CN112159213A - 一种零光衰发光陶瓷及其制备方法 - Google Patents
一种零光衰发光陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN112159213A CN112159213A CN202011155304.7A CN202011155304A CN112159213A CN 112159213 A CN112159213 A CN 112159213A CN 202011155304 A CN202011155304 A CN 202011155304A CN 112159213 A CN112159213 A CN 112159213A
- Authority
- CN
- China
- Prior art keywords
- barium
- luminescent ceramic
- light
- zero
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
- C09K11/7731—Chalcogenides with alkaline earth metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9653—Translucent or transparent ceramics other than alumina
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明提供一种零光衰发光陶瓷及其制备方法,该发光陶瓷的化学式为Ba0.75‑xEuxAl11‑ yMnyO17.25,其中:0.01≤x≤0.20、0.01≤y≤0.30。发光陶瓷材料的制备方法为:将纯度不低于99.9%的钡、铝、铕、锰原料,如碳酸钡(BaCO3)、氧化铝(Al2O3)、氧化铕(Eu2O3)、硝酸铕(Eu(NO3)3·6H2O)、碳酸锰(MnCO3)、二氧化锰(MnO2)、一氧化锰(MnO)等原料按照化学式进行配比,通过放电等离子体烧结或热压烧结合成含有缺陷的六铝酸钡物相的发光陶瓷,烧结过程中Eu2+和Mn2+分别占据六铝酸钡中Ba与Al的格位,得到具有零光衰的Eu2+、Mn2+共掺六铝酸钡发光陶瓷。本发明在紫外~蓝紫光激发下具有蓝光‑绿光可调的荧光发出,蓝光发射与绿光发射的比例可通过掺杂Mn2+的浓度进行调节。随着温度升高样品的荧光强度先有一个上升,直至200℃达到最高点,随后缓缓下降。
Description
技术领域
本发明属于化工领域,涉及一种荧光材料的制备方法,具体来说是一种零光衰发光陶瓷的制备方法。
背景技术
发光二级管LED激活荧光材料组成的光源虽然已进经历了长时间的发展,然而在需求高流明密度的大功率光源上的应用仍然存在几个问题。特别是大功率荧光转换型LED芯片在使用过程中产生的热量,以及荧光材料在波长转换过程中产生的热量会使荧光材料产生温度淬灭现象,造成荧光粉由于温度淬灭而发光效率下降;与此同时硅胶也会因过高的温度而老化变黄从而影响大功率LED光源的正常使用。
零光衰发光陶瓷(以Ba0.75-xEuxAl11-yMnyO17.25为例)具有在200~400nm紫外光宽波段激发下的蓝光-绿光可调的荧光发射,其具有非常好的抗光衰特性和良好的物理化学稳定性,在高温工作时也有很好的发光效率,并且具有良好的热导率,是一种非常优异的荧光材料。在高功率光源的应用场合具有很大的潜力。
目前,零光衰荧光材料多为磷酸盐,虽然其也能在高温下保持发光效率,但是其物化稳定性较差,而且不易制成陶瓷,于此相比,铝酸盐材料有着优秀的物化稳定性,并且适合制备出透明陶瓷。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种零光衰发光陶瓷及其制备方法,该发光陶瓷的化学式为Ba0.75-xEuxAl11-yMnyO17.25,其中:0.01≤x≤0.20、0.01≤y≤0.30。上述发光陶瓷材料的制备方法为:将纯度不低于99.9%的钡、铝、铕、锰原料,如碳酸钡(BaCO3)、氧化铝(Al2O3)、氧化铕(Eu2O3)、硝酸铕(Eu(NO3)3·6H2O)、碳酸锰(MnCO3)、二氧化锰(MnO2)、一氧化锰(MnO)等原料按照化学式Ba0.75-xEuxAl11-yMnyO17.25进行配比,将配好的粉体通过放电等离子体烧结或热压烧结合成含有缺陷的六铝酸钡物相的发光陶瓷,在高温烧结过程中Eu2+和Mn2+分别占据六铝酸钡中Ba与Al的格位,得到具有零光衰性能的Eu2+、Mn2+共掺六铝酸钡发光陶瓷。本发明在紫外~蓝紫光激发下具有蓝光-绿光可调的荧光发出,蓝光发射与绿光发射的比例可以通过掺杂Mn2+的浓度进行调节,且本发明材料具有零光衰的特点。随着温度的升高样品的荧光强度先有一个上升,直至200℃达到最高点,随后才缓缓下降。
进一步的,上述的零光衰发光陶瓷材料的基质组分含有Ba、Al、O三种元素,且摩尔比例为0.75:11:17.25。
进一步的,上述的零光衰发光陶瓷材料的掺杂离子为Eu2+、Mn2+,且Eu2+、Mn2+按照1:1的比例取代基质中的Ba2+、Al3+。
进一步的,上述的零光衰发光陶瓷的制备方法,包括如下步骤:
(1)根据Ba0.75-xEuxAl11-yMnyO17.25化学式中Eu2+、Mn2+离子的目标掺杂浓度计算、称取所需各种原料的质量,由于碳酸钡在烧结过程中会有热损耗,需加入额外的碳酸钡以补偿;
(2)将称量的碳酸钡,氧化铝,氧化铕和碳酸锰原料放入球磨罐中,并在球磨罐中加入无水酒精和玛瑙球;
(3)通过球磨机进行球磨,将粉料混合均匀。混合后得到的浆料通过干燥得到粉体,并将得到的粉体过筛;
(4)将过筛后的粉末放入马弗炉中进行素烧,素烧条件为在600℃-1200℃的温度区间内素烧保温时间不少于1小时;
(5)将素烧后的粉体放入石墨模具中,通过放电等离子体烧结的方式在1350℃~1550℃处理,热处理时间1~12小时;热处理过程中发生反应生成六铝酸钡物相;
(6)降温冷却后重新放入马弗炉,在1100℃~1300℃下热挥发脱碳1~12小时;
进一步的,在配料过程中,在按化学式称量完成后,需再加入0wt%~10wt%的碳酸钡以补偿其烧结损失。
进一步的,烧结过程采用的是变压烧结方式,以100℃/min的升温速率升至1000℃,同时压强从无匀速到30MPa,再以30℃/min的升温速率升到1300℃,压强保持不变,最后以10℃/min的升温速率升至最高烧结温度,同时压强也增加到100MPa,在最高温度保温时压强保持不变,以20℃/min的降温速率降到1300℃,压强同时降到30MPa,并保持此压强直到冷却完成。
进一步的,放电等离子烧结完成后的样品在还原性气氛下进行热挥发脱碳,热挥发脱碳温度为1100℃~1300℃下热挥发脱碳时间为1-12小时。
进一步的,烧结完成的材料含有钡空位的缺陷。
(优选的,所述步骤1)的额外添加碳酸钡质量比为6wt%~7wt%。
(优选的,所述步骤4)的素烧温度为800℃~900℃。
(优选的,所述步骤4)的素烧时间为3~8小时。
(优选的,所述步骤5)的保温温度为1450℃~1480℃。
(优选的,所述步骤5)的保温时间为0.25-1小时。
(优选的,所述步骤6)的保温温度为1200℃。
(优选的,所述步骤6)的保温时间为5小时。
本发明采用碳酸钡,氧化铝,氧化铕,碳酸锰为初始原料,在球磨机中球磨粉料和无水酒精的混合物,球磨完成后,含有Mn2+离子的浆料烘干后,通过放电等离子体方式烧结处理,通过相变生成含缺陷的六铝酸钡物相;同时,Mn2+扩散进入含缺陷的六铝酸钡结构中,替换已存在四面体结构中的Al3+离子成为发光中心,得到零光衰发光陶瓷。
在紫外~蓝紫光激发下具有蓝光-绿光可调的荧光发出,蓝光发射与绿光发射的比例可以通过掺杂Mn2+的浓度进行调节,Mn2+离子不仅可以作为绿光的发光中心,同时也有促进烧结的作用,合适比例的Mn2+离子的添加会使陶瓷更透明。
本发明材料具有零光衰的特点,随着温度的升高样品的荧光输出现有一个上升,直至200℃达到最高点,随后才缓缓下降。
本发明与现有技术相比,其技术进步是显著的。本发明所提供的一种零光衰发光陶瓷及其制备方法,是一种创新的将六方晶系材料转化为高透明度透明陶瓷的方法,是一种利用基质固有缺陷实现零光衰的方法。本发明的零光衰透明含缺陷六铝酸钡荧光陶瓷的制备方法材料在高流明密度、大功率LED领域具有重要应用。
附图说明
图1为采用紫外分光光度计对实施例1制备得到的Ba0.72Eu0.03Al10.85Mn0.15O17.25荧光材料测试得到的透过率。
图2为采用X射线衍射仪对实施例1制备得到的Ba0.72Eu0.03Al10.85Mn0.15O17.25荧光材料进行检测的XRD精修图谱。
图3为采用导热系数测试仪对实施例1制备得到的Ba0.72Eu0.03Al10.85Mn0.15O17.25荧光材料进行检测的导热系数图谱。
图4为采用荧光光谱仪对实施例1制备得到的Ba0.72Eu0.03Al10.85Mn0.15O17.25荧光材料在365nm紫外光激发下的变温荧光光谱。
图5为采用波长分辨热释光谱仪对实施例1制备得到的Ba0.72Eu0.03Al10.85Mn0.15O17.25荧光材料在300K-770K温度范围内得到的热释光谱。
图6为采用紫外分光光度计对实施例2制备得到的Ba0.72Eu0.03Al10.97Mn0.03O17.25荧光材料测试得到的透过率。
图7为采用荧光光谱仪对实施例2制备得到的荧光材料进行检测的荧光发射光谱。
图8为采用紫外分光光度计对实施例3制备得到的Ba0.72Eu0.03Al10.91Mn0.09O17.25荧光材料测试得到的透过率。
图9为采用荧光光谱仪对实施例3制备得到的荧光材料进行检测的荧光发射光谱。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
以碳酸钡(化学式:BaCO3),氧化铝(化学式:Al2O3),氧化铕(化学式:Eu2O3)和碳酸锰(化学式:MnCO3)为原料,称取碳酸钡2.462g,氧化铝9.000g,氧化铕0.086g和碳酸锰0.281g。将原料在13ml无水酒精中球磨混合,其中在球磨罐中加入45g玛瑙球辅助混合均匀。混合浆料在室温下以250r/min的速度球磨12小时。
球磨停止后,浆料置于80℃干燥箱中干燥12小时得到干燥后的粉体,并将干燥粉体使用200目的尼龙网筛过筛三遍得到粉体。
将粉体放入马弗炉中在800℃下素烧4小时,随后自然冷却至室温。
将素烧后的粉体放入内径为20mm的石墨模具中,粉体与模具通过碳纸进行隔断,并在模具两头塞以石墨压头来固定待烧结粉体位置。将模具放入放电等离子体烧结装置,通过设定程序使样品在最高温度为1470℃的情况下烧结,随后冷却得到零光衰含缺陷六铝酸钡荧光陶瓷Ba0.72Eu0.03Al10.85Mn0.15O17.25
采用紫外-可见分光光度计测试本发明实施例1制备得到的荧光材料的透过光谱,如图1所示,可以看到该荧光材料在500~800nm范围具有强的透过率。
采用X射线粉末衍射仪,对所得荧光材料物相进行检测并进行XRD精修,检测结果数据表明所得荧光材料的物相为六方六铝酸钡相,XRD图谱如图2所示。
采用导热系数测试仪,对所得荧光材料在25℃,50℃,150℃,200℃,250℃进行热导率检测,热导率图谱如图3所示。在室温下热导率最高可以到达4.239W·m-1·K-1)。
采用荧光光谱仪,测试本发明实施例1制备得到的荧光材料在365nm紫外光激发下在25℃,50℃,75℃,100℃,125℃,150℃,175℃,200℃,225℃,,250℃的荧光光谱,测试结果如图4所示。本发明实施例1制备得到的零光衰含缺陷六铝酸钡荧光陶瓷材料在紫外光激发下可绿光发射,发光峰位在516nm,荧光强度随着温度升高在200℃(473K)达到最大值,具有零光衰现象。
采用波长分辨热释光谱仪,测试本发明实施例1制备得到的荧光材料在300K~770K温度下的热释光谱,结果如图5所示。测试结果表明材料含有四种不同深度的缺陷。
实施例2
实施例2制备荧光陶瓷材料方法与实例1基本相同,所采取的原料都是碳酸钡,氧化铝,氧化铕和碳酸锰,不同的是Mn2+相对Al3+的掺杂量为0.03。
采用紫外-可见分光光度计测试本发明实施例2制备得到的荧光材料的透过光谱,如图6所示,可以看到该荧光材料在500~800nm范围具有强的透过率。
采用荧光光谱仪,对所得荧光材料的发射谱进行检测,检测结果数据表明所得荧光材料在紫外光激发下可蓝绿光发射,荧光光谱如图7所示。
实施例3
实施例3制备荧光陶瓷材料方法与实例1基本相同,所采取的原料都是碳酸钡,氧化铝,氧化铕和碳酸锰,不同的是Mn2+相对Al3+的掺杂量为0.09。
采用紫外-可见分光光度计测试本发明实施例3制备得到的荧光材料的透过光谱,如图8所示,可以看到该荧光材料在500~800nm范围具有强的透过率。
采用荧光光谱仪,对所得荧光材料的发射谱进行检测,检测结果数据表明所得荧光材料在紫外光激发下可蓝绿光发射,荧光光谱如图9所示。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (4)
1.一种零光衰发光陶瓷及其制备方法,该发光陶瓷的化学式为Ba0.75-xEuxAl11- yMnyO17.25,其中:0.01≤x≤0.20、0.01≤y≤0.30;其特征在于:将纯度不低于99.9%的钡、铝、铕、锰原料,如碳酸钡(BaCO3)、氧化铝(Al2O3)、氧化铕(Eu2O3)、硝酸铕(Eu(NO3)3·6H2O)、碳酸锰(MnCO3)、二氧化锰(MnO2)、一氧化锰(MnO)等原料按照化学式Ba0.75-xEuxAl11- yMnyO17.25进行配比,将配好的粉体通过放电等离子体烧结或热压烧结合成含有缺陷的六铝酸钡物相的发光陶瓷,在高温烧结过程中Eu2+和Mn2+分别占据六铝酸钡中的Ba与Al的格位,得到具有零光衰性能的Eu2+、Mn2+共掺六铝酸钡发光陶瓷。
2.根据权利要求1所述的零光衰发光陶瓷材料的组分,其特征在于:材料的基质含有Ba、Al、O三种元素,且摩尔比例为0.75:11:17.25。
3.根据权利要求1所述的零光衰发光陶瓷材料的组分,其特征在于:材料的掺杂离子为Eu2+、Mn2+,且Eu2+、Mn2+按照1:1的比例取代基质中的Ba2+、Al3+。
4.根据权利要求1所述的零光衰发光陶瓷材料的制备方法,其特征在于包括如下步骤:
(1)根据Ba0.75-xEuxAl11-yMnyO17.25化学式中Eu2+、Mn2+离子的目标掺杂浓度计算、称取所需各种原料的质量,由于碳酸钡在烧结过程中会有热损耗,需加入额外的碳酸钡以补偿;
(2)将称量的碳酸钡,氧化铝,氧化铕和碳酸锰原料放入球磨罐中,并在球磨罐中加入无水酒精和玛瑙球;
(3)通过球磨机进行球磨,将粉料混合均匀。混合后得到的浆料通过干燥得到粉体,并将得到的粉体过筛;
(4)将过筛后的粉末放入马弗炉中进行素烧,素烧条件为在600℃~1200℃的温度区间内素烧保温时间不少于1小时;
(5)将素烧后的粉体放入石墨模具中,通过放电等离子体烧结或热压烧结的方式在1350℃~1550℃处理,热处理时间1~12小时;热处理过程中发生反应生成含有缺陷的六铝酸钡物相,降温冷却后得到具有零光衰性能的Eu2+、Mn2+共掺六铝酸钡发光陶瓷。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011155304.7A CN112159213B (zh) | 2020-10-29 | 2020-10-29 | 一种零光衰发光陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011155304.7A CN112159213B (zh) | 2020-10-29 | 2020-10-29 | 一种零光衰发光陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112159213A true CN112159213A (zh) | 2021-01-01 |
CN112159213B CN112159213B (zh) | 2023-07-18 |
Family
ID=73864626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011155304.7A Active CN112159213B (zh) | 2020-10-29 | 2020-10-29 | 一种零光衰发光陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112159213B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116731716A (zh) * | 2022-03-01 | 2023-09-12 | 厦门稀土材料研究所 | 一种发光材料、其制备方法及包含该材料的led发光装置 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN88102258A (zh) * | 1987-04-14 | 1988-11-02 | 菲利浦光灯制造公司 | 发光的六铝酸钡,配有该铝酸盐的荧光屏以及配有该屏的低压汞蒸汽放电管 |
CN1597839A (zh) * | 2003-08-29 | 2005-03-23 | 松下电器产业株式会社 | 荧光材料和等离子体显示装置 |
CN1647587A (zh) * | 2002-04-17 | 2005-07-27 | 伊菲雷技术有限公司 | 氧取代的硫代铝酸钡无机发光材料 |
CN1791702A (zh) * | 2003-05-15 | 2006-06-21 | 奥斯兰姆施尔凡尼亚公司 | 通过化学气相沉积封装磷光体的方法 |
WO2007018222A1 (ja) * | 2005-08-10 | 2007-02-15 | Ube Industries, Ltd. | 発光ダイオード用基板及び発光ダイオード |
CN101225301A (zh) * | 2008-01-15 | 2008-07-23 | 西安理工大学 | 一种纳米六铝酸盐基发光材料的制备方法 |
CN105264043A (zh) * | 2013-05-23 | 2016-01-20 | 默克专利股份有限公司 | 发光材料 |
DE102014113068A1 (de) * | 2014-09-10 | 2016-03-10 | Seaborough Ip I B.V. | Lichtemittierende Vorrichtung |
CA2979669A1 (en) * | 2015-04-24 | 2016-10-27 | Halliburton Energy Services, Inc. | Methods of fabricating ceramic or intermetallic parts |
CN106518046A (zh) * | 2016-10-26 | 2017-03-22 | 中国地质大学(武汉) | 一种采用共离子络合的方法制备镁基六铝酸镧粉体的方法 |
JP2017179219A (ja) * | 2016-03-31 | 2017-10-05 | 信越化学工業株式会社 | 蛍光材料及びその製造方法 |
CN107244897A (zh) * | 2017-04-25 | 2017-10-13 | 欧钛鑫光电科技(苏州)有限公司 | 一种巨介电陶瓷材料及其制备方法 |
CN110128126A (zh) * | 2019-07-01 | 2019-08-16 | 桂林电子科技大学 | 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法 |
JP2019182731A (ja) * | 2018-04-06 | 2019-10-24 | 日亜化学工業株式会社 | セラミックス複合体の製造方法、セラミックス複合体及び発光装置 |
-
2020
- 2020-10-29 CN CN202011155304.7A patent/CN112159213B/zh active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN88102258A (zh) * | 1987-04-14 | 1988-11-02 | 菲利浦光灯制造公司 | 发光的六铝酸钡,配有该铝酸盐的荧光屏以及配有该屏的低压汞蒸汽放电管 |
CN1647587A (zh) * | 2002-04-17 | 2005-07-27 | 伊菲雷技术有限公司 | 氧取代的硫代铝酸钡无机发光材料 |
CN1791702A (zh) * | 2003-05-15 | 2006-06-21 | 奥斯兰姆施尔凡尼亚公司 | 通过化学气相沉积封装磷光体的方法 |
CN1597839A (zh) * | 2003-08-29 | 2005-03-23 | 松下电器产业株式会社 | 荧光材料和等离子体显示装置 |
WO2007018222A1 (ja) * | 2005-08-10 | 2007-02-15 | Ube Industries, Ltd. | 発光ダイオード用基板及び発光ダイオード |
CN101225301A (zh) * | 2008-01-15 | 2008-07-23 | 西安理工大学 | 一种纳米六铝酸盐基发光材料的制备方法 |
CN105264043A (zh) * | 2013-05-23 | 2016-01-20 | 默克专利股份有限公司 | 发光材料 |
DE102014113068A1 (de) * | 2014-09-10 | 2016-03-10 | Seaborough Ip I B.V. | Lichtemittierende Vorrichtung |
CA2979669A1 (en) * | 2015-04-24 | 2016-10-27 | Halliburton Energy Services, Inc. | Methods of fabricating ceramic or intermetallic parts |
JP2017179219A (ja) * | 2016-03-31 | 2017-10-05 | 信越化学工業株式会社 | 蛍光材料及びその製造方法 |
CN106518046A (zh) * | 2016-10-26 | 2017-03-22 | 中国地质大学(武汉) | 一种采用共离子络合的方法制备镁基六铝酸镧粉体的方法 |
CN107244897A (zh) * | 2017-04-25 | 2017-10-13 | 欧钛鑫光电科技(苏州)有限公司 | 一种巨介电陶瓷材料及其制备方法 |
JP2019182731A (ja) * | 2018-04-06 | 2019-10-24 | 日亜化学工業株式会社 | セラミックス複合体の製造方法、セラミックス複合体及び発光装置 |
CN110128126A (zh) * | 2019-07-01 | 2019-08-16 | 桂林电子科技大学 | 一种铁酸铋-钛酸钡-锌钛酸铋-铝酸铋高温无铅压电陶瓷及其制备方法 |
Non-Patent Citations (19)
Title |
---|
WANG,ZX: "Reidinger defects induced thermally stable green emission from Eu2+,Mn2+ Co-doped Ba0.75Al11O17.25 transparent ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 * |
WANG,ZX: "Reidinger defects induced thermally stable green emission from Eu2+,Mn2+ Co-doped Ba0.75Al11O17.25 transparent ceramics", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》, 31 October 2021 (2021-10-31) * |
于欣阳等: "基于太阳能切削硅粉制备Eu~(2+)激发的直接白光荧光粉及其发光特性研究", 《华东师范大学学报(自然科学版)》 * |
于欣阳等: "基于太阳能切削硅粉制备Eu~(2+)激发的直接白光荧光粉及其发光特性研究", 《华东师范大学学报(自然科学版)》, no. 02, 25 March 2018 (2018-03-25) * |
何汉兵;黄伯云;李志友;周科朝;: "BaO掺杂对10NiO-NiFe_2O_4复合陶瓷导电性能的影响", 功能材料, no. 04 * |
徐寿亮: "全光谱白光二极管用Eu2+,Eu2+/Mn2+掺杂Ba0.75Al11O17.25荧光粉的制备与发光性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 * |
徐寿亮: "全光谱白光二极管用Eu2+,Eu2+/Mn2+掺杂Ba0.75Al11O17.25荧光粉的制备与发光性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, 15 January 2022 (2022-01-15) * |
景晓燕等: "化学共沉淀制备PDP荧光粉BaAl_(12)O_(19):Mn研究", 《哈尔滨工程大学学报》 * |
景晓燕等: "化学共沉淀制备PDP荧光粉BaAl_(12)O_(19):Mn研究", 《哈尔滨工程大学学报》, no. 02, 30 April 2003 (2003-04-30) * |
朱宪忠等: "钡铝酸盐绿荧光粉化学组成对光谱特性的影响", 《电子元件与材料》 * |
朱宪忠等: "钡铝酸盐绿荧光粉化学组成对光谱特性的影响", 《电子元件与材料》, no. 02, 5 February 2009 (2009-02-05) * |
李雪征等: "白光二极管用Ba_3MgSi_2O_8基质发光材料的溶胶雾化-微波烧成与光谱性质", 《发光学报》 * |
李雪征等: "白光二极管用Ba_3MgSi_2O_8基质发光材料的溶胶雾化-微波烧成与光谱性质", 《发光学报》, no. 06, 15 December 2008 (2008-12-15) * |
武祥等: "溶胶凝胶法制备PDP用荧光粉BaAl_(12)O_(19):Mn", 《沈阳工业大学学报》 * |
武祥等: "溶胶凝胶法制备PDP用荧光粉BaAl_(12)O_(19):Mn", 《沈阳工业大学学报》, no. 05, 25 October 2005 (2005-10-25) * |
贺明睿等: "BaAl_(12)O_(19)基质中Eu~(2+)的发光特性", 《发光学报》 * |
贺明睿等: "BaAl_(12)O_(19)基质中Eu~(2+)的发光特性", 《发光学报》, no. 06, 15 December 2008 (2008-12-15) * |
赵亚娟等: "溶胶-凝胶法制备锰掺杂的铝酸盐荧光粉的研究", 《中国照明电器》 * |
赵亚娟等: "溶胶-凝胶法制备锰掺杂的铝酸盐荧光粉的研究", 《中国照明电器》, no. 11, 25 November 2017 (2017-11-25) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116731716A (zh) * | 2022-03-01 | 2023-09-12 | 厦门稀土材料研究所 | 一种发光材料、其制备方法及包含该材料的led发光装置 |
CN116731716B (zh) * | 2022-03-01 | 2024-10-01 | 厦门稀土材料研究所 | 一种发光材料、其制备方法及包含该材料的led发光装置 |
Also Published As
Publication number | Publication date |
---|---|
CN112159213B (zh) | 2023-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110129051B (zh) | La4Ca3Si6N14晶体及荧光粉和制备方法 | |
CN103160278A (zh) | 一种红色长余辉发光材料及其制备方法 | |
CN111234814A (zh) | 一种Mn4+掺杂的氮氧化物红色荧光粉及制备方法 | |
CN116120928B (zh) | 一种超宽带发射近红外荧光粉及其制备方法 | |
CN113736463A (zh) | 一种紫光激发的青光荧光粉及其制备方法与应用 | |
CN114590831B (zh) | LaSi2N3O晶体及荧光粉和制备方法 | |
CN106753327B (zh) | 一种荧光粉的表面热处理修饰方法以及由其制成的cob光源 | |
CN109536165B (zh) | 一种锗酸盐长余辉发光材料及其制备方法 | |
CN114736673B (zh) | 一种铕离子多价态型双中心光学温度探针材料 | |
CN106554777B (zh) | 一种色度随温度可调的发光材料及其制备方法与应用 | |
CN112159213B (zh) | 一种零光衰发光陶瓷及其制备方法 | |
KR20100102064A (ko) | 청색 발광 형광체 | |
CN114735662A (zh) | La4Ba3Li3Si9N19晶体及荧光粉和制备方法 | |
CN117363353A (zh) | 一种近红外荧光粉、制备方法及应用 | |
CN112745840B (zh) | 一种近红外硅锗酸盐长余辉发光材料及其制备方法 | |
CN106433628B (zh) | 一种Eu掺杂的高效蓝光发射的铝硅酸盐荧光材料及制备方法 | |
CN109837087B (zh) | 一种自激发荧光粉及其制备方法 | |
CN108485655A (zh) | Ca4Si4N2O9晶体及荧光粉和制备方法 | |
CN110951488A (zh) | 一种双模式调控多中心光致发光的荧光粉及其制备方法 | |
CN109233822B (zh) | 一种黄色长余辉发光材料及其制备方法和应用 | |
WO2010127560A1 (zh) | 一种蓝绿色硅酸盐发光材料 | |
CN113481003A (zh) | 一种用于农业照明的多波段发射荧光粉及制备方法 | |
CN111925203A (zh) | 一种零温度淬灭绿色发光荧光陶瓷的制备方法 | |
CN116376539B (zh) | 一种led绿粉及其制备方法 | |
CN110357591A (zh) | 一种Mn4+离子激活刚玉相红色发光荧光陶瓷及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |