CN112234110A - 一种三明治状pn结及其精准构筑方法 - Google Patents

一种三明治状pn结及其精准构筑方法 Download PDF

Info

Publication number
CN112234110A
CN112234110A CN202011110414.1A CN202011110414A CN112234110A CN 112234110 A CN112234110 A CN 112234110A CN 202011110414 A CN202011110414 A CN 202011110414A CN 112234110 A CN112234110 A CN 112234110A
Authority
CN
China
Prior art keywords
sandwich
junction
reaction
construction method
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011110414.1A
Other languages
English (en)
Other versions
CN112234110B (zh
Inventor
王煜
张慧娟
吴俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202011110414.1A priority Critical patent/CN112234110B/zh
Publication of CN112234110A publication Critical patent/CN112234110A/zh
Application granted granted Critical
Publication of CN112234110B publication Critical patent/CN112234110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明属于PN结技术领域,本发明提供了一种三明治状PN结,所述的三明治状PN结是在三层晶胞厚度半导体材料中构筑的。本发明还提供了一种三明治状PN结的精准构筑方法。本发明的三明治状PN结均匀整齐,有透明感,尺寸在微米级;本发明的三明治状PN结厚度与三层晶胞半导体材料的厚度完全吻合;本发明的构筑方法具有精确可控性,广泛适用于各种半导体材料,对于发挥材料本身性质并进一步提高光电化学性能具有重大意义。

Description

一种三明治状PN结及其精准构筑方法
技术领域
本发明涉及PN结技术领域,尤其涉及一种三明治状PN结及其精准构筑方法。
背景技术
利用太阳光将水转化为氢和氧的光电化学(PEC)水分解法,是一种实现可再生能源转化和存储的前景光明的方法。为了实现有效的光电能量转换,至关重要的是设计和制造理想的半导体光电极,以提高可见光的收集率和光激载流子的分离/转移效率,加速析氧动力学。最近,由于具有独特的光电特性,二维(2D)类石墨烯层状材料已发展成为有前途的PEC电极。但是,严重的电荷重组和缓慢的氧释放反应(OER)动力学严重阻碍了二维层状半导体材料的PEC性能。
调控尺寸和形态,掺杂和构建PN结是解决上述问题的有效策略。在各种形态材料中,三明治状结构的材料,可以提高太阳光的利用率,缩短电荷载流子的扩散长度,为目标反应物的吸附提供巨大的表面积并暴露出足够多的活性位点以进行表面反应。由于这种结构是由多种不同的半导体构成,因此,理想的异质结的实现不仅取决于其能带排列,而且还受其晶体结构、晶格参数等其它特征的影响,这使其难以在实际应用中实现。但是,单一材料中的同质结在上述方面明显具有优势。此外,这种同质结的连续带弯曲对于载流子分离和电荷转移非常有利。
以n型半导体为例,研究者们已广泛尝试了一系列受体掺杂剂以引入P型特性,从而建立PN同质结。尽管取得了一些进展,但是由于缺乏可行的策略和合适的模型,在单个原子级别的2D材料中实现三明治状PN同质结仍然面临着巨大的挑战。因此,进一步探索PN同质结将深化对半导体物理学的理解并推动相关新技术的发展。
发明内容
本发明的目的在于为了克服现有技术的不足而提供一种三明治状PN结及其精准构筑方法。本发明的三明治状PN结均匀整齐,有透明感,尺寸在微米级;本发明的三明治状PN结厚度与三层晶胞半导体材料的厚度完全吻合;本发明的构筑方法具有精确可控性,广泛适用于各种半导体材料。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种三明治状PN结,所述的三明治状PN结是在三层晶胞厚度半导体材料中构筑的。
作为优选,所述的半导体材料为ZnIn2S4或双元素半导体材料。
作为优选,所述的双元素半导体材料为SnS2、TiO2、In2O3、ZnO、Fe2O3、MoS2、ZnS或CdS。
本发明还提供了一种三明治状PN结的精准构筑方法,包括如下步骤:
1)将锡盐、硫源、含铵根离子的物质与溶剂混合,得到反应液;
2)将反应液与掺杂氟的SnO2导电玻璃混合后进行反应,得到三层晶胞厚度二硫化锡纳米片阵列;
3)将含第五主族元素的物质与三层晶胞厚度二硫化锡纳米片阵列在惰性气氛下进行反应,得到三明治状PN结。
作为优选,步骤1)所述锡盐为硫酸锡、草酸锡、氯化锡或锡酸钠,所述硫源为硫脲、硫代乙酰胺或硫代硫酸钠,所述含铵根离子的物质为氨水、硫化铵、硫酸铵、四甲基铵或碳酸氢铵,所述溶剂为水、异丙醇、乙二醇或乙醇。
作为优选,步骤2)所述反应的温度为100~200℃,时间为0.5~48h。
作为优选,步骤2)所述混合前掺杂氟的SnO2导电玻璃经过超声清洗,所述掺杂氟的SnO2导电玻璃与反应液的体积比为1:1~10,所述反应完成后在真空条件下进行干燥,所述干燥的温度为50~70℃,所述真空度为0.03~0.07MPa。
作为优选,步骤3)所述反应的温度为200~600℃,时间为1~240min,所述惰性气体的流量为30~100sccm,所述惰性气体为氩气。
作为优选,步骤3)所述含第五主族元素的物质为氨基酸、丙氨酸、氯化铵、氨气、氮气、硝酸铵、碳酸氢铵、红磷、次亚磷酸钠或磷化氢气体。
作为优选,步骤3)升温至反应温度的速率为2~10℃/min,当所述含第五主族元素的物质为气体时,所述气体的流量为总流量的1~30%。
本发明的有益效果包括以下几点:
1)本发明的三明治状PN结均匀整齐,有透明感,尺寸在微米级。
2)本发明的三明治状PN结具有精确可控性,对于发挥材料本身性质并进一步提高光电化学性能具有重大意义。
附图说明
图1为实施例3的三明治状PN结的XRD图,其中,FTO为导电玻璃的XRD图;
图2为实施例3的三明治状PN结的SEM图;
图3为实施例3的三明治状PN结的TEM及HRTEM图;
图4为实施例3的三明治状PN结的AFM图;
图5为实施例3的三明治状PN结的EDS mapping图;
图6为实施例3的三明治状PN结的莫特肖特基曲线;
图7为实施例3的三明治状PN结的原子模型;
图8为实施例3的三明治状PN结的示意图;
图9为实施例4的三明治状PN结的XRD图;
图10为实施例5的三明治状PN结的XRD图;
图11为实施例6的三明治状PN结的XRD图;
图12为实施例7的三明治状PN结的XRD图;
图13为实施例8的三明治状PN结的XRD图;
图14为实施例9的三明治状PN结的XRD图;
图15为实施例10的三明治状PN结的XRD图;
图16为实施例11的三明治状PN结的XRD图。
具体实施方式
本发明提供了一种三明治状PN结,所述的三明治状PN结是在三层晶胞厚度半导体材料中构筑的。
本发明所述的半导体材料优选为ZnIn2S4或双元素半导体材料,所述的双元素半导体材料优选为SnS2、TiO2、In2O3、ZnO、Fe2O3、MoS2、ZnS或CdS。
本发明还提供了一种三明治状PN结的精准构筑方法,包括如下步骤:
1)将锡盐、硫源、含铵根离子的物质与溶剂混合,得到反应液;
2)将反应液与掺杂氟的SnO2导电玻璃混合后进行反应,得到三层晶胞厚度二硫化锡纳米片阵列;
3)将含第五主族元素的物质与三层晶胞厚度二硫化锡纳米片阵列在惰性气氛下进行反应,得到三明治状PN结。
本发明步骤1)所述锡盐优选为硫酸锡、草酸锡、氯化锡或锡酸钠,所述硫源优选为硫脲、硫代乙酰胺或硫代硫酸钠,所述锡盐中锡元素的摩尔量与硫源中硫元素的摩尔量之比优选为1:2;所述含铵根离子的物质优选为氨水、硫化铵、硫酸铵、四甲基铵或碳酸氢铵,所述含铵根离子的物质优选为0.05~20mmol,进一步优选为0.1~10mmol;所述溶剂优选为水、异丙醇、乙二醇或乙醇,所述溶剂的量优选能够充分溶解锡盐、硫源。
本发明所述的含铵根离子的物质通过提供铵根离子,对纳米片的厚度进行调控。
本发明步骤2)所述反应的温度优选为100~200℃,进一步优选为120~180℃,更优选为140~160℃;所述反应的时间优选为0.5~48h,进一步优选为5~24h,更优选为10~20h。
本发明步骤2)所述混合前掺杂氟的SnO2导电玻璃优选经过超声清洗,所述超声清洗的溶剂优选为丙酮、乙醇、去离子水、异丙酮、洗洁精、专业导电玻璃清洗液、浓H2SO4、H2O2和氢氟酸中的一种或几种,进一步优选为丙酮、乙醇和去离子水;所述超声清洗的时间优选为30~100min,进一步优选为50~90min;所述导电玻璃清洗后优选进行干燥处理。
本发明根据掺杂氟的SnO2导电玻璃上污垢的量选择合适的清洗方式和超声时间,为了保证清洗的干净度,可以适当延长超声时间。
本发明步骤2)所述掺杂氟的SnO2导电玻璃与反应液的体积比优选为1:1~10,进一步优选为1:3~7。
本发明步骤2)所述混合优选将干燥的导电玻璃放入聚四氟乙烯内胆后缓慢将反应液滴入内胆中,所述反应液优选不完全浸没导电玻璃。
本发明步骤2)所述反应完成后,优选自然降温至室温;所述掺杂氟的SnO2导电玻璃优选在真空条件下进行干燥,所述干燥的温度优选为50~70℃,进一步优选为60~65℃,所述真空度优选为0.03~0.07MPa,进一步优选为0.04~0.06MPa。
本发明步骤2)对掺杂氟的SnO2导电玻璃在真空条件下进行干燥的目的是降低氧含量,防止氧化。
本发明步骤3)所述反应的温度优选为200~600℃,进一步优选为300~500℃,更优选为400℃;所述反应的时间优选为1~240min,进一步优选为10~200min,更优选为100~150min;所述惰性气体的流量优选为30~100sccm,进一步优选为50~90sccm,更优选为60~80sccm;所述惰性气体优选为氩气。
本发明步骤3)所述含第五主族元素的物质优选为氨基酸、丙氨酸、氯化铵、氨气、氮气、硝酸铵、碳酸氢铵、红磷、次亚磷酸钠或磷化氢气体,进一步优选为氨基酸、氯化铵或氨气。
本发明步骤3)升温至反应温度的速率优选为2~10℃/min,进一步优选为4~8℃/min,更优选为5~7℃/min;所述升温的起始温度优选为20℃;所述反应优选在密封环境下进行,所述反应前优选通入惰性气体排空空气。
本发明步骤3)所述含第五主族元素的物质与三层晶胞厚度的二硫化锡纳米片阵列的摩尔比优选为5~200:1,进一步优选为20~150:1,更优选为50~100:1。
本发明步骤3)所述含第五主族元素的物质为气体时,所述气体的流量优选为总流量的1~30%,进一步优选为5~20%,更优选为10~15%;所述气体通入时间优选和反应时间相同。
本发明所述总流量为含第五主族元素的气体和惰性气体的总流量,惰性气体起到载气的作用,目的是控制含第五主族元素气体的比例。
本发明所述含第五主族元素的物质与三层晶胞厚度二硫化锡纳米片阵列反应的原理为含第五主族元素的物质气化或分解为含有第五主族元素的气体,气体在高温环境下化学键断裂后生成第五主族元素,第五主族元素再与三层晶胞厚度二硫化锡纳米片结合,占据晶格。
本发明的二硫化锡(SnS2)是一种可见光响应、结构稳定、活性较好的半导体材料,由于存在少量固有的硫空位,而使得材料呈现N型导电性,可作为研究三层晶胞厚度PN结的良好模型,并通过在最外两层精确引入受体掺杂原子,构成了P-N-P型的三明治状PN结。本发明的构筑方法得到的三明治状PN结均匀整齐,有透明感,尺寸在微米级;三明治状PN结厚度为1.79nm且具有3层原子,与三层晶胞SnS2的厚度完全吻合。本发明三明治状PN结的构筑方法得到的氮元素全部掺杂在最外层两个表面,具有精确可控性,本发明的构筑方法广泛适用于各种半导体材料,对于发挥材料本身性质并进一步提高光电化学性能具有重大意义。
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
将掺杂氟的SnO2导电玻璃(导电玻璃FTO)分别在丙酮、乙醇和去离子水中各连续超声30min,干燥、备用。将硫酸锡和硫脲按原子比Sn:S=1:2放入烧杯中,加入0.1mmol氨水和适量的去离子水进行充分搅拌,得到反应液。然后,将干燥的导电玻璃FTO放入聚四氟乙烯内胆中,缓慢将反应液滴入内胆中,导电玻璃FTO与反应液的体积比为1:2,反应液不完全浸没导电玻璃。将聚四氟乙烯内胆放入高压反应釜,再将高压反应釜放入烘箱中,在100℃下反应40h。反应完成后,自然降温至室温。打开反应釜,导电玻璃FTO上形成了薄膜,将导电玻璃FTO取出后使用去离子水和乙醇进行反复清洗,然后在真空度为0.03MPa,温度为60℃的真空干燥箱中进行干燥,得到三层晶胞厚度二硫化锡纳米片阵列。
将50g的氨基酸固体与三层晶胞厚度二硫化锡纳米片阵列分别放置在石墨舟的头尾两端,氨基酸固体与三层晶胞厚度二硫化锡纳米片阵列的摩尔比为10:1,再将石墨舟放置在可程序控温的管式炉中,其中,氨基酸固体放置在气流的上游,三层晶胞厚度二硫化锡纳米片阵列放置在中心温区。将管式炉密封后通入流量为30sccm的氩气排空空气,在起始温度为20℃下以2℃/min的升温速率升温至300℃,反应240min后自然降至室温,即得三明治状PN结。
实施例2
将掺杂氟的SnO2导电玻璃(导电玻璃FTO)分别在丙酮、乙醇和去离子水中各连续超声30min,干燥、备用。将氯化锡和硫代乙酰胺按原子比Sn:S=1:2放入烧杯中,加入10mmol硫酸铵和适量的异丙醇进行充分搅拌,得到反应液。然后,将干燥的导电玻璃FTO放入聚四氟乙烯内胆中,缓慢将反应液滴入内胆中,导电玻璃FTO与反应液的体积比为1:10,反应液不完全浸没导电玻璃。将聚四氟乙烯内胆放入高压反应釜,再将高压反应釜放入烘箱中,在200℃下反应2h。反应完成后,自然降温至室温。打开反应釜,导电玻璃FTO上形成了薄膜,将导电玻璃FTO取出后使用去离子水和乙醇进行反复清洗,然后在真空度为0.07MPa,温度为50℃的真空干燥箱中进行干燥,得到三层晶胞厚度二硫化锡纳米片阵列。
将200g的氯化铵固体与三层晶胞厚度二硫化锡纳米片阵列分别放置在石墨舟的头尾两端,氯化铵固体与三层晶胞厚度二硫化锡纳米片阵列的摩尔比为100:1,再将石墨舟放置在可程序控温的管式炉中,其中,氯化铵固体放置在气流的上游,三层晶胞厚度二硫化锡纳米片阵列放置在中心温区。将管式炉密封后通入流量为100sccm的氩气排空空气,在起始温度为20℃下以10℃/min的升温速率升温至600℃,反应10min后自然降至室温,即得三明治状PN结。
实施例3
将掺杂氟的SnO2导电玻璃(导电玻璃FTO)分别在丙酮、乙醇和去离子水中各连续超声30min,干燥、备用。将草酸锡和硫代硫酸钠按原子比Sn:S=1:2放入烧杯中,加入5mmol四甲基铵和适量的乙醇进行充分搅拌,得到反应液。然后,将干燥的导电玻璃FTO放入聚四氟乙烯内胆中,缓慢将反应液滴入内胆中,导电玻璃FTO与反应液的体积比为1:6,反应液不完全浸没导电玻璃。将聚四氟乙烯内胆放入高压反应釜,再将高压反应釜放入烘箱中,在150℃下反应20h。反应完成后,自然降温至室温。打开反应釜,导电玻璃FTO上形成了薄膜,将导电玻璃FTO取出后使用去离子水和乙醇进行反复清洗,然后在真空度为0.05MPa,温度为70℃的真空干燥箱中进行干燥,得到三层晶胞厚度二硫化锡纳米片阵列。
将三层晶胞厚度二硫化锡纳米片阵列放置在石墨舟中,再将石墨舟放置在可程序控温的管式炉的中心温区处,将管式炉密封后通入流量为70sccm的氩气排空空气,在起始温度为20℃下以7℃/min的升温速率升温至400℃,当管式炉温度达到400℃时立即通入氨气,氨气与三层晶胞厚度二硫化锡纳米片阵列的摩尔比为50:1,反应100min,保证氨气通入时间和反应时间一致,反应完成后自然降至室温,即得三明治状PN结。
实施例4
将实施例3的SnS2替换为TiO2,其他步骤与实施例3相同,成功制得三明治状PN结。
实施例5
将实施例3的SnS2替换为In2O3,其他步骤与实施例3相同,成功制得三明治状PN结。
实施例6
将实施例3的SnS2替换为ZnO,其他步骤与实施例3相同,成功制得三明治状PN结。
实施例7
将实施例3的SnS2替换为Fe2O3,其他步骤与实施例3相同,成功制得三明治状PN结。
实施例8
将实施例3的SnS2替换为MoS2,其他步骤与实施例3相同,成功制得三明治状PN结。
实施例9
将实施例3的SnS2替换为ZnS,其他步骤与实施例3相同,成功制得三明治状PN结。
实施例10
将实施例3的SnS2替换为CdS,其他步骤与实施例3相同,成功制得三明治状PN结。
实施例11
将实施例3的SnS2替换为ZnIn2S4,其他步骤与实施例3相同,成功制得三明治状PN结。
对实施例3的三明治状PN结进行测试,由图1的XRD图可知,三明治状PN结的SnS2(PNP-SnS2)晶相与纯相的SnS2一致,无杂质生成;由图2的SEM图可知,三明治状PN结生长均匀整齐,且尺寸在微米级,有透明感,说明材料很薄。
由图3的HRTEM图可知,三明治状PN结厚度约为1.8nm且具有3层原子,与三层晶胞SnS2的厚度完全吻合;由图4的AFM图可知,三明治状PN结的厚度为1.79nm,与三层SnS2的厚度一致;由图5的EDS mapping数据可知,氮元素成功掺入材料中,并且精确可控地掺杂在最外层两个表面,证明本专利构筑方法的精确可控性;由图6的莫特肖特基曲线图可知,三明治状PN结的P型和N型共存,本专利的方法成功构筑了三明治状PN结。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种三明治状PN结,其特征在于,所述的三明治状PN结是在三层晶胞厚度半导体材料中构筑的。
2.根据权利要求1所述的三明治状PN结,其特征在于,所述的半导体材料为ZnIn2S4或双元素半导体材料。
3.根据权利要求1或2所述的三明治状PN结,其特征在于,所述的双元素半导体材料为SnS2、TiO2、In2O3、ZnO、Fe2O3、MoS2、ZnS或CdS。
4.权利要求1~3任意一项所述的三明治状PN结的精准构筑方法,其特征在于,包括如下步骤:
1)将锡盐、硫源、含铵根离子的物质与溶剂混合,得到反应液;
2)将反应液与掺杂氟的SnO2导电玻璃混合后进行反应,得到三层晶胞厚度二硫化锡纳米片阵列;
3)将含第五主族元素的物质与三层晶胞厚度二硫化锡纳米片阵列在惰性气氛下进行反应,得到三明治状PN结。
5.根据权利要求4所述的构筑方法,其特征在于,步骤1)所述锡盐为硫酸锡、草酸锡、氯化锡或锡酸钠,所述硫源为硫脲、硫代乙酰胺或硫代硫酸钠,所述含铵根离子的物质为氨水、硫化铵、硫酸铵、四甲基铵或碳酸氢铵,所述溶剂为水、异丙醇、乙二醇或乙醇。
6.根据权利要求5所述的构筑方法,其特征在于,步骤2)所述反应的温度为100~200℃,时间为0.5~48h。
7.根据权利要求6所述的构筑方法,其特征在于,步骤2)所述混合前掺杂氟的SnO2导电玻璃经过超声清洗,所述掺杂氟的SnO2导电玻璃与反应液的体积比为1:1~10,所述反应完成后在真空条件下进行干燥,所述干燥的温度为50~70℃,所述真空度为0.03~0.07MPa。
8.根据权利要求6或7所述的构筑方法,其特征在于,步骤3)所述反应的温度为200~600℃,时间为1~240min,所述惰性气体的流量为30~100sccm,所述惰性气体为氩气。
9.根据权利要求8所述的构筑方法,其特征在于,步骤3)所述含第五主族元素的物质为氨基酸、丙氨酸、氯化铵、氨气、氮气、硝酸铵、碳酸氢铵、红磷、次亚磷酸钠或磷化氢气体。
10.根据权利要求9所述的构筑方法,其特征在于,步骤3)升温至反应温度的速率为2~10℃/min,当所述含第五主族元素的物质为气体时,所述气体的流量为总流量的1~30%。
CN202011110414.1A 2020-10-16 2020-10-16 一种三明治状pn结及其精准构筑方法 Active CN112234110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011110414.1A CN112234110B (zh) 2020-10-16 2020-10-16 一种三明治状pn结及其精准构筑方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011110414.1A CN112234110B (zh) 2020-10-16 2020-10-16 一种三明治状pn结及其精准构筑方法

Publications (2)

Publication Number Publication Date
CN112234110A true CN112234110A (zh) 2021-01-15
CN112234110B CN112234110B (zh) 2022-07-19

Family

ID=74118473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011110414.1A Active CN112234110B (zh) 2020-10-16 2020-10-16 一种三明治状pn结及其精准构筑方法

Country Status (1)

Country Link
CN (1) CN112234110B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145134A (zh) * 2021-04-28 2021-07-23 中国矿业大学 一种基于矿物复合材料的可见光催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814531A (zh) * 2009-02-19 2010-08-25 中国科学院微电子研究所 利用半导体pn结结电容构成的电容器及其制作方法
CN101844799A (zh) * 2010-06-17 2010-09-29 安阳师范学院 六角形二硫化锡纳米片的制备方法
CN108807553A (zh) * 2018-06-20 2018-11-13 北京大学 一种基于二维半导体材料的同质pn结及其制备方法
CN109289874A (zh) * 2018-11-16 2019-02-01 安徽师范大学 一种钴掺杂二硫化锡纳米片阵列材料及其制备方法和应用
CN110038548A (zh) * 2019-05-10 2019-07-23 上海纳米技术及应用国家工程研究中心有限公司 一种n-p-n型三明治异质结纳米材料的制备方法及其产品和应用
CN110137357A (zh) * 2019-05-23 2019-08-16 苏州大学 良柔性三明治型pn结电存储器件
JP2019178012A (ja) * 2018-03-30 2019-10-17 国立大学法人山梨大学 n型SnS半導体およびそれを用いた太陽電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814531A (zh) * 2009-02-19 2010-08-25 中国科学院微电子研究所 利用半导体pn结结电容构成的电容器及其制作方法
CN101844799A (zh) * 2010-06-17 2010-09-29 安阳师范学院 六角形二硫化锡纳米片的制备方法
JP2019178012A (ja) * 2018-03-30 2019-10-17 国立大学法人山梨大学 n型SnS半導体およびそれを用いた太陽電池
CN108807553A (zh) * 2018-06-20 2018-11-13 北京大学 一种基于二维半导体材料的同质pn结及其制备方法
CN109289874A (zh) * 2018-11-16 2019-02-01 安徽师范大学 一种钴掺杂二硫化锡纳米片阵列材料及其制备方法和应用
CN110038548A (zh) * 2019-05-10 2019-07-23 上海纳米技术及应用国家工程研究中心有限公司 一种n-p-n型三明治异质结纳米材料的制备方法及其产品和应用
CN110137357A (zh) * 2019-05-23 2019-08-16 苏州大学 良柔性三明治型pn结电存储器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG HO KIM ET AL.: ""Plasma-induced phase transformation of SnS2 to SnS"", 《SCIENTIFIC REPORTS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113145134A (zh) * 2021-04-28 2021-07-23 中国矿业大学 一种基于矿物复合材料的可见光催化剂及其制备方法
CN113145134B (zh) * 2021-04-28 2022-04-15 中国矿业大学 一种基于矿物复合材料的可见光催化剂及其制备方法

Also Published As

Publication number Publication date
CN112234110B (zh) 2022-07-19

Similar Documents

Publication Publication Date Title
Luo et al. Solution transformation of Cu2O into CuInS2 for solar water splitting
Parize et al. ZnO/TiO2/Sb2S3 core–shell nanowire heterostructure for extremely thin absorber solar cells
Yang et al. Emerging binary chalcogenide light absorbers: material specific promises and challenges
CN105470391A (zh) 有机无机杂化钙钛矿薄膜以及钙钛矿太阳能电池的制备方法
CN102181847A (zh) 一种醇热沉积铜锌锡硫薄膜的方法
Uthirakumar Fabrication of ZnO based dye sensitized solar cells
CN110252352A (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
CN106328381B (zh) 一种全固态量子点敏化太阳能电池及其制备方法
CN108987583A (zh) 缺陷被钝化的钙钛矿太阳能电池
CN107093650A (zh) 一种制备铜锑硫太阳能电池吸收层的方法
CN102637755B (zh) 一种纳米结构czts薄膜光伏电池及其制备方法
CN105261483B (zh) Cu2ZnSnS4敏化TiO2光阳极及其原位制备方法和应用
CN107680816B (zh) 多孔Ti负载空心针状NiCo2S4对电极的制备方法
CN103824902A (zh) 一种FeS2薄膜及其制备方法
CN112234110B (zh) 一种三明治状pn结及其精准构筑方法
Guo et al. Electrodeposited CuInSe2 counter electrodes for efficient and stable quantum dot-sensitized solar cells
Izaki et al. Light-Irradiated Electrochemical Direct Construction of Cu2O/CuO Bilayers by Switching Cathodic/Anodic Polarization in Copper (II)–Tartrate Complex Aqueous Solution
CN107681009A (zh) 一种铜锌锡硫硒半导体薄膜的制备方法及其应用
CN104465807A (zh) 一种czts纳米阵列薄膜太阳能光伏电池及其制备方法
Zhang et al. Bi2O2S topological transformation and in-situ regrowth of [hk1]-oriented SbBiS3-xSex 2D skeleton structure for construction of efficient quasi-two-dimensional Sb2S3-xSex-based heterojunction photoanodes
Liu et al. Sequential synthesis and improved photoelectrochemical properties of ZnO/CdTe/CdS nanocable arrays photoanode
CN102992389B (zh) 一种生长氧化锌纳米线阵列的制备方法
CN114400263B (zh) 一种基板负载卤化氧铋/硫化铋纳米片异质结器件的制备方法及应用
CN112837997B (zh) 一种ZnCdS薄膜的制备方法及铜锌锡硫硒太阳电池的制备方法
CN109545659A (zh) 一种锡锑硫薄膜的化学浴制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant