CN112159227A - 一种铌酸钾钠基无铅压电陶瓷及其制作工艺 - Google Patents

一种铌酸钾钠基无铅压电陶瓷及其制作工艺 Download PDF

Info

Publication number
CN112159227A
CN112159227A CN202011080920.0A CN202011080920A CN112159227A CN 112159227 A CN112159227 A CN 112159227A CN 202011080920 A CN202011080920 A CN 202011080920A CN 112159227 A CN112159227 A CN 112159227A
Authority
CN
China
Prior art keywords
piezoelectric ceramic
potassium
sodium niobate
silver
based lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011080920.0A
Other languages
English (en)
Other versions
CN112159227B (zh
Inventor
龚文
吴超峰
俞胜平
高洪伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE
Goertek Inc
Original Assignee
ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE
Goertek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE, Goertek Inc filed Critical ZHEJIANG TSINGHUA YANGTZE RIVER DELTA RESEARCH INSTITUTE
Priority to CN202011080920.0A priority Critical patent/CN112159227B/zh
Publication of CN112159227A publication Critical patent/CN112159227A/zh
Application granted granted Critical
Publication of CN112159227B publication Critical patent/CN112159227B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种铌酸钾钠基无铅压电陶瓷及其制作工艺,所述铌酸钾钠基无铅压电陶瓷的化学组成为:(1‑x)(K0.5Na0.5)Nb1‑yTayO3+xBiMg0.5Ti0.5O3;所述x,y为摩尔百分比,0≤x≤0.3,0.01≤y≤0.1。本发明的铌酸钾钠基无铅压电陶瓷及其制作工艺,采用钽、铋、镁和钛元素掺杂取代铌酸钾钠钙钛矿结构的A、B位。通过掺杂和复合方法实现电荷平衡及空位补偿,减少原子级缺陷,提高其机械品质因数和降低介电损耗,使之能够满足大功率换能器的性能要求。

Description

一种铌酸钾钠基无铅压电陶瓷及其制作工艺
技术领域
本发明涉及无铅压电陶瓷技术领域,具体涉及一种铌酸钾钠基无铅压电陶瓷及其制作工艺。
背景技术
目前商业大量使用以锆钛酸铅(PZT)陶瓷为主的含铅压电材料,其性能优异、成本低廉,但在生产时氧化铅的使用量占原料总重的70%以上,导致这些铅在生产、使用、回收以及废弃处理过程中对给人类健康和生态环境造成十分严重的伤害。也正因此,绿色环保和环境友好的无铅压电陶瓷如铌酸钾钠等逐成为压电技术新热点。单一铌酸钾钠陶瓷的压电性能不如PZT陶瓷,需要通过调控成分和掺杂元素等方法进一步调高其性能,以满足相应产品的使用要求。
基于上述情况,本发明提出了一种铌酸钾钠基无铅压电陶瓷及其制作工艺,可有效解决以上问题。
发明内容
本发明的目的在于提供一种高机械品质因数和低介电损耗的铌酸钾钠基无铅压电陶瓷及其制作工艺。本发明的铌酸钾钠基无铅压电陶瓷及其制作工艺,采用钽、铋、镁和钛元素掺杂取代铌酸钾钠钙钛矿结构的A、B位。通过掺杂和复合方法实现电荷平衡及空位补偿,减少原子级缺陷,提高其机械品质因数和降低介电损耗,使之能够满足大功率换能器的性能要求。
为解决以上技术问题,本发明提供的技术方案是:
一种铌酸钾钠基无铅压电陶瓷,所述铌酸钾钠基无铅压电陶瓷的化学组成为:(1-x)(K0.5Na0.5)Nb1-yTayO3+xBiMg0.5Ti0.5O3;所述x,y为摩尔百分比,0≤x≤0.3,0.01≤y≤0.1。
本发明的铌酸钾钠基无铅压电陶瓷及其制作工艺,采用钽、铋、镁和钛元素掺杂取代铌酸钾钠钙钛矿结构的A、B位。通过掺杂和复合方法实现电荷平衡及空位补偿,减少原子级缺陷,提高其机械品质因数和降低介电损耗,使之能够满足大功率换能器的性能要求。
优选的,所述的铌酸钾钠基无铅压电陶瓷的制作工艺包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、五氧化二钽、氧化铋、碳酸镁和二氧化钛放入培养皿,置于烘箱内,在100-120℃下保温5-8h;
2)称料混合:按所述铌酸钾钠基无铅压电陶瓷的化学组成配比称量经步骤1)预处理后的原料,分散于无水乙醇中,混合均匀后烘干,粉碎过筛,制成预混粉;
3)预烧:将所述预混粉置于箱式炉中连续升温至800-950℃,保温6-10h,降至室温后粉碎过筛,得到预烧粉;
4)烧结:将所述预烧粉干压成型为生坯,在气氛烧结炉中于1050-1250℃下保温8-12h,得到致密的压电陶瓷片;
5)后处理:将烧结好的所述压电陶瓷片加工成所需形状,在两侧镀上银层,标注正负极后极化老化得到所述铌酸钾钠基无铅压电陶瓷。
优选的,步骤2)中,所述经步骤1)预处理后的原料分散于无水乙醇后,通过球磨机湿磨混合均匀,所述球磨机的转速为200-400rpm,湿磨时间为24-36h,过80目筛。
优选的,步骤4)中,所述气氛烧结炉中的烧结气为空气或氧气,气压为0.1-0.6MPa。
优选的,步骤5)中,所述在两侧镀上银层为:在压电陶瓷片的两表面用丝网涂上厚度为0.01mm的银浆,在120℃下烘干,随后在箱式炉中升温至600-700℃,保温120min后,降温至室温,得到被银陶瓷片。
优选的,步骤5)中,所述极化老化为:将标注有正负极的被银陶瓷片放入装有硅油的极化装置中,油浴加热至100-150℃,在3-5kV/mm的电压下极化30min,然后在室温下放置24h老化,得到所述铌酸钾钠基无铅压电陶瓷。
本发明与现有技术相比,具有以下优点及有益效果:
本发明的铌酸钾钠基无铅压电陶瓷通过精选原料组成,并优化各原料含量,且采用直接干压成型、烧结的方式(严格控制各步骤的工艺条件参数(工艺条件参数的控制是获得性能良好的铌酸钾钠基无铅压电陶瓷的关键,只有工艺条件参数控制在合适的范围内,才能保证铌酸钾钠基无铅压电陶瓷的质量),制备成的铌酸钾钠基无铅压电陶瓷压电性能好,其机械品质因数在350以上,介电损耗在0.8%以下,压电常数为280-300pC/N,可以满足大功率换能器对于压电陶瓷需求。
本发明制备得到的铌酸钾钠基无铅压电陶瓷可取代传统的含铅压电陶瓷制作大功率换能器的元件,绿色环保,可有效避免含铅压电陶瓷材料在生产、使用和废弃过程中带来的铅污染,减少对人类健康和生态环境造成的损害。
本发明的铌酸钾钠基无铅压电陶瓷选择了适当配比的碳酸钾、碳酸钠、五氧化二铌和辅料,所述辅料为五氧化二钽、氧化铋、碳酸镁和二氧化钛;
本发明在合成铌酸钾钠基无铅压电陶瓷的过程中,采用掺杂改性和复合添加的方法,并严格控制各步骤的工艺条件参数,工艺条件参数的控制是获得性能良好的铌酸钾钠基无铅压电陶瓷的关键,只有工艺条件参数控制在合适的范围内,才能保证铌酸钾钠基无铅压电陶瓷的质量,有效提高了铌酸钾钠基无铅压电陶瓷的机械品质因数,降低了其介电损耗。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明的优选实施方案进行描述,但是不能理解为对本专利的限制。
下述实施例中所述试验方法或测试方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均从常规商业途径获得,或以常规方法制备。
实施例1:
一种铌酸钾钠基无铅压电陶瓷,所述铌酸钾钠基无铅压电陶瓷的化学组成为:(1-x)(K0.5Na0.5)Nb1-yTayO3+xBiMg0.5Ti0.5O3;所述x,y为摩尔百分比,0≤x≤0.3,0.01≤y≤0.1。
优选的,所述的铌酸钾钠基无铅压电陶瓷的制作工艺包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、五氧化二钽、氧化铋、碳酸镁和二氧化钛放入培养皿,置于烘箱内,在100-120℃下保温5-8h;
2)称料混合:按所述铌酸钾钠基无铅压电陶瓷的化学组成配比称量经步骤1)预处理后的原料,分散于无水乙醇中,混合均匀后烘干,粉碎过筛,制成预混粉;
3)预烧:将所述预混粉置于箱式炉中连续升温至800-950℃,保温6-10h,降至室温后粉碎过筛,得到预烧粉;
4)烧结:将所述预烧粉干压成型为生坯,在气氛烧结炉中于1050-1250℃下保温8-12h,得到致密的压电陶瓷片;
5)后处理:将烧结好的所述压电陶瓷片加工成所需形状,在两侧镀上银层,标注正负极后极化老化得到所述铌酸钾钠基无铅压电陶瓷。
优选的,步骤2)中,所述经步骤1)预处理后的原料分散于无水乙醇后,通过球磨机湿磨混合均匀,所述球磨机的转速为200-400rpm,湿磨时间为24-36h,过80目筛。
优选的,步骤4)中,所述气氛烧结炉中的烧结气为空气或氧气,气压为0.1-0.6MPa。
优选的,步骤5)中,所述在两侧镀上银层为:在压电陶瓷片的两表面用丝网涂上厚度为0.01mm的银浆,在120℃下烘干,随后在箱式炉中升温至600-700℃,保温120min后,降温至室温,得到被银陶瓷片。
优选的,步骤5)中,所述极化老化为:将标注有正负极的被银陶瓷片放入装有硅油的极化装置中,油浴加热至100-150℃,在3-5kV/mm的电压下极化30min,然后在室温下放置24h老化,得到所述铌酸钾钠基无铅压电陶瓷。
实施例2:
一种(高机械品质因数和低介电损耗的)铌酸钾钠基无铅压电陶瓷,包含以下原子百分比的化学组成,90%的(K0.5Na0.5)Nb0.9Ta0.1O3和10%的BiMg0.5Ti0.5O3,制备方法包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、五氧化二钽、氧化铋、碳酸镁和二氧化钛放入培养皿,置于烘箱内,在120℃下保温6h;
2)称料混合:按所述化学组成配比称量预处理后的原料,分散于无水乙醇中,放入球磨机湿磨,球磨机的转速为240rpm,湿磨时间为36h,湿磨结束后取出放入烘箱烘干,用玛瑙研钵磨碎,过80目筛,制成干粉;
3)预烧:将预混粉置于箱式炉中连续升温至900℃,保温8h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将预烧粉干压成型为生坯,在0.1MPa空气气氛烧结炉中于1050℃下保温10h,得到致密的压电陶瓷片;
5)后处理:将烧结好的压电陶瓷片加工成所需形状,在两侧镀上银层,烧银温度为700℃;在被银陶瓷片两侧电极分别标注正负极,放入装有硅油的极化装置中,油浴加热至150℃,在3kV/mm的电压下极化30min,然后在室温下放置24h老化,得到所述铌酸钾钠基无铅压电陶瓷。
经测试本实施例得到的铌酸钾钠基无铅压电陶瓷的机械品质因数为380,介电损耗为0.77%,压电常数为300pC/N。
实施例3:
一种(高机械品质因数和低介电损耗的)铌酸钾钠基无铅压电陶瓷,包含以下原子百分比的化学组成,85%的(K0.5Na0.5)Nb0.95Ta0.05O3和15%的BiMg0.5Ti0.5O3,制备方法包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、五氧化二钽、氧化铋、碳酸镁和二氧化钛放入培养皿,置于烘箱内,在110℃下保温8h;
2)称料混合:按所述化学组成配比称量预处理后的原料,分散于无水乙醇中,放入球磨机湿磨,球磨机的转速为300rpm,湿磨时间为24h,湿磨结束后取出放入烘箱烘干,用玛瑙研钵磨碎,过80目筛,制成干粉;
3)预烧:将预混粉置于箱式炉中连续升温至850℃,保温10h,降温至室温后粉碎过筛,得到预烧粉;
4)烧结:将预烧粉干压成型为生坯,在0.1MPa氧气气氛烧结炉中于1100℃下保温10h,得到致密的压电陶瓷片;
5)后处理:将烧结好的压电陶瓷片加工成所需形状,在两侧镀上银层,烧银温度为650℃;在被银陶瓷片两侧电极分别标注正负极,放入装有硅油的极化装置中,油浴加热至120℃,在4kV/mm的电压下极化30min,然后在室温下放置24h老化,得到所述铌酸钾钠基无铅压电陶瓷。
经测试本实施例得到的铌酸钾钠基无铅压电陶瓷的机械品质因数为372,介电损耗为0.69%,压电常数为295pC/N。
本发明的(高机械品质因数和低介电损耗的)铌酸钾钠基无铅压电陶瓷,采用钽、铋、镁和钛元素掺杂取代铌酸钾钠钙钛矿结构的A、B位。通过掺杂和复合方法实现电荷平衡及空位补偿,减少原子级缺陷,提高其机械品质因数并降低介电损耗,使之能够满足大功率换能器的性能要求。本发明制备得到的铌酸钾钠基无铅压电陶瓷可以取代传统的含铅压电陶瓷制作大功率换能器的元件,绿色环保,可有效避免含铅压电陶瓷材料在生产、使用和废弃过程中带来的铅污染,减少对人类健康和生态环境造成的损害。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不+应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种铌酸钾钠基无铅压电陶瓷,其特征在于,所述铌酸钾钠基无铅压电陶瓷的化学组成为:(1-x)(K0.5Na0.5)Nb1-yTayO3+xBiMg0.5Ti0.5O3;所述x,y为摩尔百分比,0≤x≤0.3,0.01≤y≤0.1。
2.根据权利要求1所述的铌酸钾钠基无铅压电陶瓷的制作工艺,其特征在于,包括以下步骤:
1)原料预处理:将碳酸钾、碳酸钠、五氧化二铌、五氧化二钽、氧化铋、碳酸镁和二氧化钛放入培养皿,置于烘箱内,在100-120℃下保温5-8h;
2)称料混合:按所述铌酸钾钠基无铅压电陶瓷的化学组成配比称量经步骤1)预处理后的原料,分散于无水乙醇中,混合均匀后烘干,粉碎过筛,制成预混粉;
3)预烧:将所述预混粉置于箱式炉中连续升温至800-950℃,保温6-10h,降至室温后粉碎过筛,得到预烧粉;
4)烧结:将所述预烧粉干压成型为生坯,在气氛烧结炉中于1050-1250℃下保温8-12h,得到致密的压电陶瓷片;
5)后处理:将烧结好的所述压电陶瓷片加工成所需形状,在两侧镀上银层,标注正负极后极化老化得到所述铌酸钾钠基无铅压电陶瓷。
3.根据权利要求2所述的铌酸钾钠基无铅压电陶瓷的制作工艺,其特征在于,步骤2)中,所述经步骤1)预处理后的原料分散于无水乙醇后,通过球磨机湿磨混合均匀,所述球磨机的转速为200-400rpm,湿磨时间为24-36h,过80目筛。
4.根据权利要求2所述的铌酸钾钠基无铅压电陶瓷的制作工艺,其特征在于,步骤4)中,所述气氛烧结炉中的烧结气为空气或氧气,气压为0.1-0.6MPa。
5.根据权利要求2所述的铌酸钾钠基无铅压电陶瓷的制作工艺,其特征在于,步骤5)中,所述在两侧镀上银层为:在压电陶瓷片的两表面用丝网涂上厚度为0.01mm的银浆,在120℃下烘干,随后在箱式炉中升温至600-700℃,保温120min后,降温至室温,得到被银陶瓷片。
6.根据权利要求5所述的铌酸钾钠基无铅压电陶瓷的制作工艺,其特征在于,步骤5)中,所述极化老化为:将标注有正负极的被银陶瓷片放入装有硅油的极化装置中,油浴加热至100-150℃,在3-5kV/mm的电压下极化30min,然后在室温下放置24h老化,得到所述铌酸钾钠基无铅压电陶瓷。
CN202011080920.0A 2020-10-11 2020-10-11 一种铌酸钾钠基无铅压电陶瓷及其制作工艺 Expired - Fee Related CN112159227B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011080920.0A CN112159227B (zh) 2020-10-11 2020-10-11 一种铌酸钾钠基无铅压电陶瓷及其制作工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011080920.0A CN112159227B (zh) 2020-10-11 2020-10-11 一种铌酸钾钠基无铅压电陶瓷及其制作工艺

Publications (2)

Publication Number Publication Date
CN112159227A true CN112159227A (zh) 2021-01-01
CN112159227B CN112159227B (zh) 2023-04-04

Family

ID=73868095

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011080920.0A Expired - Fee Related CN112159227B (zh) 2020-10-11 2020-10-11 一种铌酸钾钠基无铅压电陶瓷及其制作工艺

Country Status (1)

Country Link
CN (1) CN112159227B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563073A (zh) * 2021-07-13 2021-10-29 广东捷成科创电子股份有限公司 一种高稳定的无铅压电陶瓷及其制备方法
CN113979748A (zh) * 2021-09-30 2022-01-28 西安交通大学 一种铌酸钠钾基无铅压电陶瓷及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342070A (ja) * 2002-03-20 2003-12-03 Toyota Central Res & Dev Lab Inc 圧電磁器組成物及びその製造方法並びに圧電素子
JP2007261864A (ja) * 2006-03-28 2007-10-11 Kyocera Corp 圧電磁器組成物および圧電磁器
CN102311266A (zh) * 2011-08-09 2012-01-11 同济大学 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN103436963A (zh) * 2013-08-13 2013-12-11 哈尔滨工业大学 一种高机电耦合性能的钽掺杂铌酸钾钠无铅压电单晶的制备方法
CN103771855A (zh) * 2014-02-17 2014-05-07 中国科学院上海硅酸盐研究所 铌酸钾钠基无铅压电陶瓷材料
CN105645955A (zh) * 2014-11-18 2016-06-08 中国科学院上海硅酸盐研究所 四方相钛镁酸铋-钛酸铅基压电陶瓷的制备方法
CN106631021A (zh) * 2017-01-11 2017-05-10 中国人民解放军空军工程大学 一种具有高储能密度和储能效率的陶瓷材料及其制备方法
CN110342933A (zh) * 2019-06-19 2019-10-18 西安交通大学 一种调控铌酸钠陶瓷居里温度的方法
CN110845236A (zh) * 2019-11-22 2020-02-28 湖南匡楚科技有限公司 一种Ta掺杂铌酸钾钠基压电陶瓷材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342070A (ja) * 2002-03-20 2003-12-03 Toyota Central Res & Dev Lab Inc 圧電磁器組成物及びその製造方法並びに圧電素子
JP2007261864A (ja) * 2006-03-28 2007-10-11 Kyocera Corp 圧電磁器組成物および圧電磁器
CN102311266A (zh) * 2011-08-09 2012-01-11 同济大学 一种铌酸钾钠无铅压电陶瓷材料的制备方法
CN103436963A (zh) * 2013-08-13 2013-12-11 哈尔滨工业大学 一种高机电耦合性能的钽掺杂铌酸钾钠无铅压电单晶的制备方法
CN103771855A (zh) * 2014-02-17 2014-05-07 中国科学院上海硅酸盐研究所 铌酸钾钠基无铅压电陶瓷材料
CN105645955A (zh) * 2014-11-18 2016-06-08 中国科学院上海硅酸盐研究所 四方相钛镁酸铋-钛酸铅基压电陶瓷的制备方法
CN106631021A (zh) * 2017-01-11 2017-05-10 中国人民解放军空军工程大学 一种具有高储能密度和储能效率的陶瓷材料及其制备方法
CN110342933A (zh) * 2019-06-19 2019-10-18 西安交通大学 一种调控铌酸钠陶瓷居里温度的方法
CN110845236A (zh) * 2019-11-22 2020-02-28 湖南匡楚科技有限公司 一种Ta掺杂铌酸钾钠基压电陶瓷材料及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DUNMIN LIN等: "Phase transition and electrical properties of (K0.5Na0.5)(Nb1−xTax)O3 lead-free piezoelectric ceramics", 《APPLIED PHYSICS A MATERIALSSCIENCE & PROCESSING》 *
刘春凤等: "(K_(0.5)Na_(0.5))(Ta_xNb_(1-x))O_3无铅压电陶瓷的性能特征", 《中国陶瓷》 *
吕会芹等: "KNN基无铅压电陶瓷的研究进展", 《聊城大学学报(自然科学版)》 *
杜金花等: "(1-x)K0.5Na0.5NbO3-xBiMg0.5Ti0.5O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为", 《物理学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563073A (zh) * 2021-07-13 2021-10-29 广东捷成科创电子股份有限公司 一种高稳定的无铅压电陶瓷及其制备方法
CN113563073B (zh) * 2021-07-13 2023-12-05 广东捷成科创电子股份有限公司 一种高稳定的无铅压电陶瓷及其制备方法
CN113979748A (zh) * 2021-09-30 2022-01-28 西安交通大学 一种铌酸钠钾基无铅压电陶瓷及其制备方法
CN113979748B (zh) * 2021-09-30 2022-07-12 西安交通大学 一种铌酸钠钾基无铅压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN112159227B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
CN112159227B (zh) 一种铌酸钾钠基无铅压电陶瓷及其制作工艺
CN112174664A (zh) 一种新型高储能、高效率的铌酸钠基陶瓷材料及其制备方法
CN111087238B (zh) 钛酸铋钠基无铅压电陶瓷及其制备方法
US11895923B2 (en) Lead-free piezoelectric ceramic sensor material and a preparation method thereof
CN113213930A (zh) 一种多元素掺杂铌酸钾钠基压电陶瓷及其制备方法
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN112831839B (zh) 一种用于弛豫铁电单晶生长的原料的制备方法
CN111925208A (zh) 一种铌酸锂钠基无铅压电陶瓷及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN110550953A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN111732430B (zh) 一种Sm和Eu共掺杂CaBi8Ti7O27陶瓷的制备方法及其产品及应用
CN113582692A (zh) 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN115536392A (zh) 高温叠层压电驱动器用压电陶瓷片及其制备方法
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
CN112209712B (zh) 一种高压电常数的铌酸钾钠基无铅压电陶瓷及其制备方法
CN112500160A (zh) 一种用于压电雾化片的铌酸钾钠基无铅压电陶瓷及制作工艺
CN113233891A (zh) 一种无铅压电陶瓷材料及其制备方法
CN114249592A (zh) 硬性压电陶瓷材料的制备方法
CN113896532A (zh) 一种高压电性能铌酸钾钠基陶瓷及其制备方法
CN115504783B (zh) 一种knn基无铅压电陶瓷及其制备方法
CN114716244B (zh) 一种特种陶瓷的制备方法及其产品
CN110894161A (zh) 一种铌酸钾钠基无铅压电陶瓷材料及其在超声波电子烟中的应用
CN112759385B (zh) 一种钙钛矿陶瓷材料及其制备方法与应用
CN115466118B (zh) 一种掺杂型无铅压电陶瓷及其制备方法
CN115959907B (zh) 一种无铅压电陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230404