CN112132973B - 三维集成电路电磁仿真全三维网格快速生成方法及装置 - Google Patents

三维集成电路电磁仿真全三维网格快速生成方法及装置 Download PDF

Info

Publication number
CN112132973B
CN112132973B CN202011334621.5A CN202011334621A CN112132973B CN 112132973 B CN112132973 B CN 112132973B CN 202011334621 A CN202011334621 A CN 202011334621A CN 112132973 B CN112132973 B CN 112132973B
Authority
CN
China
Prior art keywords
layer
polygons
triangular
polygon
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011334621.5A
Other languages
English (en)
Other versions
CN112132973A (zh
Inventor
唐章宏
邹军
汲亚飞
王芬
黄承清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Wisechip Simulation Technology Co Ltd
Original Assignee
Beijing Wisechip Simulation Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Wisechip Simulation Technology Co Ltd filed Critical Beijing Wisechip Simulation Technology Co Ltd
Priority to CN202011334621.5A priority Critical patent/CN112132973B/zh
Publication of CN112132973A publication Critical patent/CN112132973A/zh
Application granted granted Critical
Publication of CN112132973B publication Critical patent/CN112132973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供了三维集成电路电磁仿真全三维网格快速生成方法及装置:收集并设置所有层的集成电路版图多边形的层信息,将所有层的多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有多边形的边,并在多边形边的交点插入新的网格节点;对投影到同一层的多边形的边进行简化与对齐,并对简化与对齐后的多边形及整个集成电路版图区域进行三角形网格剖分;将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据多边形的层信息确定其平行平板场域跨越的层,从而确定分割的三棱柱所在的区域。实现了通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。

Description

三维集成电路电磁仿真全三维网格快速生成方法及装置
技术领域
本发明涉及集成电路技术领域,特别涉及一种三维集成电路电磁仿真全三维网格快速生成方法及装置。
背景技术
随着集成电路产业的飞速发展,传统的二维平面的封装技术已经无法满足日益增长的芯片性能和封装密度的要求,三维封装技术已经成为高密度芯片封装的一个不可逆转的趋势。三维集成电路就是将多块平面芯片从垂直方向上进行堆叠,使用金线键合或者其他方式进行互连,从而形成一种立体的封装结构。由于三维技术最大可能地利用了芯片的立体空间,以堆叠的形式使得在单位面积内能封装更多的晶体管,有效地降低了芯片的延时和功耗,在提高芯片性能的同时降低了芯片的制造成本。随着芯片特征尺寸的不断缩小,芯片上单位面积内可集成越来越多的晶体管。而为了获得更高的芯片性能,芯片的工作频率不断提升,电源电压不断降低,噪声容限也不断缩小。以上特征所产生的电源完整性和信号完整性问题,已经成为芯片设计中的关键性问题,因此针对三维集成电路进行电磁仿真,分析其电源完整性问题、信号完整性问题已成为迫在眉睫需要解决的问题。
早期,针对结构简单的集成电路对其电源完整性和信号完整性问题主要采用简化的传输线法或有限差分法,以上方法不需要针对复杂结构的集成电路进行复杂的网格剖分,计算速度快,但由于对集成电路版图进行了很大的近似,在处理早期结构简单、规则的版图计算结果是准确的,但对于近年来结构越来越复杂版图则产生不可比对的误差。近年来,针对带有结构复杂的集成电路版图的多层集成电路采用基于场的方法计算,对各层集成电路版图采用二维非结构网格剖分,在网格剖分的过程中考虑了版图的复杂结构,因此其计算结果更为准确,但这种方法采用的是二维网格对计算场域进行离散,其假设的前提是集成电路版图尺寸远远大于集成电路金属层的厚度以及金属层之间的介质层的厚度,对于目前正在发展的三维集成电路来说,其电源、信号不光在各层的平面结构传递,还在垂直方向产生大量的互连,且集成电路电源部分的供电金属线的宽度越来越窄,已经可以和金属层或介质层厚度相比拟,此时,这个假设已经显现出越来越大的误差,因此有必要直接采用三维电磁场数值计算方法如三维有限元法直接对整个三维集成电路进行电磁仿真。然而,由于这种发展的三维集成电路结构上具有非常明显的多尺度特征,其尺度范围从互连线宽的纳米级到电源层版图区域的厘米级,层间距、过孔尺寸也从微米级到纳米级,如果直接对这样的多尺度的复杂的三维集成电路进行三维非结构的四面体网格剖分,将花费大量的CPU时间,并且,可能会在小尺度区域产生过于密集的网格,导致最终产生数量庞大的网格,对三维非结构的四面体网格剖分技术以及由此产生的超大规模稀疏矩阵的求解技术将是一个极大的挑战。
本发明提出一种三维集成电路电磁仿真全三维网格快速生成方法及装置。实现了通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。
发明内容
(一)发明目的
为克服上述现有技术存在的至少一种缺陷,本发明提供了一种三维集成电路电磁仿真全三维网格快速生成方法及装置,通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。
(二)技术方案
作为本发明的第一方面,本发明公开了三维集成电路电磁仿真全三维网格快速生成方法,包括以下步骤:
步骤1,收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点;对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分;
步骤2,将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域。
一种可能的实施方式中,在所述步骤1中,所述收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点,包括:
步骤1.1,获取多层所述集成电路版图包含多个顶点的多个所述多边形,增加两个能覆盖所有层所述集成电路版图多边形的矩形多边形,分别作为顶层空气层和底层空气层的所述多边形;
步骤1.2,设置各层所述多边形的层信息,并用二进制数字代表各自的层;
步骤1.3,将各层的多个所述多边形垂直投影到同一层,根据Delaunay三角剖分算法形成以多边形顶点为网格节点的Delaunay三角形网格,其中,所述多边形的各个边包含预先设定的所在多边形的所述多边形信息和所在层的层信息;
步骤1.4,合并投影后重合的多个所述多边形的边的所述多边形信息和所述多边形的层信息;
步骤1.5,根据所述边交换法将所述Delaunay三角形网格对齐到多个所述多边形的各个边,同时计算多个不同层的所述多边形的边的交点并将所述交点新增为所述多边形的顶点和所述Delaunay三角形网格的节点,形成第一三角形网格。
一种可能的实施方式中,在所述步骤1中,所述对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分,包括:
步骤1.6,基于所述第一三角形网格,在每个所述多边形的内外分别形成夹住所述多边形的内外辅助多边形,并通过设定的距离阈值控制所述内外辅助多边形与所述多边形的距离;
步骤1.7,对落在所述内外辅助多边形之间的各层所述多边形的边进行对齐和简化处理,并根据各个所述多边形的边所包含的多边形编号信息将投影到同一层的多层所述多边形还原到各层中,同时更新所述三角形网格及其层信息,形成第二三角形网格;
步骤1.8,基于所述第二三角形网格和所述多边形及其层信息,将各个所述多边形的边的层信息基于布尔运算叠加到各个所述多边形内的所有三角形中。
一种可能的实施方式中,在所述步骤2中,所述将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱,包括:
步骤2.1:根据包括金属层和介质层的每层纵向上的排列顺序,记录所述集成电路版图每层唯一的区域编号;
步骤2.2:设定纵向上的坐标原点,根据所述集成电路版图每层的厚度及区域编号顺序,记录每层的位置信息;
步骤2.3:基于所述步骤1获得的所述第二三角形网格,将所有所述三角形网格在厚度方向扩展为一个所述三棱柱,所述三棱柱的上下底面三角形为所述第二三角形网格对应的所述三角形,上下底面位置为层界面最大值和最小值,从而形成第一三棱柱网格;
步骤2.4:基于所述步骤2.3获得的所述第一三棱柱网格,将所有所述三棱柱沿z方向按zinterface进行分割,每个所述三棱柱被分割为N-1个所述三棱柱,形成第二三棱柱网格,其中N为所述集成电路版图包括上下空气层的层界面个数,zinterface为层界面的位置。
一种可能的实施方式中,在所述步骤2中,所述根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域,包括:
步骤2.5:基于所述步骤1.7获得的所述第二三角形网格,根据所述三角形网格的层信息,还原所述三角形网格被哪些层界面的所述多边形共用;
步骤2.6:根据所述步骤2.5确定的所述三角形网格被哪些层界面的所述多边形共用,以此推算出其依次包含的区域,进而确定所述第二三棱柱网格中每个所述三棱柱所在的区域。
作为本发明的第二方面,本发明公开了三维集成电路电磁仿真全三维网格快速生成装置,包括:
第一模块,用于收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点;对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分;
第二模块,用于将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域。
一种可能的实施方式中,在所述第一模块中,所述收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点,包括:
第一单元,用于获取多层所述集成电路版图包含多个顶点的多个所述多边形,增加两个能覆盖所有层所述集成电路版图多边形的矩形多边形,分别作为顶层空气层和底层空气层的所述多边形;
第二单元,用于设置各层所述多边形的层信息,并用二进制数字代表各自的层;
第三单元,用于将各层的多个所述多边形垂直投影到同一层,根据Delaunay三角剖分算法形成以多边形顶点为网格节点的Delaunay三角形网格,其中,所述多边形的各个边包含预先设定的所在多边形的所述多边形信息和所在层的层信息;
第四单元,用于合并投影后重合的多个所述多边形的边的所述多边形信息和所述多边形的层信息;
第五单元,用于根据所述边交换法将所述Delaunay三角形网格对齐到多个所述多边形的各个边,同时计算多个不同层的所述多边形的边的交点并将所述交点新增为所述多边形的顶点和所述Delaunay三角形网格的节点,形成第一三角形网格。
一种可能的实施方式中,在所述第一模块中,所述对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分,包括:
第六单元,用于基于所述第一三角形网格,在每个所述多边形的内外分别形成夹住所述多边形的内外辅助多边形,并通过设定的距离阈值控制所述内外辅助多边形与所述多边形的距离;
第七单元,用于对落在所述内外辅助多边形之间的各层所述多边形的边进行对齐和简化处理,并根据各个所述多边形的边所包含的多边形编号信息将投影到同一层的多层所述多边形还原到各层中,同时更新所述三角形网格及其层信息,形成第二三角形网格;
第八单元,用于基于所述第二三角形网格和所述多边形及其层信息,将各个所述多边形的边的层信息基于布尔运算叠加到各个所述多边形内的所有三角形中。
一种可能的实施方式中,在所述第二模块中,所述将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱,包括:用于根据包括金属层和介质层的每层纵向上的排列顺序,记录所述集成电路版图每层唯一的区域编号;
用于设定纵向上的坐标原点,根据所述集成电路版图每层的厚度及区域编号顺序,记录每层的位置信息;
用于基于所述第一模块获得的所述第二三角形网格,将所有所述三角形网格在厚度方向扩展为一个所述三棱柱,所述三棱柱的上下底面三角形为所述第二三角形网格对应的所述三角形,上下底面位置为层界面最大值和最小值,从而形成第一三棱柱网格;
用于所述第三单元获得的所述第一三棱柱网格,将所有所述三棱柱沿z方向按zinterface进行分割,每个所述三棱柱被分割为N-1个所述三棱柱,形成第二三棱柱网格,其中N为所述集成电路版图包括上下空气层的层界面个数,zinterface为层界面的位置。
一种可能的实施方式中,在所述第二模块中,所述根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域,包括:
用于基于所述第七单元获得的所述第二三角形网格,根据所述三角形网格的层信息,还原所述三角形网格被哪些层界面的所述多边形共用;
用于根据确定的所述三角形网格被哪些层界面的所述多边形共用,以此推算出其依次包含的区域,进而确定所述第二三棱柱网格中每个所述三棱柱所在的区域。
(三)有益效果
本发明提供的一种三维集成电路电磁仿真全三维网格快速生成方法及装置,通过步骤1收集并设置所有层的集成电路版图多边形的层信息,将所有层的多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有多边形的边,在多边形边的交点插入新的网格节点;对投影到同一层的多边形的边进行简化与对齐,并对简化与对齐后的多边形及整个集成电路版图区域进行三角形网格剖分;通过步骤2将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据多边形的层信息确定其平行平板场域跨越的层,从而确定分割的三棱柱所在的区域。实现了通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。
附图说明
以下参考附图描述的实施例是示例性的,旨在用于解释和说明本发明,而不能理解为对本发明的保护范围的限制。
图1是本发明提供的一种三维集成电路电磁仿真全三维网格快速生成方法的流程图。
图2是本发明提供的一种三维集成电路电磁仿真全三维网格快速生成方法及装置的简单的多层集成电路版图金属层与介质层示意图。
图3是本发明提供的一种三维集成电路电磁仿真全三维网格快速生成方法及装置的多层集成电路版图的区域编号与层界面位置关系示意图。
图4是本发明提供的一种三维集成电路电磁仿真全三维网格快速生成装置的结构示意图。
具体实施方式
为使本发明实施的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行更加详细的描述。
需要说明的是:在附图中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。所描述的实施例是本发明一部分实施例,而不是全部的实施例,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,均仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制。
下面参考图1-3详细描述本发明提供的三维集成电路电磁仿真全三维网格快速生成方法的第一实施例。如图1-3所示,本实施例提供的三维集成电路电磁仿真全三维网格快速生成方法主要包括有:步骤1和步骤2。
本发明提出了一种三维超大规模集成电路电磁仿真全三维网格快速生成技术,该技术直接针对尺度范围为厘米级到纳米级的复杂的三维集成电路进行三维非结构的网格剖分,但与传统三维非结构的四面体网格剖分不同,本专利将基于平行平板场域识别技术,对这样的多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。该方法首先通过步骤1收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点;对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行二维非结构三角形网格剖分;在所述步骤1中,收集所有层的集成电路版图多边形信息,并根据所在的层设置每个多边形的层信息,然后将其投影到同一层,对投影到同一层的所述多边形进行相交和初始网格剖分,从而恢复所有多边形的边;对不同层近似重叠的部分和全部多边形的边进行简化与对齐来形成不失精度的对齐的所述多边形,避免后续形成平行平板场域碎片。
通过步骤2将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域。从上述可以看出,本专利实现了通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行了平面方向非结构的三维三棱柱网格剖分。
所述步骤1可以为三维超大规模集成电路版图多边形收集与带层信息的三角形网格剖分。
其中,在所述步骤1中,所述收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点,包括:
步骤1.1,获取多层所述集成电路版图包含多个顶点的多个所述多边形,除此之外在顶层之上和底层之下再增加两个能覆盖所有层所述集成电路版图多边形的矩形多边形,分别作为顶层空气层和底层空气层的所述多边形;
步骤1.2,设置各层所述多边形的层信息,这种多边形的层信息应该既能唯一代表多边形所在的层,又能进行任意层之间的合并等布尔操作;如对于图2所示的多层集成电路版图,其为有4个金属层和3个介质层的集成电路模型,则共有2个空气层,4个金属层及3个介质层,即共有9层,为10个层界面;并用二进制数字代表各自的层,如果多边形位于哪个层界面,则该层界面所在的二进制的位为1。由于需要考虑金属层的厚度,因此位于金属层上的多边形的层信息同时包含金属层上下层界面。对图2所示的多层集成电路版图,可设置多边形的层信息如表1所示。
表1 图2所示多层集成电路各层多边形的层信息
多边形所在的层 层信息 备注
底层空气层 1 第0层,2<sup>0</sup>
金属层1 6 第1,2层,2<sup>1</sup>+2<sup>2</sup>
金属层2 24 第3,4层,2<sup>3</sup>+2<sup>4</sup>
金属层3 96 第5,6层,2<sup>5</sup>+2<sup>6</sup>
金属层4 384 第7,8层,2<sup>7</sup>+2<sup>8</sup>
顶层空气层 512 第9层,2<sup>9</sup>
步骤1.3,将各层的多个所述多边形垂直投影到同一层,根据Delaunay三角剖分算法形成以多边形顶点为网格节点的Delaunay三角形网格,其中,所述多边形的各个边包含预先设定的所在多边形的所述多边形信息和所在层的层信息;
步骤1.4,合并投影后重合的多个所述多边形的边的所述多边形信息和所述多边形的层信息。
例如图2所示的多层集成电路版图,某个金属层1和金属层2上的多边形重合,进行合并后,这两个多边形合并为一个多边形,其层信息为:6+24=30。
步骤1.5,根据所述边交换法将所述Delaunay三角形网格对齐到多个所述多边形的各个边,同时计算多个不同层的所述多边形的边的交点并将所述交点新增为所述多边形的顶点和所述Delaunay三角形网格的节点,形成第一三角形网格;在所述步骤1.5中,先试图恢复多边形的边,如果两个相交的边都为多边形的边(即无法恢复时),则在交点插入新的网格节点。
其中,在所述步骤1中,所述对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分,包括:
步骤1.6,基于所述第一三角形网格,在每个所述多边形P的内外分别形成夹住所述多边形P的内外辅助多边形P 0P 9,并通过设定的距离阈值控制所述内外辅助多边形与所述多边形P的距离;
步骤1.7,对落在所述内外辅助多边形之间的各层所述多边形的边进行对齐和简化处理,并根据各个所述多边形的边所包含的多边形编号信息将投影到同一层的多层所述多边形还原到各层中,同时更新所述三角形网格及其层信息,形成第二三角形网格;
步骤1.8,基于所述第二三角形网格和所述多边形及其层信息,将各个所述多边形的边的层信息基于布尔运算叠加到各个所述多边形内的所有三角形中。
所述步骤2可以为三维超大规模集成电路进行快速的三棱柱网格剖分。
上述步骤1,已经将所有层(包括顶层空气层和底层空气层)的集成电路版图多边形投影到同一层,并且经过对齐和简化处理,再在此基础上形成经过自适应细分的第二三角形网格,步骤2将在以上步骤1的基础上,直接快速形成三维多层超大规模集成电路的三棱柱网格剖分。
其中,在所述步骤2中,所述将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱,包括:
步骤2.1:根据包括金属层和介质层的每层纵向上的排列顺序(从上到下或从下到上),记录所述集成电路版图每层唯一的区域编号;例如,对于图2所示的多层集成电路版图,其共有2个空气层,4个金属层及3个介质层,可设置其区域编号如表2所示;
表2 图2所示多层集成电路各层区域编号信息
层信息 区域编号
底层空气层 1
金属层1 2
介质层1 3
金属层2 4
介质层2 5
金属层3 6
介质层3 7
金属层4 8
顶层空气层 9
步骤2.2:设定纵向上的坐标原点,根据所述集成电路版图每层的厚度及区域编号顺序,记录每层的位置信息,包括顶层空气层和底层空气层、金属层以及介质层,例如,对于图2所示的集成电路版图,其为有4个金属层和3个介质层的集成电路模型,则共有2个空气层,4个金属层及3个介质层,即共有9层,为10个层界面,记录这些层界面的位置,记为zinterface={z1, z2, …, z10},其中z1~z10如图3所示,其排列顺序与步骤2.1中的区域编号顺序一致;
步骤2.3:基于所述步骤1获得的第二三角形网格,将所有所述三角形网格在厚度方向扩展为一个所述三棱柱,所述三棱柱的上下底面三角形为所述第二三角形网格对应的所述三角形,上下底面位置为层界面最大值和最小值,从而形成第一三棱柱网格;由于步骤1.1在所有层集成电路版图多边形的基础上增加了覆盖所有层集成电路版图多边形的矩形多边形作为顶层空气层和底层空气层的多边形,所以第二三角形网格的所有三角形的层均包含顶层层界面(即最上层层界面)和底层层界面(即最下层层界面),因此,所有三角形扩展的三棱柱上下底面位置相同,均为顶层层界面(即最上层层界面)和底层层界面(即最下层层界面)所在的位置。
步骤2.4:基于所述步骤2.3获得的所述第一三棱柱网格,将所有所述三棱柱沿z方向(即在厚度方向)按zinterface进行分割,每个所述三棱柱被分割为N-1个所述三棱柱,形成第二三棱柱网格,其中N为所述集成电路版图包括上下空气层(即顶层空气层和底层空气层)的层界面个数,zinterface为层界面的位置。
其中,在所述步骤2中,所述根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域,包括:
步骤2.5:基于所述步骤1.7获得的所述第二三角形网格,根据所述三角形网格的层信息,还原所述三角形网格被哪些层界面的多边形共用;如对于图2所示的集成电路示意图,假设第二三角形网格中的某个三角形的层编码为543,则543=29+23+24+21+22+20,即该三角形网格被第0层(即底层空气层,用编码式中的20表示)、金属层1(用编码式中的21+22表示)、金属层2(用编码式中的23+24表示)及第9层(即顶层空气层,用编码式中的29表示)共用;
步骤2.6:根据所述步骤2.5确定的所述三角形网格被哪些层界面的多边形共用,以此推算出其依次包含的区域,进而确定所述第二三棱柱网格中每个所述三棱柱所在的区域。如对于图2所示的集成电路示意图,假设第二三角形网格中的某个三角形的层编码为543,其被第0层(即底层空气层)、金属层1、金属层2及第9层(即顶层空气层)共用,则依据图3所示的多层集成电路版图的区域编号与层界面位置关系示意图,可确定该三角形网格对应的第二三棱柱网格中每个三棱柱所在的区域从下到上依次为:区域1、区域2、区域3、区域4、区域5、区域7、区域7、区域9和区域9。
本发明通过步骤1收集并设置所有层的集成电路版图多边形的层信息,将所有层的多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有多边形的边,在多边形边的交点插入新的网格节点;对投影到同一层的多边形的边进行简化与对齐,并对简化与对齐后的多边形及整个集成电路版图区域进行三角形网格剖分;通过步骤2将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据多边形的层信息确定其平行平板场域跨越的层,从而确定分割的三棱柱所在的区域。本发明所述的一种三维集成电路电磁仿真全三维网格快速生成方法,实现了通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。
下面参考图2-4详细描述本发明提供的三维集成电路电磁仿真全三维网格快速生成装置的第一实施例。如图2-4所示,本实施例提供的三维集成电路电磁仿真全三维网格快速生成装置主要包括有:第一模块和第二模块。
第一模块,用于收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点;对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行二维非结构三角形网格剖分;在所述第一模块中,收集所有层的集成电路版图多边形信息,并根据所在的层设置每个多边形的层信息,然后将其投影到同一层,对投影到同一层的所述多边形进行相交和初始网格剖分,从而恢复所有多边形的边;对不同层近似重叠的部分和全部多边形的边进行简化与对齐来形成不失精度的对齐的所述多边形,避免后续形成平行平板场域碎片。
第二模块,用于将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域。从上述可以看出,本专利实现了通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。
其中,在所述第一模块中,所述收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点,包括:
第一单元,用于获取多层所述集成电路版图包含多个顶点的多个所述多边形,除此之外在顶层之上和底层之下再增加两个能覆盖所有层所述集成电路版图多边形的矩形多边形,分别作为顶层空气层和底层空气层的所述多边形;
第二单元,用于设置各层所述多边形的层信息,这种多边形的层信息应该既能唯一代表多边形所在的层,又能进行任意层之间的合并等布尔操作;如对于图2所示的多层集成电路版图,其为有4个金属层和3个介质层的集成电路模型,则共有2个空气层,4个金属层及3个介质层,即共有9层,为10个层界面;并用二进制数字代表各自的层,如果多边形位于哪个层界面,则该层界面所在的二进制的位为1。由于需要考虑金属层的厚度,因此位于金属层上的多边形的层信息同时包含金属层上下层界面。对图2所示的多层集成电路版图,可设置多边形的层信息如表1所示。
表1 图2所示多层集成电路各层多边形的层信息
多边形所在的层 层信息 备注
底层空气层 1 第0层,2<sup>0</sup>
金属层1 6 第1,2层,2<sup>1</sup>+2<sup>2</sup>
金属层2 24 第3,4层,2<sup>3</sup>+2<sup>4</sup>
金属层3 96 第5,6层,2<sup>5</sup>+2<sup>6</sup>
金属层4 384 第7,8层,2<sup>7</sup>+2<sup>8</sup>
顶层空气层 512 第9层,2<sup>9</sup>
第三单元,用于将各层的多个所述多边形垂直投影到同一层,根据Delaunay三角剖分算法形成以多边形顶点为网格节点的Delaunay三角形网格,其中,所述多边形的各个边包含预先设定的所在多边形的所述多边形信息和所在层的层信息;
第四单元,用于合并投影后重合的多个所述多边形的边的所述多边形信息和所述多边形的层信息。
例如图2所示的多层集成电路版图,某个金属层1和金属层2上的多边形重合,进行合并后,这两个多边形合并为一个多边形,其层信息为:6+24=30。
第五单元,用于根据所述边交换法将所述Delaunay三角形网格对齐到多个所述多边形的各个边,同时计算多个不同层的所述多边形的边的交点并将所述交点新增为所述多边形的顶点和所述Delaunay三角形网格的节点,形成第一三角形网格;在所述第五单元中,先试图恢复多边形的边,如果两个相交的边都为多边形的边(即无法恢复时),则在交点插入新的网格节点。
其中,在所述第一模块中,所述对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分,包括:
第六单元,用于基于所述第一三角形网格,在每个所述多边形P的内外分别形成夹住所述多边形P的内外辅助多边形P 0P 9,并通过设定的距离阈值控制所述内外辅助多边形与所述多边形P的距离;
第七单元,用于对落在所述内外辅助多边形之间的各层所述多边形的边进行对齐和简化处理,并根据各个所述多边形的边所包含的多边形编号信息将投影到同一层的多层所述多边形还原到各层中,同时更新所述三角形网格及其层信息,形成第二三角形网格;
第八单元,用于基于所述第二三角形网格和所述多边形及其层信息,将各个所述多边形的边的层信息基于布尔运算叠加到各个所述多边形内的所有三角形中。
上述第一模块,已经将所有层(包括顶层空气层和底层空气层)的集成电路版图多边形投影到同一层,并且经过对齐和简化处理,再在此基础上形成经过自适应细分的第二三角形网格,第二模块将在以上第一模块的基础上,直接快速形成三维多层超大规模集成电路的三棱柱网格剖分。
其中,在所述第二模块中,所述将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱,包括:
用于根据包括金属层和介质层的每层纵向上的排列顺序(从上到下或从下到上),记录所述集成电路版图每层唯一的区域编号;例如,对于图2所示的多层集成电路版图,其共有2个空气层,4个金属层及3个介质层,可设置其区域编号如表2所示;
表2 图2所示多层集成电路各层区域编号信息
层信息 区域编号
顶层空气层 1
金属层1 2
介质层1 3
金属层2 4
介质层2 5
金属层3 6
介质层3 7
金属层4 8
底层空气层 9
用于设定纵向上的坐标原点,根据所述集成电路版图每层的厚度及区域编号顺序,记录每层的位置信息,包括顶层空气层和底层空气层、金属层以及介质层,例如,对于图2所示的集成电路版图,其为有4个金属层和3个介质层的集成电路模型,则共有2个空气层,4个金属层及3个介质层,即共有9层,为10个层界面,记录这些层界面的位置,记为zinterface={z1, z2, …, z10},其中z1~z10如图3所示,其排列顺序与上述的区域编号顺序一致。
用于基于所述第一模块获得的所述第二三角形网格,将所有所述三角形网格在厚度方向扩展为一个所述三棱柱,所述三棱柱的上下底面三角形为所述第二三角形网格对应的所述三角形,上下底面位置为层界面最大值和最小值,从而形成第一三棱柱网格;由于第一单元在所有层集成电路版图多边形的基础上增加了覆盖所有层集成电路版图多边形的矩形多边形作为顶层空气层和底层空气层的多边形,所以第二三角形网格的所有三角形的层均包含顶层层界面(即最上层层界面)和底层层界面(即最下层层界面),因此,所有三角形扩展的三棱柱上下底面位置相同,均为顶层层界面(即最上层层界面)和底层层界面(即最下层层界面)所在的位置。
用于所述第三单元获得的所述第一三棱柱网格,将所有所述三棱柱沿z方向(即在厚度方向)按zinterface进行分割,每个所述三棱柱被分割为N-1个所述三棱柱,形成第二三棱柱网格,其中N为所述集成电路版图包括上下空气层(顶层空气层和底层空气层)的层界面个数,zinterface为层界面的位置。
其中,在所述第二模块中,所述根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域,包括:
用于基于所述第七单元获得的所述第二三角形网格,根据所述三角形网格的层信息,还原所述三角形网格被哪些层界面的所述多边形共用;如对于图2所示的集成电路示意图,假设第二三角形网格中的某个三角形的层编码为543,则543=29+23+24+21+22+20,即该三角形网格被第0层(即底层空气层,用编码式中的20表示)、金属层1(用编码式中的21+22表示)、金属层2(用编码式中的23+24表示)及第9层(即顶层空气层,用编码式中的29表示)共用。
用于根据确定的所述三角形网格被哪些层界面的所述多边形共用,以此推算出其依次包含的区域,进而确定所述第二三棱柱网格中每个所述三棱柱所在的区域。如对于图2所示的集成电路示意图,假设第二三角形网格中的某个三角形的层编码为543,其被第0层(即底层空气层)、金属层1、金属层2及第9层(即顶层空气层)共用,则依据图3所示的多层集成电路版图的区域编号与层界面位置关系示意图,可确定该三角形网格对应的第二三棱柱网格中每个三棱柱所在的区域从下到上依次为:区域1、区域2、区域3、区域4、区域5、区域7、区域7、区域9和区域9。
本发明通过第一模块收集并设置所有层的集成电路版图多边形的层信息,将所有层的多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有多边形的边,在多边形边的交点插入新的网格节点;对投影到同一层的多边形的边进行简化与对齐,并对简化与对齐后的多边形及整个集成电路版图区域进行三角形网格剖分;通过第二模块将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据多边形的层信息确定其平行平板场域跨越的层,从而确定分割的三棱柱所在的区域。本发明所述的一种三维集成电路电磁仿真全三维网格快速生成装置,实现了通过二维网格剖分的时间复杂度对多尺度的复杂的三维集成电路进行平面方向非结构的三维三棱柱网格剖分。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (2)

1.三维集成电路电磁仿真全三维网格快速生成方法,其特征在于,包括以下步骤:
步骤1,收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点;对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分;
步骤2,将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域;
在所述步骤1中,所述收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点,包括:
步骤1.1,获取多层所述集成电路版图包含多个顶点的多个所述多边形,增加两个能覆盖所有层所述集成电路版图多边形的矩形多边形,分别作为顶层空气层和底层空气层的所述多边形;
步骤1.2,设置各层所述多边形的层信息,并用二进制数字代表各自的层;
步骤1.3,将各层的多个所述多边形垂直投影到同一层,根据Delaunay三角剖分算法形成以多边形顶点为网格节点的Delaunay三角形网格,其中,所述多边形的各个边包含预先设定的所在多边形的所述多边形信息和所在层的层信息;
步骤1.4,合并投影后重合的多个所述多边形的边的所述多边形信息和所述多边形的层信息;
步骤1.5,根据所述边交换法将所述Delaunay三角形网格对齐到多个所述多边形的各个边,同时计算多个不同层的所述多边形的边的交点并将所述交点新增为所述多边形的顶点和所述Delaunay三角形网格的节点,形成第一三角形网格;
在所述步骤1中,所述对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分,包括:
步骤1.6,基于所述第一三角形网格,在每个所述多边形的内外分别形成夹住所述多边形的内外辅助多边形,并通过设定的距离阈值控制所述内外辅助多边形与所述多边形的距离;
步骤1.7,对落在所述内外辅助多边形之间的各层所述多边形的边进行对齐和简化处理,并根据各个所述多边形的边所包含的多边形编号信息将投影到同一层的多层所述多边形还原到各层中,同时更新所述三角形网格及其层信息,形成第二三角形网格;
步骤1.8,基于所述第二三角形网格和所述多边形及其层信息,将各个所述多边形的边的层信息基于布尔运算叠加到各个所述多边形内的所有三角形中;
在所述步骤2中,所述将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱,包括:
步骤2.1:根据包括金属层和介质层的每层纵向上的排列顺序,记录所述集成电路版图每层唯一的区域编号;
步骤2.2:设定纵向上的坐标原点,根据所述集成电路版图每层的厚度及区域编号顺序,记录每层的位置信息;
步骤2.3:基于所述步骤1获得的所述第二三角形网格,将所有所述三角形网格在厚度方向扩展为一个所述三棱柱,所述三棱柱的上下底面三角形为所述第二三角形网格对应的所述三角形,上下底面位置为层界面最大值和最小值,从而形成第一三棱柱网格;
步骤2.4:基于所述步骤2.3获得的所述第一三棱柱网格,将所有所述三棱柱沿z方向按zinterface进行分割,每个所述三棱柱被分割为N-1个所述三棱柱,形成第二三棱柱网格,其中N为所述集成电路版图包括上下空气层的层界面个数,zinterface为层界面的位置;
在所述步骤2中,所述根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域,包括:
步骤2.5:基于所述步骤1.7获得的所述第二三角形网格,根据所述三角形网格的层信息,还原所述三角形网格被哪些层界面的所述多边形共用;
步骤2.6:根据所述步骤2.5确定的所述三角形网格被哪些层界面的所述多边形共用,以此推算出其依次包含的区域,进而确定所述第二三棱柱网格中每个所述三棱柱所在的区域。
2.三维集成电路电磁仿真全三维网格快速生成装置,其特征在于,包括:
第一模块,用于收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点;对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分;
第二模块,用于将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱;根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域;
在所述第一模块中,所述收集并设置所有层的集成电路版图多边形的层信息,将所有层的所述多边形投影到同一层并进行初始网格剖分;采用边交换法恢复所有所述多边形的边,在不同层的所述多边形的边的交点插入新的网格节点,包括:
第一单元,用于获取多层所述集成电路版图包含多个顶点的多个所述多边形,增加两个能覆盖所有层所述集成电路版图多边形的矩形多边形,分别作为顶层空气层和底层空气层的所述多边形;
第二单元,用于设置各层所述多边形的层信息,并用二进制数字代表各自的层;
第三单元,用于将各层的多个所述多边形垂直投影到同一层,根据Delaunay三角剖分算法形成以多边形顶点为网格节点的Delaunay三角形网格,其中,所述多边形的各个边包含预先设定的所在多边形的所述多边形信息和所在层的层信息;
第四单元,用于合并投影后重合的多个所述多边形的边的所述多边形信息和所述多边形的层信息;
第五单元,用于根据所述边交换法将所述Delaunay三角形网格对齐到多个所述多边形的各个边,同时计算多个不同层的所述多边形的边的交点并将所述交点新增为所述多边形的顶点和所述Delaunay三角形网格的节点,形成第一三角形网格;
在所述第一模块中,所述对投影到同一层的所述多边形的边进行简化与对齐,并对简化与对齐后的所述多边形及整个集成电路版图区域进行三角形网格剖分,包括:
第六单元,用于基于所述第一三角形网格,在每个所述多边形的内外分别形成夹住所述多边形的内外辅助多边形,并通过设定的距离阈值控制所述内外辅助多边形与所述多边形的距离;
第七单元,用于对落在所述内外辅助多边形之间的各层所述多边形的边进行对齐和简化处理,并根据各个所述多边形的边所包含的多边形编号信息将投影到同一层的多层所述多边形还原到各层中,同时更新所述三角形网格及其层信息,形成第二三角形网格;
第八单元,用于基于所述第二三角形网格和所述多边形及其层信息,将各个所述多边形的边的层信息基于布尔运算叠加到各个所述多边形内的所有三角形中;
在所述第二模块中,所述将剖分的三角形网格在厚度方向扩展为三棱柱网格,并根据层界面纵向位置将其分割为多个三棱柱,包括:
用于根据包括金属层和介质层的每层纵向上的排列顺序,记录所述集成电路版图每层唯一的区域编号;
用于设定纵向上的坐标原点,根据所述集成电路版图每层的厚度及区域编号顺序,记录每层的位置信息;
用于基于所述第一模块获得的所述第二三角形网格,将所有所述三角形网格在厚度方向扩展为一个所述三棱柱,所述三棱柱的上下底面三角形为所述第二三角形网格对应的所述三角形,上下底面位置为层界面最大值和最小值,从而形成第一三棱柱网格;
用于基于获得的所述第一三棱柱网格,将所有所述三棱柱沿z方向按zinterface进行分割,每个所述三棱柱被分割为N-1个所述三棱柱,形成第二三棱柱网格,其中N为所述集成电路版图包括上下空气层的层界面个数,zinterface为层界面的位置;
在所述第二模块中,所述根据所述多边形的层信息确定其平行平板场域跨越的层,从而确定分割的所述三棱柱所在的区域,包括:
用于基于所述第七单元获得的所述第二三角形网格,根据所述三角形网格的层信息,还原所述三角形网格被哪些层界面的所述多边形共用;
用于根据确定的所述三角形网格被哪些层界面的所述多边形共用,以此推算出其依次包含的区域,进而确定所述第二三棱柱网格中每个所述三棱柱所在的区域。
CN202011334621.5A 2020-11-24 2020-11-24 三维集成电路电磁仿真全三维网格快速生成方法及装置 Active CN112132973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011334621.5A CN112132973B (zh) 2020-11-24 2020-11-24 三维集成电路电磁仿真全三维网格快速生成方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011334621.5A CN112132973B (zh) 2020-11-24 2020-11-24 三维集成电路电磁仿真全三维网格快速生成方法及装置

Publications (2)

Publication Number Publication Date
CN112132973A CN112132973A (zh) 2020-12-25
CN112132973B true CN112132973B (zh) 2021-02-26

Family

ID=73852399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011334621.5A Active CN112132973B (zh) 2020-11-24 2020-11-24 三维集成电路电磁仿真全三维网格快速生成方法及装置

Country Status (1)

Country Link
CN (1) CN112132973B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112836415B (zh) * 2021-02-26 2023-12-05 英特工程仿真技术(大连)有限公司 一种电磁场非匹配棱边元的插值方法
CN113962122B (zh) * 2021-09-30 2022-05-31 北京智芯仿真科技有限公司 集成电路全波电磁仿真低频基准频点确定方法及系统
CN116090316B (zh) * 2023-04-11 2023-06-13 巨霖科技(上海)有限公司 一种pcb电路板二维非结构网格生成方法及系统
CN117034857B (zh) * 2023-10-10 2024-01-12 北京智芯仿真科技有限公司 多边形大面积重叠的集成电路版图网络标识方法及装置
CN117034858B (zh) * 2023-10-10 2023-12-29 北京智芯仿真科技有限公司 大面积叠加的集成电路版图快速网格剖分方法及装置
CN117131832B (zh) * 2023-10-23 2024-02-02 巨霖科技(上海)有限公司 一种仿真元器件的构建方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109102570A (zh) * 2018-07-05 2018-12-28 三峡大学 一种三维有限元模型的建模方法
CN110674615A (zh) * 2019-12-06 2020-01-10 北京唯智佳辰科技发展有限责任公司 一种集成电路版图多边形自适应简化处理方法及装置
CN110675502A (zh) * 2019-11-26 2020-01-10 北京唯智佳辰科技发展有限责任公司 多层集成电路版图多边形对齐和简化处理方法及装置
CN110689569A (zh) * 2019-12-10 2020-01-14 北京唯智佳辰科技发展有限责任公司 集成电路版图场域识别与网格细分处理方法及装置
US20200265552A1 (en) * 2019-02-19 2020-08-20 Google Llc Cost-driven framework for progressive compression of textured meshes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111767688B (zh) * 2020-09-03 2020-12-01 北京智芯仿真科技有限公司 集成电路版图多边形非结构网格自适应细分方法和系统
CN111931457B (zh) * 2020-09-27 2021-01-15 北京智芯仿真科技有限公司 基于混合阶有限元的多层集成电路电磁场计算方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109102570A (zh) * 2018-07-05 2018-12-28 三峡大学 一种三维有限元模型的建模方法
US20200265552A1 (en) * 2019-02-19 2020-08-20 Google Llc Cost-driven framework for progressive compression of textured meshes
CN110675502A (zh) * 2019-11-26 2020-01-10 北京唯智佳辰科技发展有限责任公司 多层集成电路版图多边形对齐和简化处理方法及装置
CN110674615A (zh) * 2019-12-06 2020-01-10 北京唯智佳辰科技发展有限责任公司 一种集成电路版图多边形自适应简化处理方法及装置
CN110689569A (zh) * 2019-12-10 2020-01-14 北京唯智佳辰科技发展有限责任公司 集成电路版图场域识别与网格细分处理方法及装置

Also Published As

Publication number Publication date
CN112132973A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
CN112132973B (zh) 三维集成电路电磁仿真全三维网格快速生成方法及装置
CN112131774B (zh) 用于集成电路三棱柱网格剖分的混合阶有限元方法及装置
CN101794327B (zh) 执行三维集成电路设计的rlc建模和提取的方法和设备
US8312404B2 (en) Multi-segments modeling bond wire interconnects with 2D simulations in high speed, high density wire bond packages
CN110689569A (zh) 集成电路版图场域识别与网格细分处理方法及装置
JP2007188488A (ja) パッキングベースのマクロ配置方法とそれを用いた半導体チップ
CN112149336B (zh) 三维集成电路电磁仿真高质量网格快速生成方法及装置
US8345955B2 (en) Characterizing thermomechanical properties of an organic substrate using finite element analysis
CN104063559A (zh) 大规模集成电路分布计算的布局合法化方法及其系统
CN114556352A (zh) 用于执行自动布线的方法和系统
US8539416B1 (en) Methods, systems, and articles of manufacture for creating a hierarchical output for an operation in an electronic design
CN109551768A (zh) 一种基于stl的3d打印文件的数据处理方法
CN115859899A (zh) 一种多驱动能力的集成电路标准单元版图迁移的方法
KR101586765B1 (ko) 반도체 공정 기반 3차원 가상 형상 모델링 방법
CN117272914B (zh) 基于四叉树快速确定覆铜形状形成拓扑结构的方法及装置
Mattison A high quality, low cost router for MOS/LSI
CN112199918B (zh) 一种通用eda模型版图物理连接关系的重建方法
US8510685B1 (en) Methods, systems, and articles of manufacture for creating a hierarchical output for an operation in an electronic design
CN106874543B (zh) 版图的lef图形处理方法
CN114330214B (zh) 一种包含走线的集成电路快速高精度计算的方法及装置
TW202403585A (zh) 具有非較佳方向曲線配線的積體電路
US20120304134A1 (en) Exposure data generation method
KR20230109646A (ko) 혼합 높이 셀 라이브러리들에 대한 커스텀-타일 배치 패브릭들에 대한 적응적 행 패턴들
JP3174523B2 (ja) レイアウト入力装置および方法、ならびにレイアウト検証装置および方法
CN105718702A (zh) 一种Def库与3D集成电路bookshelf库转换的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant