CN112216520A - MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用 - Google Patents

MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用 Download PDF

Info

Publication number
CN112216520A
CN112216520A CN202010836383.1A CN202010836383A CN112216520A CN 112216520 A CN112216520 A CN 112216520A CN 202010836383 A CN202010836383 A CN 202010836383A CN 112216520 A CN112216520 A CN 112216520A
Authority
CN
China
Prior art keywords
coni
carbon cloth
mof
reaction kettle
composite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010836383.1A
Other languages
English (en)
Other versions
CN112216520B (zh
Inventor
刘瑜
马振林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Hengchuan Nanotechnology Co.,Ltd.
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Publication of CN112216520A publication Critical patent/CN112216520A/zh
Application granted granted Critical
Publication of CN112216520B publication Critical patent/CN112216520B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明属于复合电极材料技术领域,涉及复合电极,尤其涉及一种MOF衍生的Ni‑Co‑S纳米颗粒生长在碳布上的复合电极制备方法。本发明以六水合硝酸钴(Co(NO3)2·6H2O),六水合硝酸镍(Ni(NO3)2·6H2O),聚乙二醇(PEG‑200),乙酸钠(C2H9NaO5),2‑甲基咪唑(C4H6N2),硫代乙酰胺(TAA)和碳布(CC)为原料,先通过简单快速的化学反应法得到碳布(CC)表面负载CoNi‑MOF材料,再经水热硫化法合成碳布CC@CoNi‑S复合电极材料。本发明的另外一个目的,将所制得CC@CoNi‑S复合材料作为超级电容器电极材料。本发明以碳布为基底很大程度上增强了材料的柔韧性和导电性,同时CoNi‑MOF衍生的CoNi‑S纳米颗粒直接在碳布上原位生长,避免了粘合剂的使用,降低了材料的阻抗,还可以最大化离子可接触比表面积,提供了大量反应的活性位点。

Description

MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方 法及其应用
技术领域
本发明属于复合电极材料技术领域,涉及复合电极,尤其涉及一种MOF衍生的Ni-Co- S纳米颗粒生长在碳布上(CC@CoNi-S)的复合电极制备方法及其应用。
背景技术
21世纪以来,由于过度使用化石燃料导致的环境污染以及能源紧缺问题日趋严重,开发无污染新型能源以及设计新型环保的储能装置是目前面临重大挑战之一。超级电容器是介于静电电容器和传统化学电源的新型储能器件,因其具有较高的功率密度、优异的倍率性能、快速的充放电速度及极长的循环寿命等优点而被广泛应用于电子设备、混合动力汽车、备用电源系统等领域。电极材料是超级电容器的核心部分,开发新型电极材料是研究新型储能装置至关重要的一步。
最近,金属有机骨架(MOFs)作为一种具有高表面积,可调节的孔径分布、结构可定制性等优越特征的新型材料,被认为是制备多孔纳米结构电极的有效前驱体。其中,MOFs衍生的过渡金属硫化物和多孔碳材料等,已被广泛应用于包括气体分离及吸附、催化、传感和药物输送等诸多方面。
据了解,CoNi-MOF衍生的金属硫化物,特别是CoNi-S对于高性能超级电容器(SC)和锂离子电池(LIB)是最受欢迎的电极材料之一,这归因于它们具有高比表面积和可调的孔隙结构等优点,能有效地增强电子/离子传输动力学,进一步获得更高的电化学性能。但是,若单独使用CoNi-MOF衍生物纳米粉末作为电极材料,由于它的导电性和循环稳定性极差等缺点使其难以获得理想的电化学性能。近年来,构建CoNi-MOF衍生的金属硫化物CoNi-S和碳布(CC)的复合电极材料是一种提高导电性、实际比容量和循环稳定性的有效方法。另一方面,碳布(CC)是一种具有超高导电性的双电层碳基材料,能够形成独特的网状结构,可有效地提高复合材料的导电性进而提高材料比容量。
此外,CoNi-MOF衍生的CoNi-S纳米颗粒生长在碳布上,避免了粘合剂的使用,降低了材料的阻抗,从而极大地提高了材料整体的导电性能和最大化膜的比表面积,有利于电子的传导和溶液中离子的传输。迄今为止,还没有将CoNi-MOF衍生的CoNi-S纳米颗粒在碳布上生长用来制备复合电极材料及应用在超级电容器方面的报道。
发明内容
针对上述现有技术中存在的不足,本发明的一个目的是在于公开一种MOF衍生的CoNi- S纳米颗粒生长在碳布上的复合电极制备方法。
技术方案:以六水合硝酸钴(Co(NO3)2·6H2O),六水合硝酸镍(Ni(NO3)2·6H2O),聚乙二醇 (PEG-200),乙酸钠(C2H9NaO5),2-甲基咪唑(C4H6N2),硫代乙酰胺(TAA)和碳布(CC)为原料,先通过简单快速的化学反应法得到碳布(CC)表面负载CoNi-MOF材料,再经水热硫化法合成碳布CC@CoNi-S复合电极材料。
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上(CC@CoNi-S)的复合电极制备方法,包括以下步骤:
A、配制摩尔浓度为0.25mol/L的Ni(NO3)2、0.5mol/L Co(NO3)2和0.1mol/L乙酸钠的聚乙二醇溶液,后加入超声均匀,其中所述Co(NO3)2、Ni(NO3)2和乙酸钠在聚乙二醇溶液中以体积比1:1:0.4~1.2:1.2:0.4混合搅拌均匀,优选1:1:0.4,将混合液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
B、将浸渍后的碳布(CC)浸入经超声分散均匀的0.4mol/L 2-甲基咪唑溶液中0.5h~ 6h,得到生长有CoNi-MOF的碳布(CC),即CC@CoNi-MOF复合材料,其中所述碳布(CC)浸入时间优选2h;
C、硫代乙酰胺(TAA)与无水乙醇以固液比为1~2mg:1~3mL,优选2mg:3mL超声分散均匀,转移至反应釜并浸入CC@CoNi-MOF复合材料,90℃~120℃恒温1~ 3h,优选120℃恒温2h,自然冷却至室温,取出,用去离子水和乙醇交替洗净,真空60℃干燥24h得到CC@CoNi-S复合电极。
根据本发明所述方法,制得的CC@CoNi-S复合材料的尺寸约为1cm×2cm,尺寸可以根据实际情况随意裁剪,其微观状态下表面负载有线状纳米阵列中附着中空多面体结构。
本发明的另外一个目的,将所制得CC@CoNi-S复合材料作为超级电容器电极材料。
将所制得的CC@CoNi-S复合材料作为正极电极材料,以摩尔浓度6mol/L的KOH为电解液,将活性炭与导电炭黑、粘结剂以质量比为8:1:1均匀混合分散在溶剂中,然后涂覆在泡沫镍上,干燥、压片,制备成电极片作为电容器的负极材料在两电极体系中进行循环伏安(CV)和恒电流充放电等电化学性能测试,并计算其相应的能量密度和功率密度,以评估所制得CC@CoNi-S复合薄膜的电化学性能。其中所述的循环伏安(CV)测试的电压范围为0~1.7V,扫描速度为2、5、10、20、50和100mV/s,恒电流充放电测试的电压范围为0~1.7V,电流密度为1、2、3、5、8和10A/g。
本发明所制得的CC@CoNi-S复合薄膜电极材料利用X射线衍射仪(XRD)、CHI760E电化学工作站等仪器对产物进行结构分析以及性能分析,以评估其电化学活性。
因碳布凭借其良好的柔韧性可以广泛的应用于便携式电子器件,相较于其他柔性材料,碳布更加的不易破损,其表面负载的线状纳米阵列和以MOF作为骨架的中空多面体结构更加有利于电荷的储存以及移动。
本发明所用反应物试剂,均为市售,六水硝酸钴(Co(NO3)2·6H2O)、六水硝酸镍(Ni(NO3)2·6H2O)、硫代乙酰胺(TAA)、乙酸钠(C2H9NaO5)、无水乙醇(C2H5OH)、氢氧化钾(KOH),国药集团化学试剂有限公司;2-甲基咪唑(C4H6N2),98%,阿拉丁;碳布(CC),台湾碳能。
有益效果
本发明通过非常简易的热溶剂法、化学浸泡反应法和水热硫化法三个步骤合成CC@CoNi-S复合电极材料。以碳布为基底很大程度上增强了材料的柔韧性和导电性,同时CoNi-MOF衍生的CoNi-S纳米颗粒直接在碳布上原位生长,避免了粘合剂的使用,降低了材料的阻抗,还可以最大化离子可接触比表面积,提供了大量反应的活性位点。
附图说明
图1.实施例2所制备的CC@CoNi-S复合电极材料的XRD衍射谱图。
图2.实施例2所制备CC@CoNi-S复合电极材料扫描电子显微镜图。
图3.实施例2所制备CC@CoNi-S复合电极材料的透射电镜照片。
图4.实施例2所制备CC@CoNi-S复合电极材料的能量密度-功率密度图。
图5.实施例2所制备CC@CoNi-S复合电极材料的循环稳定性图。
具体实施方式
下面结合实施例对本发明进行详细说明,以使本领域技术人员更好地理解本发明,但本发明并不局限于以下实施例。
除非另外限定,这里所使用的术语(包含科技术语)应当解释为具有如本发明所属技术领域的技术人员所共同理解到的相同意义。还将理解到,这里所使用的术语应当解释为具有与它们在本说明书和相关技术的内容中的意义相一致的意义,并且不应当以理想化或过度的形式解释,除非这里特意地如此限定。
实施例1
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为0.5h;
步骤3、称取硫代乙酰胺(TAA)20mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例2
一种MOF衍生的CC@CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将3.492g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌6h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为2h;
步骤3、称取硫代乙酰胺(TAA)20mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持2h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
CC@CoNi-S复合电极材料表征分析
如图1所示,从图中可以看出有NiCo2S4和Co9S8的衍射峰,并无其他杂相,说明成功制备出了CC@CoNi-S复合薄膜
如图2所示,从图中可以看到CoNi-S纳米颗粒均匀的原位生长在碳布上形成复合结构。
如图3所示,从图中可以看到CoNi-S纳米颗粒是纳米线组成的纳米空心颗粒且成功附着在碳布上,形成复合纳米结构。
如图4所示,为本实施例所制备的CC@CoNi-S复合材料作为超级电容器电极材料用于两电极体系的应用,从能量密度-功率密度图图中可以看出合成的CC@CoNi-S复合电极材料有着良好的功率密度和能量密度,当最大的能量密度达到48.308W h/kg时其功率密度为1275W/kg。
如图5所示,为本实施例所制备的CC/CoNi-S//AC ASC复合材料用作电极材料进行循环稳定性测试结果,循环8000次后其比电容保持了初始容量的84.091%。
实施例3
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和6.984g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌6h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为6h;
步骤3、称取硫代乙酰胺(TAA)20mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持3h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例4
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为0.5h;
步骤3、称取硫代乙酰胺(TAA)10mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例5
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为2h;
步骤3、称取硫代乙酰胺(TAA)10mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于105℃的恒温烘箱中,并在该温度下保持2h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例6
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为6h;
步骤3、称取硫代乙酰胺(TAA)10mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于90℃的恒温烘箱中,并在该温度下保持3h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例7
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为1h;
步骤3、称取硫代乙酰胺(TAA)15mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于120℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例8
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为2h;
步骤3、称取硫代乙酰胺(TAA)15mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于105℃的恒温烘箱中,并在该温度下保持1h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例9
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为6h;
步骤3、称取硫代乙酰胺(TAA)15mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于90℃的恒温烘箱中,并在该温度下保持3h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
实施例10
一种MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极材料制备方法:
步骤1、将2.91g Ni(NO3)2和5.82g Co(NO3)2加入40mL聚乙二醇溶液中,然后溶液中加入4.92g乙酸钠,之后将配制好的聚乙二醇溶液在室温下混合并搅拌4h,再将混合溶液转移到反应釜中,浸入烘干的碳布(CC)200℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
步骤2、将碳布(CC)浸入经超声分散均匀40mL的0.4mol/L 2-甲基咪唑溶液中,得到生长有CoNi-MOF碳布(CC),其中所述碳布(CC)浸入时间为2h;
步骤3、称取硫代乙酰胺(TAA)20mg溶于30mL乙醇中,经过超声15min后,将所得溶液转移到50mL反应釜中并将CC@CoNi-MOF复合材料(1cm×2cm)浸入该溶液中,将反应釜置于90℃的恒温烘箱中,并在该温度下保持2h,自然冷却至室温后,将样品从反应釜中取出并用去离子水和乙醇交替洗涤并干燥,得到CC@CoNi-S复合材料。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种MOF衍生的CoNi-S纳米颗粒生长在碳布上(CC@CoNi-S)的复合电极制备方法,其特征在于,包括以下步骤:
A. 配制摩尔浓度为0.25mol/L的Ni(NO3)2、0.5 mol/L Co(NO3)2和0.1mol/L乙酸钠的聚乙二醇溶液,后加入超声均匀,其中所述Co(NO3)2、Ni(NO3)2和乙酸钠在聚乙二醇溶液中以体积比1:1:0.4~1.2:1.2:0.4混合搅拌均匀,将混合液转移到反应釜中,浸入烘干的碳布180℃恒温16h,自然冷却至室温取出并用去离子水和乙醇交替洗涤、干燥;
B. 将浸渍后的碳布浸入经超声分散均匀的0.4 mol/L 2-甲基咪唑溶液中0.5h~6h,得到生长有CoNi-MOF的碳布,即CC @ CoNi-MOF复合材料;
C. 硫代乙酰胺与无水乙醇以固液比为1~2mg:1~3mL超声分散均匀,转移至反应釜并浸入CC @ CoNi-MOF复合材料,90℃~120℃恒温1~3h,自然冷却至室温,取出,用去离子水和乙醇交替洗净,真空60℃干燥24h得到CC @ CoNi-S复合电极。
2.根据权利要求1所述MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极制备方法,其特征在于:步骤A中所述Co(NO3)2、Ni(NO3)2和乙酸钠在聚乙二醇溶液中以体积比1:1:0.4混合搅拌均匀。
3.根据权利要求1所述MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极制备方法,其特征在于:步骤B中所述将浸渍后的碳布浸入经超声分散均匀的0.4 mol/L 2-甲基咪唑溶液中2h。
4.根据权利要求1所述MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极制备方法,其特征在于:步骤C中所述硫代乙酰胺与无水乙醇以固液比为2mg:3mL超声分散均匀。
5.根据权利要求1所述MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极制备方法,其特征在于:步骤C中所述转移至反应釜并浸入CC @ CoNi-MOF复合材料,120℃恒温2h。
6.根据权利要求1-5任一所述方法制备得到的MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极。
7.根据权利要求6所述MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极,其特征在于:微观状态下表面负载有线状纳米阵列中附着中空多面体结构。
8.一种如权利要求6所述所述MOF衍生的CoNi-S纳米颗粒生长在碳布上的复合电极的应用,其特征在于:将所制得CC@CoNi-S复合材料作为超级电容器电极材料。
CN202010836383.1A 2020-05-13 2020-08-19 MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用 Active CN112216520B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020104030336 2020-05-13
CN202010403033 2020-05-13

Publications (2)

Publication Number Publication Date
CN112216520A true CN112216520A (zh) 2021-01-12
CN112216520B CN112216520B (zh) 2022-02-15

Family

ID=74058616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010836383.1A Active CN112216520B (zh) 2020-05-13 2020-08-19 MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用

Country Status (1)

Country Link
CN (1) CN112216520B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161527A (zh) * 2021-04-23 2021-07-23 陕西科技大学 一种MOFs衍生硫化钴颗粒复合碳材料的制备方法及其应用
CN113436910A (zh) * 2021-06-15 2021-09-24 桂林理工大学 一种高导电性能Mn-MOFs基电极材料的制备方法
CN114652306A (zh) * 2022-03-17 2022-06-24 电子科技大学 基于MOFs的指尖接触式无创汗液葡萄糖传感器及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244177A (zh) * 2015-10-28 2016-01-13 扬州大学 一种超级电容器用三维纳米结构NiCo2S4电极材料及其制备方法
CN106057482A (zh) * 2016-06-14 2016-10-26 北京工业大学 一种多级结构LDH@CoS复合电极及制备方法
CN107010676A (zh) * 2017-05-08 2017-08-04 浙江师范大学 一种用于超级电容器电极材料硫化钴镍纳米片的简便制备方法
CN109767926A (zh) * 2018-12-06 2019-05-17 东南大学 基于zif-67骨架的双壳层硫化物及其制备方法与应用
CN110136980A (zh) * 2019-06-14 2019-08-16 南阳理工学院 水解调控的硫化镍钴/碳布多孔超级电容电极材料的制备方法
CN110581268A (zh) * 2019-09-26 2019-12-17 安徽师范大学 一种自支撑二元金属硫化物复合材料及其制备方法、锂离子电池负极、锂离子电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244177A (zh) * 2015-10-28 2016-01-13 扬州大学 一种超级电容器用三维纳米结构NiCo2S4电极材料及其制备方法
CN106057482A (zh) * 2016-06-14 2016-10-26 北京工业大学 一种多级结构LDH@CoS复合电极及制备方法
CN107010676A (zh) * 2017-05-08 2017-08-04 浙江师范大学 一种用于超级电容器电极材料硫化钴镍纳米片的简便制备方法
CN109767926A (zh) * 2018-12-06 2019-05-17 东南大学 基于zif-67骨架的双壳层硫化物及其制备方法与应用
CN110136980A (zh) * 2019-06-14 2019-08-16 南阳理工学院 水解调控的硫化镍钴/碳布多孔超级电容电极材料的制备方法
CN110581268A (zh) * 2019-09-26 2019-12-17 安徽师范大学 一种自支撑二元金属硫化物复合材料及其制备方法、锂离子电池负极、锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAN YANG: "Superior oxygen evolution reaction performance of Co3O4/NiCo2O4/Ni foam composite with hierarchical structure", 《ACS SUSTAINABLE CHEMISTRY AND ENGINEERING》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161527A (zh) * 2021-04-23 2021-07-23 陕西科技大学 一种MOFs衍生硫化钴颗粒复合碳材料的制备方法及其应用
CN113436910A (zh) * 2021-06-15 2021-09-24 桂林理工大学 一种高导电性能Mn-MOFs基电极材料的制备方法
CN114652306A (zh) * 2022-03-17 2022-06-24 电子科技大学 基于MOFs的指尖接触式无创汗液葡萄糖传感器及方法

Also Published As

Publication number Publication date
CN112216520B (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
Han et al. Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries
CN109637839B (zh) 碳纳米管/二氧化锰复合材料电极的制备方法
Yang et al. Construction of hierarchical NiCo2S4@ Ni (OH) 2 core-shell hybrid nanosheet arrays on Ni foam for high-performance aqueous hybrid supercapacitors
CN112216520B (zh) MOF衍生的Ni-Co-S纳米颗粒生长在碳布上的复合电极制备方法及其应用
CN108054019B (zh) 叠层结构NiCo2S4@NixCo(1-x)(OH)2复合材料的制备方法及应用
Jiang et al. Hierarchical Ni0. 54Co0. 46O2 nanowire and nanosheet arrays grown on carbon fiber cloth for high-performance supercapacitors
CN108390014B (zh) 泡沫镍负载不同形貌一氧化钴纳米材料的制备方法
CN112670093B (zh) 一种多孔Co3O4@Ni-MOF核壳结构纳米片阵列材料及其制备方法和应用
CN107201573B (zh) 一种二硫化钴与碳纳米纤维复合材料的制备方法及其应用
CN108597893B (zh) 一种基于泡沫镍上的超级电容器复合电极材料的制备方法
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN109637825B (zh) 一种硫化镍纳米片/碳量子点复合材料及其制备方法和应用
CN110526304B (zh) 四硫钴酸镍/氢氧化钴纳米片阵列结构复合材料及其制备与应用
Wang et al. Facile preparation of Ni–Mn layered double hydroxide nanosheets/carbon for supercapacitor
CN114005683B (zh) 一种CoZn-MOF/NiCo2O4@CNTs/rGO复合电极材料的制备方法
Hou et al. Hexagonal-layered Na0. 7MnO2. 05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors
CN110415986B (zh) 一种Ni掺杂CoO/C复合材料及其制备方法
Li et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material
CN110634688A (zh) CoZn-S纳米颗粒穿插在石墨烯中的复合薄膜电极制备方法及其应用
Luo et al. Preparation of NiMoO4 nanoarrays electrodes with optimized morphology and internal crystal water for efficient supercapacitors and water splitting
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
Yan et al. Hierarchical MnO2@ NiCo2O4@ Ti3SiC2/carbon cloth core-shell structure with superior electrochemical performance for all solid-state supercapacitors
CN110534354B (zh) 碳纳米管穿插在CuS纳米颗粒中的复合薄膜电极制备方法及其应用
CN108666144A (zh) 一种三维花状氢氧化钴-石墨烯复合材料及其制备方法
CN115360028B (zh) CNTs@CuCo-LDH/BPQD复合电极的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230719

Address after: 210000 288 Qinhuai Road, Yung Yang Street, Lishui District, Nanjing, Jiangsu

Patentee after: Nanjing Hengchuan Nanotechnology Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University