颗粒以较洁净周围空气的稀释,该“脏车”将无法通过适当执行的尾气分析而合格。二氧化碳传感器94提供防作弊装置以防止用户有意地未将取样探头98充分地插入车辆排气管中来使车辆“合格”。由二氧化碳传感器94所测量的二氧化碳的浓度可与预期气体浓度(例如,16%)相比较以验证取样探头98是否适当地插入尾气管中并且未接收稀释尾气样本。
CPC 12中的光学粒子计数器14包括光学器件腔室114,光学器件腔室114具有透镜(未示出)和激光二极管光源30a。由于工作流体在分析系统10中用于使颗粒在它们于粒子计数器14中进行计数之前生长,工作流体可不需要地迁移或输送至光学器件腔室114中,这将导致光学器件受污染。分析系统10的倾斜或误取向可允许工作流体泵送或输送至光学器件腔室114,同时分析系统10打开。安全或倾倒保护单元116包括于分析系统10内。安全单元116包括三轴电容式微加工加速度计(例如,得自NXP半导体公司(NXP Semiconductors)的NMA8451)(未示出)。安全单元116与电子控制器34通信,并且加速度计的输出发送至控制器34,控制器34转换或计算器械倾斜角度。如果计算角度大于预定安全角度或设计取向,那么控制器34触发“保护模式”并且关闭泵18,42和44。操作的安全角度可在任何方向上与竖直轴线为至多四十度。保护模式防止了分析系统10的损坏和潜在高成本修复。
工作流体的条件或纯度对于分析系统10的适当操作为至关重要的。污染或不当填充可使分析系统10中的工作流体降级或使其无用,诸如通过以错误流体填充工作流体罐20。在此类情况下,液位传感器(贮存器液位传感器32或工作流体罐液位传感器72)可仍报告,分析系统10操作准备就绪。以受污染或错误工作流体操作分析系统10可引起对分析系统10的各种部件的损坏。设想出用于监测和控制工作流体的条件的选项,包括以气体纯度传感器48(其设置成邻近提取孔口52)测量提取流中的工作流体的浓度,或提供密封防干扰工作流体罐,或向外部重新填充容器(其用于重新填充工作流体罐20)提供密封防干扰瓶,以及其它所设想选项。
CPC 12的饱和器22包括填充饱和器22的内部空隙的饱和材料或芯吸物118。芯吸物118从工作流体贮存器26吸收工作流体,使得流经饱和器22的周围空气穿过芯吸物118并且所吸收工作流体可用于使饱和器22中的周围空气饱和。芯吸物118提供了饱和过程期间的增加效率以向周围空气提供较高水平的超饱和。
可执行所明确描述实施例中的改变和修改而不脱离本发明的原理,本发明旨在仅通过附属权利要求书的范围进行限制,如根据专利法的原则所解释,包括等同原则。

Claims (47)

1.一种适于对样本流体中的颗粒浓度进行计数的颗粒浓度分析系统,包括:
工作流体罐,所述工作流体罐适于包含工作流体;
样本流体输入端,所述样本流体输入端配置成接收待分析的所述样本流体;
凝聚粒子计数器,所述凝聚粒子计数器包括流体饱和腔室、凝聚器和光学粒子计数器,所述流体饱和腔室配置成以所述工作流体使周围空气饱和,所述凝聚器配置成使所述工作流体饱和的周围空气从所述流体饱和腔室凝聚至所述样本流体上,所述光学粒子计数器配置成对所述样本流体中所存在的样本颗粒进行计数;
工作流体泵,所述工作流体泵适于将所述工作流体从所述工作流体罐传送至所述流体饱和腔室;和
电子控制单元,所述电子控制单元响应于所述光学粒子计数器而对所述样本流体中所存在的样本颗粒进行计数。
2.根据权利要求1所述的颗粒浓度分析系统,其中所述工作流体罐、所述工作流体泵、所述样本流体输入端、所述凝聚粒子计数器和所述电子控制单元作为组件进行互连并且适于对所述样本流体中的颗粒进行计数。
3.根据权利要求1所述的颗粒浓度分析系统,还包括位置敏感开关,所述位置敏感开关配置成当所述分析系统未适当地定位时自动地停用所述分析系统,所述位置依赖性开关包括三轴加速度计。
4.根据权利要求1所述的颗粒浓度分析系统,还包括取样探头和取样管线,所述取样探头用于插入所述车辆尾气管中,所述取样管线在一个端部联接至所述取样探头并且在相对端部可移除地联接至所述凝聚器的上游的所述样本流体输入端,所述取样管线与所述样本流体输入端和所述取样探头流体连通。
5.根据权利要求1所述的颗粒浓度分析系统,还包括所述凝聚粒子计数器的下游的尾气泵,所述尾气泵配置成从所述凝聚粒子计数器抽吸流体,所述尾气泵与所述电子控制单元进行电子通信。
6.根据权利要求5所述的颗粒浓度分析系统,还包括所述凝聚粒子计数器的上游的集成喷射器稀释器和所述喷射器稀释器的上游的稀释泵,所述喷射器稀释器配置成在所述样本流体进入所述凝聚粒子计数器之前以预定稀释比率稀释流体样本中的样本颗粒的浓度,所述稀释喷射器稀释器和所述稀释泵与所述电子控制单元进行电子通信。
7.根据权利要求6所述的颗粒浓度分析系统,还包括沿着所述分析系统的流动路径设置的差分压力传感器,所述差分压力传感器配置成确定所述分析系统中的压力差。
8.根据权利要求7所述的颗粒浓度分析系统,其中所述差分压力传感器配置成测量设置于所述系统中的第一压力测量端口处的第一压力和设置于所述系统中的第二压力测量端口处的第二压力。
9.根据权利要求8所述的颗粒浓度分析系统,其中所述电子控制单元还响应于所述尾气泵和所述稀释泵来测量所述第一压力和所述第二压力的任一者,所述第一压力通过选择性地停用所述稀释泵并指导所述差分压力传感器在所述稀释泵停用时测量所述第一压力进行测量,所述第二压力通过选择性地停用所述尾气泵并指导所述差分压力传感器在所述尾气泵停用时测量所述第二压力进行测量,所述电子控制单元适于计算所述第一压力和所述第二压力之间的压力差。
10.根据权利要求1所述的颗粒浓度分析系统,其中所述工作流体罐为自包含式的并且为从所述凝聚粒子计数器可移除的,所述工作流体罐密封使得其在移动、翻转或转动时不溢出或泄露。
11.根据权利要求10所述的颗粒浓度分析系统,其中所述工作流体罐还包括吸水材料以用于防止所述工作流体的污染或劣化。
12.根据权利要求11所述的颗粒浓度分析系统,其中所述吸水材料为设置于所述工作流体罐中的分子筛,所述分子筛配置成从所述工作流体移除污染物。
13.根据权利要求11所述的颗粒浓度分析系统,其中所述吸水材料为吸湿材料,所述吸湿材料适于从所述工作流体移除水污染。
14.根据权利要求1所述的颗粒浓度分析系统,还包括蒸发器管,所述蒸发器管配置成从所述分析系统移除半挥发性颗粒。
15.根据权利要求1所述的颗粒浓度分析系统,还包括气体传感器,所述气体传感器设置于所述工作流体罐的下游并且配置成测量所述工作流体的纯度,所述工作流体从所述工作流体罐传送至所述流体饱和腔室。
16.根据权利要求1所述的颗粒浓度分析系统,还包括溶剂回收系统,所述溶剂回收系统配置成从所述样本流体的尾气流回收工作流体,所述样本流体在穿过所述光学粒子计数器之后从所述凝聚粒子计数器排出,所述溶剂回收系统将所回收工作流体返回至所述工作流体罐以在所述颗粒浓度分析系统中重复使用。
17.根据权利要求16所述的颗粒浓度分析系统,其中所述溶剂回收系统包括冷却装置。
18.根据权利要求4所述的颗粒浓度分析系统,还包括防作弊装置,所述防作弊装置包括二氧化碳浓度传感器,所述二氧化碳传感器适于测量所述样本流体中所存在的二氧化碳的浓度,所述防作弊装置适于比较所述测量二氧化碳浓度和预期二氧化碳浓度,并且基于所述比较浓度而验证所述取样探头是否适当地插入。
19.根据权利要求1所述的颗粒浓度分析系统,其中所述工作流体泵为蠕动泵,所述蠕动泵配置成以工作流体自动地填充所述工作流体罐。
20.根据权利要求1所述的颗粒浓度分析系统,还包括所述样本流体输入端的下游并且适于测量所述颗粒浓度分析系统中的气体浓度的气体浓度传感器。
21.根据权利要求20所述的颗粒浓度分析系统,其中所述电子控制单元还适于确定所述颗粒浓度分析系统是否通过使在所述气体浓度传感器处所测量的所述气体浓度相比于基准气体的已知气体浓度来适当地校准,所述基准气体引入所述气体浓度传感器的上游的所述颗粒浓度分析系统中,其中所述电子控制单元配置成计算并确定所述测量气体浓度是否处于所述已知气体浓度的规定范围内。
22.根据权利要求21所述的颗粒浓度分析系统,其中所述气体浓度传感器包括二氧化碳浓度传感器。
23.根据权利要求1所述的颗粒浓度分析系统,还包括设置于所述流体饱和腔室内部的液位传感器,所述液位传感器配置成指示所述流体饱和腔室内部的所述工作流体液位。
24.根据权利要求1所述的颗粒浓度分析系统,还包括设置于所述工作流体罐内部的液位浮,所述液位浮配置成指示所述工作流体罐内部的工作流体液位。
25.根据权利要求1所述的颗粒浓度分析系统,其中所述电子控制单元还包括低成本无线通信系统,所述低成本无线通信系统适于与所述电子控制单元无线地通信以控制所述颗粒浓度分析系统。
26.根据权利要求1所述的颗粒浓度分析系统,其中所述电子控制单元还包括低成本图形用户界面。
27.根据权利要求6所述的颗粒浓度分析系统,其中所述电子控制单元包括多个电子控制泵开关。
28.根据权利要求27所述的颗粒浓度分析系统,其中所述多个电子控制泵开关包括尾气泵开关和工作流体泵开关,其中所述尾气泵开关配置成电子控制所述尾气泵的功率,并且所述工作流体泵配置成电子控制所述工作流体泵的功率。
29.一种适于对样本流体中的颗粒浓度进行计数的颗粒浓度分析系统,包括:
工作流体罐,所述工作流体罐适于包含工作流体;
样本流体输入端,所述样本流体输入端配置成接收待分析的所述样本流体;
凝聚粒子计数器,所述凝聚粒子计数器包括流体饱和腔室、凝聚器和光学粒子计数器,所述流体饱和腔室配置成以所述工作流体使周围空气饱和,所述凝聚器配置成使所述工作流体饱和的周围空气从所述流体饱和腔室凝聚至所述样本流体上,所述光学粒子计数器配置成对所述样本流体中所存在的样本颗粒进行计数;
工作流体泵,所述工作流体泵适于将所述工作流体从所述工作流体罐传送至所述流体饱和腔室;
位置敏感开关,所述位置敏感开关配置成当所述分析系统未适当地定位时自动地停用所述分析系统,所述位置依赖性开关包括三轴加速度计;
尾气泵,所述尾气泵处于所述凝聚粒子计数器的下游;
所述凝聚粒子计数器的上游的集成喷射器稀释器和所述喷射器稀释器的上游的稀释泵,所述喷射器稀释器配置成在所述样本流体进入所述凝聚粒子计数器之前以预定稀释比率稀释流体样本中的样本颗粒的浓度;
沿着所述分析系统的流动路径所设置的差分压力传感器,所述差分压力传感器配置成确定所述分析系统中的压力差;
电子控制单元,所述电子控制单元响应于所述尾气泵、所述稀释泵和所述差分压力传感器来确定所述尾气泵和所述稀释泵之间的压力差;
其中所述电子控制单元还响应于所述尾气泵、所述稀释泵和所述差分压力传感器而选择性地停用所述稀释泵并指导所述差分压力传感器当所述稀释泵停用并且所述尾气泵操作时测量尾气泵压力,并且选择性地停用所述尾气泵并指导所述差分压力传感器当所述尾气泵停用并且所述稀释泵操作时测量稀释泵压力,所述控制器适于基于在所述差分压力传感器处所测量的压力而计算所述尾气泵压力和所述稀释泵压力之间的压力差。
30.一种适于对样本流体中的颗粒浓度进行计数的颗粒浓度分析系统,包括:
样本流体输入端,所述样本流体输入端配置成接收待分析的所述样本流体;
凝聚粒子计数器,所述凝聚粒子计数器包括流体饱和腔室、凝聚器和光学粒子计数器,所述流体饱和腔室配置成以工作流体使周围空气饱和,所述凝聚器配置成将所述工作流体饱和的周围空气从所述流体饱和腔室凝聚至所述样本流体上,所述光学粒子计数器配置成对所述样本流体中所存在的样本颗粒进行计数;和
位置敏感开关,所述位置敏感开关配置成当所述分析系统未适当地定位时自动地停用所述分析系统,所述位置依赖性开关包括三轴加速度计。
31.一种适于对样本流体中的颗粒浓度进行计数的颗粒浓度分析系统,包括:
凝聚粒子计数器,所述凝聚粒子计数器包括流体饱和腔室、凝聚器和光学粒子计数器,所述流体饱和腔室配置成以工作流体使周围空气饱和,所述凝聚器配置成将所述工作流体饱和的周围空气从所述流体饱和腔室凝聚至所述样本流体上,所述光学粒子计数器配置成对所述样本流体中所存在的样本颗粒进行计数;
所述凝聚粒子计数器的上游的样本流体输入端,所述样本流体输入端配置成接收待分析的所述样本流体;和
包括冷却装置的溶剂回收系统,所述溶剂回收系统配置成从所述样本流体的尾气流回收工作流体,所述样本流体在穿过所述光学粒子计数器之后从所述凝聚粒子计数器排出;
其中所述溶剂回收系统将所回收工作流体返回至所述流体饱和腔室以在所述颗粒浓度分析系统中重复使用。
32.一种适于对样本流体中的颗粒浓度进行计数的颗粒浓度分析系统,包括:
样本流体输入端,所述样本流体输入端配置成接收待分析的所述样本流体;
凝聚粒子计数器,所述凝聚粒子计数器包括流体饱和腔室、凝聚器和光学粒子计数器,所述流体饱和腔室配置成以工作流体使周围空气饱和,所述凝聚器配置成将所述工作流体饱和的周围空气从所述流体饱和腔室凝聚至所述样本流体上,所述光学粒子计数器配置成对所述样本流体中所存在的样本颗粒进行计数;和
适于测量所述样本流体中所存在的气体的浓度的防作弊装置,所述防作弊装置适于比较所述测量气体浓度和预期气体浓度,并且基于所述比较浓度而验证所述颗粒浓度分析系统是否适当地配置。
33.一种适于对样本流体中的颗粒浓度进行计数的颗粒浓度分析系统,包括:
样本流体输入端,所述样本流体输入端配置成接收待分析的所述样本流体;
凝聚粒子计数器,所述凝聚粒子计数器包括流体饱和腔室、凝聚器和光学粒子计数器,所述流体饱和腔室配置成以工作流体使周围空气饱和,所述凝聚器配置成将所述工作流体饱和的周围空气从所述流体饱和腔室凝聚至所述样本流体上,所述光学粒子计数器配置成对所述样本流体中所存在的样本颗粒进行计数;
电子控制单元,所述电子控制单元响应于所述光学粒子计数器来对所述样本流体中所存在的样本颗粒进行计数;和
所述凝聚粒子计数器的下游的气体浓度传感器,所述气体浓度传感器适于测量所述颗粒浓度分析系统中的气体浓度;
其中所述电子控制单元还响应于所述气体浓度传感器来确定所述颗粒浓度分析系统是否通过使在所述气体浓度传感器处所测量的所述气体浓度相比于基准气体的已知气体浓度来适当地校准,所述基准气体引入所述凝聚粒子计数器的上游的所述颗粒浓度分析系统中,其中所述电子控制单元配置成计算并确定所述测量气体浓度是否处于所述已知气体浓度的要求范围内。
34.一种适于对样本流体中的颗粒浓度进行计数的颗粒浓度分析系统,包括:
工作流体罐,所述工作流体罐适于包含工作流体;
样本流体输入端,所述样本流体输入端配置成接收待分析的所述样本流体;
凝聚粒子计数器,所述凝聚粒子计数器包括流体饱和腔室、凝聚器和光学粒子计数器,所述流体饱和腔室配置成以所述工作流体使周围空气饱和,所述凝聚器配置成使所述工作流体饱和的周围空气从所述流体饱和腔室凝聚至所述样本流体上,所述光学粒子计数器配置成对所述样本流体中所存在的样本颗粒进行计数;
工作流体泵,所述工作流体泵适于将所述工作流体从所述工作流体罐传送至所述流体饱和腔室;
电子控制单元,所述电子控制单元响应于所述光学粒子计数器来对所述样本流体中所存在的样本颗粒进行计数;和
气体浓度传感器,所述气体浓度传感器设置于所述工作流体罐的下游并且配置成测量所述工作流体的纯度,所述工作流体从所述工作流体罐传送至所述流体饱和腔室;
其中所述电子控制单元还响应于所述气体浓度传感器以当所述工作流体的所述纯度低于要求纯度水平时停用所述颗粒浓度分析系统。
35.一种用于分析流体样本中的颗粒浓度的方法,所述方法包括:
将样本流体的样本引导至颗粒浓度分析系统;
将工作流体通过工作流体泵从工作流体罐泵送至流体饱和器块;
加热所述流体饱和器块中的所述工作流体;
将周围空气流引导至所述流体饱和器块中;
以所述加热工作流体使所述周围空气饱和以产生超饱和流体流;
将所述超饱和流体输送至混合腔室;
使所述超饱和流体与所述样本流体的样本在所述混合腔室中混合以产生所述样本流体和所述超饱和流体的混合物;
将所述混合物输送至所述混合腔室的下游的凝聚器;
将所述超饱和流体凝聚至所述样本流体中的样本颗粒上以使所述样本颗粒生长;
将所述生长样本颗粒输送通过光学粒子计数器;
以所述光学粒子计数器对所述生长样本颗粒进行计数;
在电子控制单元处从所述光学粒子计数器接收信息,所述电子控制单元与所述光学粒子计数器电子通信;
以所述电子控制单元确定所述样本流体的所述样本颗粒的浓度;和
从所述光学粒子计数器排出所述计数样本颗粒。
36.根据权利要求35所述的方法,还包括在喷射器稀释器中稀释所述样本流体并且通过稀释泵将所述稀释样本输送至所述混合腔室。
37.根据权利要求36所述的方法,还包括以所述电子控制单元交替地停用所述稀释泵和所述尾气泵,所述电子控制单元包括多个泵开关;当交替地停用所述稀释泵和所述尾气泵时,以与所述电子控制单元电子通信的差分压力传感器测量所述稀释泵和所述尾气泵之间的压力;和以所述电子控制单元计算所述稀释泵和所述尾气泵之间的压力差。
38.根据权利要求35所述的方法,还包括以饱和器液位传感器监测所述流体饱和器腔室中的液位,以流体罐液位传感器监测所述工作流体罐中的液位,将所述测量液位的信息通信至所述电子控制单元,和基于由所述电子控制器从所述饱和器液位传感器和所述流体罐液位传感器所接收的所述信息而将所述工作流体自动地重新填充于所述流体饱和器腔室中。
39.根据权利要求35所述的方法,还包括在所述颗粒浓度分析系统未处于理想操作位置的情况下以位置敏感安全开关停用所述颗粒浓度分析系统,所述位置敏感安全开关包括三轴加速度计,所述位置敏感安全开关配置成在所述三轴加速度计检测到所述颗粒浓度分析系统失当地定位的情况下停用所述颗粒浓度分析系统。
40.根据权利要求35所述的方法,还包括以溶剂回收系统从所排出计数气溶胶回收工作流体,并且将所述回收工作流体返回至所述工作流体罐以在所述颗粒浓度分析系统中进行循环和重复使用。
41.根据权利要求35所述的方法,还包括以与所述电子控制单元电子通信的气体浓度传感器测量所述样本流体中所存在的二氧化碳的浓度;和通过使所述气体浓度传感器的所测量气体浓度与预期尾气浓度相比较而以所述电子控制单元验证取样探头是否适当地插入车辆尾气管中。
42.根据权利要求35所述的方法,还包括在所述凝聚器的上游的基准气体入口端口处将基准流体流引入所述颗粒浓度分析系统中,所述基准流体具有已知颗粒浓度;以设置于所述凝聚器的下游的所述颗粒浓度分析系统中的某一位置的气体传感器测量颗粒浓度,所述气体传感器与所述电子控制单元电子通信;在所述电子控制单元处从所述气体传感器接收所述测量颗粒浓度;基于所述基准流体的所述已知颗粒浓度而通过所述电子控制单元比较所述测量颗粒浓度和预期颗粒浓度,并且基于测量颗粒浓度和预期颗粒浓度的比较结果而验证所述颗粒浓度分析系统流动值是否处于要求校准界限内。
43.根据权利要求35所述的方法,还包括以气体纯度传感器测量所述工作流体罐的所述工作流体的纯度,所述气体纯度传感器与所述电子控制单元电子通信;和以所述电子控制单元验证所述工作流体是否满足要求纯度。
44.一种用于分析流体样本中的颗粒浓度的方法,所述方法包括:
在所述凝聚器的上游的基准气体入口端口处将基准流体流引入至所述颗粒浓度分析系统中,所述基准流体具有已知颗粒浓度;
以与所述电子控制单元电子通信的气体传感器测量颗粒浓度,所述气体传感器设置于所述凝聚器的下游的所述颗粒浓度分析系统中的某一位置;
在所述电子控制单元处从所述气体传感器接收所述测量颗粒浓度的信息;
基于所述基准流体的所述已知颗粒浓度而通过所述电子控制单元比较所述测量颗粒浓度和预期颗粒浓度;和
基于测量颗粒浓度和预期颗粒浓度的比较结果而验证所述颗粒浓度分析系统流动值是否在要求校准界限内进行校准。
45.一种用于分析流体样本中的颗粒浓度的方法,所述方法包括:
以饱和器液位传感器监测所述颗粒浓度分析系统的流体饱和器腔室中的液位;
以流体罐液位传感器监测与所述颗粒浓度分析系统一起设置的工作流体罐中的液位;
将所述测量液位的信息通信至所述颗粒浓度分析系统的电子控制单元;和
基于由所述电子控制单元从所述饱和器液位传感器和所述液体罐液位传感器所接收的所述信息而将工作流体以工作流体泵从所述工作流体罐泵送至设置于所述流体饱和器腔室中的工作流体贮存器。
46.一种用于分析流体样本中的颗粒浓度的方法,所述方法包括:
以压力敏感位置传感器确定所述颗粒浓度分析系统是否适当地定位;和
在所述压力敏感位置传感器确定所述颗粒浓度分析系统未适当地定位的情况下,自动地停用所述颗粒浓度分析系统。
47.一种用于分析流体样本中的颗粒浓度的方法,所述方法包括:
以电子控制单元交替地停用稀释泵和尾气泵,所述电子控制单元包括多个泵开关;
当所述电子控制单元交替地停用所述稀释泵和所述尾气泵时,以与所述电子控制单元电子通信的所述差分压力传感器测量所述稀释泵和所述尾气泵之间的压力;和
基于所述稀释泵和所述尾气泵之间的所测量压力而以所述电子控制单元计算所述稀释泵和所述尾气泵之间的压力差。
CN201980037259.4A 2018-06-07 2019-06-06 颗粒浓度分析系统和方法 Pending CN112236661A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862681803P 2018-06-07 2018-06-07
US62/681,803 2018-06-07
PCT/IB2019/054740 WO2019234688A2 (en) 2018-06-07 2019-06-06 Particle concentration analyzing system and method

Publications (1)

Publication Number Publication Date
CN112236661A true CN112236661A (zh) 2021-01-15

Family

ID=68770117

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980037259.4A Pending CN112236661A (zh) 2018-06-07 2019-06-06 颗粒浓度分析系统和方法

Country Status (6)

Country Link
US (1) US11686660B2 (zh)
EP (1) EP3803317A4 (zh)
JP (1) JP2021527198A (zh)
KR (1) KR20210018259A (zh)
CN (1) CN112236661A (zh)
WO (1) WO2019234688A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710591A (zh) * 2021-01-19 2021-04-27 南昌智能新能源汽车研究院 一种排放测试设备稀释比控制精度验证装置及其验证方法
CN112986070A (zh) * 2021-05-12 2021-06-18 西安多普多信息科技有限公司 一种尾气检测装置、方法和系统
CN113720749A (zh) * 2021-08-31 2021-11-30 北京航空航天大学 一种宽温纳米颗粒计数器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122419A (zh) * 2019-12-05 2020-05-08 中国科学院合肥物质科学研究院 一种冷凝粒子计数器
CN113188852A (zh) * 2021-04-28 2021-07-30 哈尔滨工程大学 一种在不同环境下针对微纳米级气溶胶的取样测量装置
WO2022235318A1 (en) * 2021-05-07 2022-11-10 Tsi Incorporated Aerosol-based liquid particle detection measurement
KR102352118B1 (ko) 2021-09-29 2022-01-18 주식회사 거남 도장공장 전처리조 내의 이물질 변화 측정 시스템
KR102410143B1 (ko) 2021-12-03 2022-06-23 (주)그린텍아이엔씨 스마트 단채널 입자계수기
KR102394276B1 (ko) * 2021-12-30 2022-05-04 주식회사 거남 도장 공장의 전처리조 오염도 상태 추적 시스템

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020157446A1 (en) * 1999-04-07 2002-10-31 Dilger John P. Pressure activated calibration system for chemical sensors
US20060266133A1 (en) * 2005-05-27 2006-11-30 Dong-Hyun Kim Flow indicator and apparatus for monitoring particles in air
US20080047373A1 (en) * 2006-07-12 2008-02-28 Ahn Kang H Particle measuring system and method
US20080152547A1 (en) * 2006-12-22 2008-06-26 Thermo Electron Corporation Devices, methods, and systems for detecting particles in aerosol gas streams
US20080186489A1 (en) * 2007-02-02 2008-08-07 Kang Ho Ahn Condensation particle counter
JP2009042024A (ja) * 2007-08-08 2009-02-26 Toyota Central R&D Labs Inc 呼気判定装置
WO2010085085A2 (ko) * 2009-01-20 2010-07-29 (주)에이치시티 입자 측정 유니트
US20110259426A1 (en) * 2007-08-01 2011-10-27 Cavagna Group Spa. Electronic Flow Sensor
US20120222495A1 (en) * 2009-08-24 2012-09-06 Particle Measuring Systems, Inc. Flow monitored particle sensor
US20130180321A1 (en) * 2011-12-22 2013-07-18 Horiba, Ltd. Particle number counting apparatus
US20140347663A1 (en) * 2011-10-26 2014-11-27 Research Triangle Institute Aerosol exposure monitoring
CN104880339A (zh) * 2015-06-18 2015-09-02 吉林大学 一种缸内直喷汽油机排气微粒热稀释采样系统
CN105334146A (zh) * 2015-10-16 2016-02-17 北京航空航天大学 一种直接测量发动机尾气颗粒物数目浓度的检测装置
CN106290744A (zh) * 2016-10-19 2017-01-04 舟山市质量技术监督检测研究院 尾气分析仪校准装置
US20170299487A1 (en) * 2016-04-14 2017-10-19 Applied Materials, Inc. 30 nm in-line lpc testing and cleaning of semiconductor processing equipment

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694085A (en) 1970-09-10 1972-09-26 Environment One Corp Mixing type condensation nuclei meter
US3849178A (en) 1970-11-11 1974-11-19 Tsi Inc Thermal protective process and article coated with thermal protective composition
SE394893B (sv) 1970-11-11 1977-07-18 Tsi Inc Intumescent vermeskyddande komposition innehallande silikatsalt av en organisk amin och ett bindemedel
US3721804A (en) 1970-12-16 1973-03-20 Tsi Inc Apparatus for sealing and shrinking plastic film
US3877200A (en) 1973-06-06 1975-04-15 Tsi Inc Capping device
CA990007A (en) 1973-09-21 1976-06-01 T.S.I. Thermal protective process compositions for use therein and method of making them
GB1497659A (en) 1974-11-14 1978-01-12 Tsi Inc Thermal protecting process and composition
US4263002A (en) 1979-04-20 1981-04-21 Tsi Incorporated Differential doppler technique for on-axis backscatter measurements
US4293217A (en) 1980-02-06 1981-10-06 The United States Of America As Represented By The Secretary Of The Army Continuous-flow condensation nuclei counter and process
US4331037A (en) 1980-06-02 1982-05-25 Tsi Incorporated Fluid flow measuring apparatus
US4394825A (en) 1980-06-02 1983-07-26 Tsi Incorporated Fluid flow measuring apparatus
US4449816A (en) 1981-05-11 1984-05-22 Nitta Gelatin Kabushiki Kaisha Method for measuring the number of hyperfine particles and a measuring system therefor
US4387993A (en) 1981-06-25 1983-06-14 Tsi Incorporated Particle size measuring method and apparatus
US4471654A (en) 1981-09-25 1984-09-18 Tsi Incorporated Fluid flow measuring apparatus
DK233282A (da) 1982-05-24 1983-11-25 Tsi Inc Apparat til maaling af et mediums hastighed og/eller bevaegelsesretning
EP0095000B1 (en) 1982-05-25 1987-09-02 TSI Incorporated Fluid flow measuring apparatus
US4493945A (en) 1982-08-23 1985-01-15 Thermal Science, Inc. Thermal protective system
US4503706A (en) 1983-05-16 1985-03-12 Kenneth J. Kolodjski Constant temperature anemometer
US4523462A (en) 1983-05-16 1985-06-18 Tsi Incorporated Constant temperature anemometer having an enhanced frequency response
US4596140A (en) 1984-09-21 1986-06-24 Tsi Incorporated Constant overheat anemometer with sensor lead wire impedance compensation
FR2570829B1 (fr) 1985-09-20 1987-11-27 Tsi Inc Anemometre a fil chaud du type a pont de resistances equilibre
US4875755A (en) 1986-09-15 1989-10-24 Tsi Incorporated Fiber optic connector assembly and method of making same
US4772081A (en) 1986-09-15 1988-09-20 Tsi Incorporated Fiber optic connector assembly
US4790650A (en) * 1987-04-17 1988-12-13 Tsi Incorporated Condensation nucleus counter
US4843564A (en) 1987-04-23 1989-06-27 Tsi Incorporated Apparatus and method for measuring frequency of coherent component of a composite signal
US4787251A (en) 1987-07-15 1988-11-29 Tsi Incorporated Directional low differential pressure transducer
US4948257A (en) 1987-09-14 1990-08-14 Tsi Incorporated Laser optical measuring device and method for stabilizing fringe pattern spacing
US4950073A (en) 1989-02-10 1990-08-21 Pacific Scientific Company Submicron particle counting enlarging the particles in a condensation based growth process
WO1990010858A1 (en) 1989-03-06 1990-09-20 Tsi Incorporated Single particle detector using light scattering techniques
US5098657A (en) 1989-08-07 1992-03-24 Tsi Incorporated Apparatus for measuring impurity concentrations in a liquid
US5026155A (en) 1989-09-06 1991-06-25 Air Products And Chemicals, Inc. Process for sizing particles using condensation nucleus counting
US5121988A (en) 1989-10-04 1992-06-16 Tsi Incorporated Single particle detector method and apparatus utilizing light extinction within a sheet of light
US5085500A (en) 1989-11-28 1992-02-04 Tsi Incorporated Non-imaging laser particle counter
US4973969A (en) 1990-01-16 1990-11-27 Tsi Incorporated Coherent frequency burst detector apparatus and method
US5239356A (en) 1990-06-20 1993-08-24 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung Ev Condensation nucleus counter
US5076097A (en) 1990-06-28 1991-12-31 Tsi Incorporated Method and apparatus for determining concentration of macromolecules and colloids in a liquid sample
US5084614A (en) 1990-09-21 1992-01-28 Tsi Incorporated Optical single particle detector with lenseless fiber optic probe
US5118959A (en) 1991-05-03 1992-06-02 Tsi Incorporated Water separation system for condensation particle counter
US5247842A (en) 1991-09-30 1993-09-28 Tsi Incorporated Electrospray apparatus for producing uniform submicrometer droplets
US5262841A (en) 1991-10-16 1993-11-16 Tsi Incorporated Vacuum particle detector
US5343744A (en) 1992-03-06 1994-09-06 Tsi Incorporated Ultrasonic anemometer
US5374396A (en) 1992-05-05 1994-12-20 Tsi Incorporated Syringe injection system for measuring non-volatile residue in solvents
US5351523A (en) 1993-01-21 1994-10-04 Tsi Incorporated Apparatus and process for determining filter efficiency in removing colloidal suspensions
US5432605A (en) 1993-07-19 1995-07-11 Tsi Incorporated Interferometric cylinder sizing and velocimetry device
US5513004A (en) 1994-08-12 1996-04-30 Tsi Incorporated Device for interferometric measurements with compensation for tilt and position of measured cylindrical objects
US5561515A (en) 1994-10-07 1996-10-01 Tsi Incorporated Apparatus for measuring particle sizes and velocities
WO1997006525A1 (en) 1995-08-03 1997-02-20 Tsi Incorporated Digital burst frequency translator
US5784160A (en) 1995-10-10 1998-07-21 Tsi Corporation Non-contact interferometric sizing of stochastic particles
US5847294A (en) 1996-04-09 1998-12-08 Amherst Process Instruments, Inc. Apparatus for determining powder flowability
US5684587A (en) 1996-07-05 1997-11-04 Tsi Incorporated Device and process for interferometric sizing of particles using spatial filtering of scattered radiation
US5872622A (en) * 1996-08-12 1999-02-16 Met One, Inc. Condensation nucleus counter having vapor stabilization and working fluid recovery
US5675405A (en) 1996-08-12 1997-10-07 Met One, Inc. Condensation nucleus counter employing supersaturation by thermal differentiation
WO1998041876A1 (en) 1997-03-17 1998-09-24 Tsi Incorporated System for detecting fluorescing components in aerosols
JP2941228B2 (ja) 1997-04-15 1999-08-25 日本カノマックス株式会社 粒子測定装置及びその校正方法
US6125845A (en) 1997-08-29 2000-10-03 Tsi Incorporated Respirator fit-testing with size selected aerosol
US5903338A (en) 1998-02-11 1999-05-11 Particle Measuring Systems, Inc. Condensation nucleus counter using mixing and cooling
US6230572B1 (en) 1998-02-13 2001-05-15 Tsi Incorporated Instrument for measuring and classifying nanometer aerosols
US6158431A (en) 1998-02-13 2000-12-12 Tsi Incorporated Portable systems and methods for delivery of therapeutic material to the pulmonary system
DE19859211C2 (de) 1998-12-21 2001-04-26 Grimm Aerosol Technik Gmbh & C Einrichtung und Verfahren zum Bestimmen der Korngrößenverteilung und der Gesamtkonzentration von Partikeln in einem Probengasstrom
US6469780B1 (en) 1998-12-21 2002-10-22 Air Products And Chemicals, Inc. Apparatus and method for detecting particles in reactive and toxic gases
US6544484B1 (en) 1999-06-18 2003-04-08 Tsi Incorporated Aerosol charge adjusting apparatus employing a corona discharge
US6491872B1 (en) * 1999-09-17 2002-12-10 The United States Of America As Represented By The Secretary Of The Army Method and system for detecting and recording submicron sized particles
EP1226418A1 (en) 1999-10-12 2002-07-31 California Institute Of Technology Fast mixing condensation nucleus counter
DE10030134B4 (de) 2000-06-20 2004-01-08 Grimm Aerosol Technik Gmbh & Co. Kg Vorrichtung und Verfahren zur Bestimmung einer Konzentration von Mikroorganismen in einem Gas
KR100383547B1 (ko) 2000-09-25 2003-05-12 학교법인 한양학원 초미세입자 응축핵계수기
US6498641B1 (en) 2001-06-01 2002-12-24 Pacific Scientific Instruments Company Condensation nucleus counter with multi-directional fluid flow system
US6829044B2 (en) 2002-04-24 2004-12-07 Msp Corporation Compact, high-efficiency condensation nucleus counter
US7656510B2 (en) 2002-09-18 2010-02-02 The Regents Of The University Of California Stream-wise thermal gradient cloud condensation nuclei chamber
US20040140327A1 (en) * 2003-01-02 2004-07-22 Osborne Michael D. Pressurized fluid dispenser
DE10348217A1 (de) 2003-10-16 2005-05-25 Brandenburgische Technische Universität Cottbus Vorrichtung und Verfahren zur Aerosolauf- oder Aerosolumladung in einen definierten Ladungszustand einer bipolaren Diffusionsaufladung mit Hilfe einer elektrischen Entladung im Aerosolraum
FI116774B (fi) * 2004-01-08 2006-02-28 Dekati Oy Menetelmä ja laitteisto pienten hiukkasten koon kasvattamiseksi
US7407531B2 (en) 2004-05-10 2008-08-05 Tsi Incorporated Particle surface treatment for promoting condensation
CN1906385A (zh) * 2004-08-31 2007-01-31 揖斐电株式会社 废气净化系统
DE502004010206D1 (de) 2004-11-03 2009-11-19 Grimm Aerosol Technik Gmbh & C Verfahren und Vorrichtung zur Messung der Anzahlkonzentration und des mittleren Durchmessers von in einem Trägergas suspendierten Partikeln
US7275414B2 (en) 2004-11-09 2007-10-02 Aerodyne Research Inc. Extractive sampling system and method for measuring one or more molecular species
DE102005001992B4 (de) 2005-01-15 2012-08-02 Palas Gmbh Partikel- Und Lasermesstechnik Verfahren und Vorrichtung zum Zählen von Partikeln
GB2443110A (en) 2005-05-23 2008-04-23 Tsi Inc Instruments for measuring nanoparticle exposure
WO2006127803A2 (en) 2005-05-23 2006-11-30 Tsi Incorporated Instruments for measuring nanoparticle exposure
US7363828B2 (en) 2005-08-25 2008-04-29 Msp Corporation Aerosol measurement by dilution and particle counting
US7362421B2 (en) 2005-09-01 2008-04-22 Tsi Incorporated Analysis of signal oscillation patterns
KR100614101B1 (ko) 2005-09-15 2006-08-22 한국과학기술연구원 입자 계수기
US7647811B2 (en) 2006-12-21 2010-01-19 Horiba Ltd. Solid particle counting system with valve to allow reduction of pressure pulse at particle counter when vacuum pump is started
KR100895542B1 (ko) 2007-07-05 2009-05-06 안강호 응축핵 계수기
US8047055B2 (en) 2007-08-08 2011-11-01 Tsi, Incorporated Size segregated aerosol mass concentration measurement with inlet conditioners and multiple detectors
US7806968B2 (en) 2007-10-16 2010-10-05 Horiba Ltd. Calibration unit for volatile particle remover
US8946348B2 (en) * 2007-11-30 2015-02-03 Sekisui Specialty Chemicals America, Llc Method for dissolving polyvinyl alcohol particles into aqueous media using high shear
US8276587B2 (en) 2008-02-15 2012-10-02 Tsi, Incorporated Automated qualitative mask fit tester
US7796727B1 (en) 2008-03-26 2010-09-14 Tsi, Incorporated Aerosol charge conditioner
US8889635B2 (en) 2008-09-30 2014-11-18 The Regents Of The University Of Michigan Dendrimer conjugates
AT10542U3 (de) 2009-01-19 2009-10-15 Avl List Gmbh Kondensationskern-zähler
FI20090232A0 (fi) 2009-06-05 2009-06-05 Joonas Jalmari Vanhanen Aerosolipartikkeleiden detektoiminen
JP5170004B2 (ja) 2009-06-08 2013-03-27 株式会社島津製作所 エアロゾル微粒子計測装置
US8465791B2 (en) 2009-10-16 2013-06-18 Msp Corporation Method for counting particles in a gas
WO2012142297A1 (en) * 2011-04-13 2012-10-18 Tsi, Incorporated Apparatus and method for improving particle count accuracy in low pressure applications
US9880097B2 (en) 2011-09-20 2018-01-30 Tsi Incorporated Apparatus and system for simultaneously measuring particle concentration and biocontaminants in an aerosol particle flow
WO2013109942A1 (en) 2012-01-20 2013-07-25 Tsi, Incorporated Instrument for sizing nanoparticles and a component therefor
JP2013190246A (ja) 2012-03-13 2013-09-26 Shimadzu Corp エアロゾル微粒子計測装置
JP6045244B2 (ja) 2012-08-06 2016-12-14 三菱重工業株式会社 回転機械のロータ軸心合せ接続用治具、及びロータ接続方法
CH706903A2 (de) 2012-08-30 2014-03-14 Naneos Particle Solutions Gmbh Verfahren zur Messung von Aerosolen durch induzierte Ströme als Folge einer gepulsten Aufladung.
US9658139B2 (en) 2012-08-31 2017-05-23 Tsi Incorporated System and method for the concentrated collection of airborne particles
WO2014099421A1 (en) * 2012-12-17 2014-06-26 Abbott Point Of Care Inc Operation and verification of a portable clinical analysis system
US9863862B2 (en) 2013-03-15 2018-01-09 Tsi Incorporated Method and system for significantly improving charge probabilities of nanometer aerosol particles
US20140284204A1 (en) 2013-03-22 2014-09-25 Airmodus Oy Method and device for ionizing particles of a sample gas glow
WO2015017623A1 (en) 2013-08-02 2015-02-05 Tsi, Inc. High speed spectroscopic sensor assembly and system
US9506869B2 (en) 2013-10-16 2016-11-29 Tsi, Incorporated Handheld laser induced breakdown spectroscopy device
BR112016030481A2 (pt) 2014-06-23 2021-01-12 Tsi Inc Análise rápida de materiais com o uso de espectroscopia libs
US9925547B2 (en) 2014-08-26 2018-03-27 Tsi, Incorporated Electrospray with soft X-ray neutralizer
US10101258B2 (en) 2014-08-28 2018-10-16 Tsi, Incorporated Detection system for determining filtering effectiveness of airborne molecular contamination
US9726579B2 (en) 2014-12-02 2017-08-08 Tsi, Incorporated System and method of conducting particle monitoring using low cost particle sensors
DE202016009104U1 (de) 2015-02-16 2022-04-04 Tsi, Incorporated Luft- und Gasströmungsgeschwindigkeits- und Temperaturfühler
CN107771277B (zh) 2015-02-23 2020-08-18 Tsi有限公司 凝结颗粒计数器伪计数性能
DE102015004853A1 (de) 2015-04-16 2016-10-20 Palas Gmbh Partikel- Und Lasermesstechnik Vorrichtung zum Zählen von Partikeln
EP3400077B1 (en) 2016-01-08 2020-12-23 TSI, Inc. Wearable mask fit monitor
CN109715300B (zh) 2016-03-23 2022-09-13 卡诺麦克斯-Fmt有限公司 紧凑型凝聚核粒子计数器技术
TWI745391B (zh) 2016-06-30 2021-11-11 美商加野麥克斯Fmt股份有限公司 膠體粒子尺寸質量分佈測量技術
WO2018058236A1 (en) 2016-09-29 2018-04-05 Clad Innovations Ltd. Highly integrated optical particle counter (opc)
US10782219B2 (en) * 2017-12-22 2020-09-22 Industrial Technology Research Institute Particle counting method and device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020157446A1 (en) * 1999-04-07 2002-10-31 Dilger John P. Pressure activated calibration system for chemical sensors
US20060266133A1 (en) * 2005-05-27 2006-11-30 Dong-Hyun Kim Flow indicator and apparatus for monitoring particles in air
US20080047373A1 (en) * 2006-07-12 2008-02-28 Ahn Kang H Particle measuring system and method
US20080152547A1 (en) * 2006-12-22 2008-06-26 Thermo Electron Corporation Devices, methods, and systems for detecting particles in aerosol gas streams
US20080186489A1 (en) * 2007-02-02 2008-08-07 Kang Ho Ahn Condensation particle counter
US20110259426A1 (en) * 2007-08-01 2011-10-27 Cavagna Group Spa. Electronic Flow Sensor
JP2009042024A (ja) * 2007-08-08 2009-02-26 Toyota Central R&D Labs Inc 呼気判定装置
WO2010085085A2 (ko) * 2009-01-20 2010-07-29 (주)에이치시티 입자 측정 유니트
US20120222495A1 (en) * 2009-08-24 2012-09-06 Particle Measuring Systems, Inc. Flow monitored particle sensor
US20140347663A1 (en) * 2011-10-26 2014-11-27 Research Triangle Institute Aerosol exposure monitoring
US20130180321A1 (en) * 2011-12-22 2013-07-18 Horiba, Ltd. Particle number counting apparatus
CN104880339A (zh) * 2015-06-18 2015-09-02 吉林大学 一种缸内直喷汽油机排气微粒热稀释采样系统
CN105334146A (zh) * 2015-10-16 2016-02-17 北京航空航天大学 一种直接测量发动机尾气颗粒物数目浓度的检测装置
US20170299487A1 (en) * 2016-04-14 2017-10-19 Applied Materials, Inc. 30 nm in-line lpc testing and cleaning of semiconductor processing equipment
CN106290744A (zh) * 2016-10-19 2017-01-04 舟山市质量技术监督检测研究院 尾气分析仪校准装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘俊杰等: "用计数法测量玻璃纤维滤纸穿透率的研究", 《中国造纸》, no. 06, 15 June 2007 (2007-06-15), pages 23 - 26 *
孙洁等: "基于室温离子液体的肼蒸气传感器", 《化学传感器》 *
孙洁等: "基于室温离子液体的肼蒸气传感器", 《化学传感器》, no. 03, 15 September 2009 (2009-09-15), pages 35 - 37 *
林玉池,曾周末: "现代传感技术与系统", 广东人民出版社, pages: 157 - 130 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112710591A (zh) * 2021-01-19 2021-04-27 南昌智能新能源汽车研究院 一种排放测试设备稀释比控制精度验证装置及其验证方法
CN112986070A (zh) * 2021-05-12 2021-06-18 西安多普多信息科技有限公司 一种尾气检测装置、方法和系统
CN113720749A (zh) * 2021-08-31 2021-11-30 北京航空航天大学 一种宽温纳米颗粒计数器
CN113720749B (zh) * 2021-08-31 2023-01-17 北京航空航天大学 一种宽温纳米颗粒计数器

Also Published As

Publication number Publication date
US20210231551A1 (en) 2021-07-29
JP2021527198A (ja) 2021-10-11
US11686660B2 (en) 2023-06-27
WO2019234688A2 (en) 2019-12-12
EP3803317A4 (en) 2022-02-16
WO2019234688A3 (en) 2020-03-05
KR20210018259A (ko) 2021-02-17
EP3803317A2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
CN112236661A (zh) 颗粒浓度分析系统和方法
CN102645308B (zh) 用于在车辆中进行蒸发渗漏诊断的系统和方法
KR101149624B1 (ko) 응축핵계수기
EP0789836B1 (en) Apparatus and method of detecting a leak in an evaporative emissions system
US20050188749A1 (en) Residual life indicating system
JP5762273B2 (ja) ミスト含有ガス分析装置
JP3253994B2 (ja) タンク通気装置とその気密性を検査する方法
US20100101302A1 (en) Particulate sampling system and method of reducing oversampling during transients
EP3372984B1 (en) Gas-borne fine particle measuring instrument and clean environmental device
WO2013094628A1 (ja) ミスト含有ガス分析装置
US6757607B2 (en) Audit vehicle and audit method for remote emissions sensing
US8435334B2 (en) Fuel storage tank pressure management system including a carbon canister
US20070256476A1 (en) Device for continuous real-time monitoring of ambient air
US7710250B2 (en) System and method for verifying fuel cap engagement
CA2503500C (en) Method and apparatus for leak testing an environmental enclosure
US20020104372A1 (en) Purge valve with integral diagnostic member
US6953496B2 (en) Sub-atmospheric fuel storage system
US20040182246A1 (en) Sub-atmospheric fuel storage system
JP4311329B2 (ja) 蒸発燃料計測装置
KR100645305B1 (ko) 연료 시스템의 대규모 누설 감지 방법
EP1739053B1 (en) Fuel vapour recovery system with temperature sensor and method therefor
JP3516375B2 (ja) ガス塵埃捕集システム
US7218397B1 (en) Methods and systems for counting particles and sensing water
US20020062733A1 (en) Fuel storage system and vent filter assembly
JP3552670B2 (ja) 蒸発燃料パージ装置の異常診断方法及び異常診断装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination