CN112094104B - 一种双钙钛矿型自旋电子学材料及其制备方法 - Google Patents

一种双钙钛矿型自旋电子学材料及其制备方法 Download PDF

Info

Publication number
CN112094104B
CN112094104B CN202011005895.XA CN202011005895A CN112094104B CN 112094104 B CN112094104 B CN 112094104B CN 202011005895 A CN202011005895 A CN 202011005895A CN 112094104 B CN112094104 B CN 112094104B
Authority
CN
China
Prior art keywords
spintronics
moreo
hours
raw materials
perovskite type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011005895.XA
Other languages
English (en)
Other versions
CN112094104A (zh
Inventor
祖宁宁
张琪
李建军
罗旺
刘晓军
李�瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN202011005895.XA priority Critical patent/CN112094104B/zh
Publication of CN112094104A publication Critical patent/CN112094104A/zh
Application granted granted Critical
Publication of CN112094104B publication Critical patent/CN112094104B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种双钙钛矿型自旋电子学材料,分子式为Sr2MoReO6及其制备方法。该制备方法包括以下步骤:首先,按照化学计量比称量原料,将原料和络合剂一起溶于去离子水中,加热搅拌,直至形成凝胶;再将凝胶样品干燥;其次,将粉体煅烧后加酒精研磨,再压制成型;最后烧结得到单一相的自旋电子学材料。本发明的双钙钛矿型自旋电子学材料具有半金属基态和远高于室温的磁有序温度。在Sr2MoReO6中,Mo‑t2g下自旋轨道穿过费米能级。通过平均场近似估计,Sr2MoReO6的磁有序温度Tc为2005K。利用本发明的自旋电子学材料可以进行新型的室温自旋电子器件的设计。

Description

一种双钙钛矿型自旋电子学材料及其制备方法
技术领域
本发明涉及自旋电子学技术领域,特别涉及一种双钙钛矿型自旋电子学材料及其制备方法。
背景技术
自旋电子学(Spintronics),也称磁电子学。它利用电子的自旋和磁矩,使固体器件中除电荷输运外,还加入电子的自旋和磁矩。自旋电子学是一门新兴的学科和技术。
应用于自旋电子学的材料,需要具有较高的电子极化率,以及较长的电子自旋弛豫时间。许多新材料,例如磁性半导体、半金属等,近年来被广泛的研究,以求能有符合自旋电子元件应用所需要的性质。其中,半金属(HM)材料在一个自旋方向上表现金属行为,而另一自旋方向上表现为半导体或绝缘体行为,因此在费米能级处自旋极化率为100%。这种材料有望在利用自旋极化导电载流子的自旋电子学器件中发挥重要作用。具有高磁有序温度(Tc)的HM材料甚至为设计新型的室温自旋电子器件开辟了可能。然而,同时具有半金属基态和远高于室温的磁有序温度的材料在自然界仍然很少见。
发明内容
本发明要解决现有技术中的技术问题,提供一种双钙钛矿型自旋电子学材料及其制备方法。
为了解决上述技术问题,本发明的技术方案具体如下:
一种双钙钛矿型自旋电子学材料,分子式为Sr2MoReO6
一种双钙钛矿型自旋电子学材料的制备方法,以Sr和Mo的硝酸盐以及HReO4为原料,以无水乙二醇和柠檬酸作为络合剂,制备化合物Sr2MoReO6
该制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料和络合剂一起溶于去离子水中,加热搅拌,直至形成凝胶;再将凝胶样品在温度190~210℃下干燥8.5~9.5小时,形成干凝胶,研磨成粉体;
所述的络合剂,乙二醇与柠檬酸的摩尔比为1∶1;络合剂的用量为原料中所有金属阳离子摩尔数总和的2.3~2.8倍;
其次,将粉体依次在580~630℃煅烧5~6小时,在870~920℃煅烧13~14小时;煅烧后加酒精研磨3小时,再压制成型;
最后在980~1080℃下烧结15~18小时得到单一相的自旋电子学材料。
在上述技术方案中,作为原料的Sr和Mo的硝酸盐分别为:Sr(NO3)2和Mo(NO3)3
在上述技术方案中,作为原料的Mo(NO3)3通过将MoO2溶于30%的硝酸中得到,反应式为:
4MoO2+12HNO3→4Mo(NO3)3+6H2O+O2
在上述技术方案中,作为原料的HReO4通过将铼粉溶解在30%的硝酸中得到,反应式为:
3Re+7HNO3→3HReO4+7NO+2H2
在上述技术方案中,所述的原料是分析纯的。
在上述技术方案中,所述的压制成型是在180~250MPa压力下成型。
本发明具有以下的有益效果:
本发明的双钙钛矿型自旋电子学材料具有半金属基态和远高于室温的磁有序温度。在Sr2MoReO6中,Mo-t2g下自旋轨道穿过费米能级。通过平均场近似(MFA)估计,Sr2MoReO6的磁有序温度Tc为2005K。利用本发明的自旋电子学材料可以进行新型的室温自旋电子器件的设计。
本发明的双钙钛矿型自旋电子学材料的制备方法,利用湿化学方法,通过控制络合剂的用量以及烧结的温度和时间,实现了双钙钛矿型自旋电子学材料Sr2MoReO6的合成。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为用GGA+U+SOC法计算得到的Sr2MoReO6的态密度示意图。
图2为Sr2MoReO6的Mo(虚线)和Re(实线)t2g轨道的态密度示意图。
在图1中,纵坐标为态密度,单位为电子数/电子伏;横坐标为能量,单位为电子伏;零处的垂直线表示费米能级。图2中,EF为费米能级。
具体实施方式
在下面的具体实施方式中,对本发明的双钙钛矿型自旋电子学材料Sr2MoReO6的电子和磁性进行说明,并对其磁有序温度(Tc)进行了估算;还给出了双钙钛矿型自旋电子学材料Sr2MoReO6的制备方法。
下面结合附图对本发明做以详细说明。
本发明的双钙钛矿型自旋电子学材料,其分子式为Sr2MoReO6
图1和2为计算得到的Sr2MoReO6的状态密度(DOS)。如图1所示,Mo-t2g下自旋轨道已经越过了Sr2MoReO6中的费米能级,并且在这个自旋方向上变成了金属。在上自旋通道中,交换劈裂将Re-t2g上自旋轨道完全拉到费米能级以下。因此,Sr2MoReO6是半金属。
如图1所示,对于Re计算电子数约等于3.1。结合态密度属性,Re的t2g轨道的一半被占据,在离子模型中Re在Sr2MoReO6中的价态可以确定为+4,那么Mo为+4价。
图2显示了Sr2MoReO6的态密度示意图。结论表明,Sr2MoReO6化合物为半金属(URe值为5.0eV)。在Sr2MoReO6中,4d Mo和5d Re之间的亚铁磁态(FiM态)为磁基态。这种磁性基态与Mo和Re离子之间超交换相互作用有关。
居里温度由平均场理论计算,原子间交换相互作用由有效的海森堡哈密顿量计算:
Figure BDA0002695855830000041
其中Si,Sj和Jij分别是i,j子晶格的自旋量子数和i,j子晶格之间的交换参数。如果仅在最近的相邻原子之间考虑交换相互作用,则可以通过平均场近似(MFA)估计Tc如下:
Figure BDA0002695855830000042
其中,kB是Bolzmann常数。利用铁磁相和亚铁磁相之间的总能量差,确定了最近邻的Mo和Re离子的交换参数:Sr2MoReO6为43.22meV。根据式(2),磁有序温度Tc估计为2005K。Sr2MoReO6具有远高于室温的磁有序温度。
本发明的双钙钛矿型自旋电子学材料具有半金属基态和远高于室温的磁有序温度。在Sr2MoReO6中,Mo-t2g下自旋轨道穿过费米能级。通过平均场近似(MFA)估计,Sr2MoReO6的磁有序温度Tc为2005K。利用本发明的自旋电子学材料可以进行新型的室温自旋电子器件的设计。
下面对本发明的双钙钛矿型自旋电子学材料Sr2MoReO6的制备方法进行详细说明。
本发明的双钙钛矿型自旋电子学材料Sr2Mo ReO6的制备方法,以Sr和Mo的硝酸盐以及高铼酸HReO4为原料,以无水乙二醇和柠檬酸作为络合剂,制备化合物Sr2MoReO6
上述原料都是分析纯的。其中,Sr和Mo的硝酸盐分别为:Sr(NO3)2和Mo(NO3)3。Sr(NO3)2通过商业购买得到(购买方式:www.aladdin-e.com,硝酸锶,产品编号S100395,纯度99.5%),而Mo(NO3)3是通过将商业购买的MoO2(购买方式:www.aladdin-e.com,二氧化钼,产品编号M189060,纯度99%)溶于30%的硝酸中得到,反应式为:
4MoO2+12HNO3→4Mo(NO3)3+6H2O+O2
作为原料的HReO4通过将商业购买的铼粉(购买方式:www.aladdin-e.com,铼粉,产品编号R105597,纯度99.99%)溶解在30%的硝酸中得到,反应式为:
3Re+7HNO3→3HReO4+7NO+2H2
本发明的双钙钛矿型自旋电子学材料Sr2MoReO6的制备方法具体包括以下步骤:
首先,按照化学计量比称量原料,以摩尔比为1∶1的乙二醇与柠檬酸为络合剂;络合剂的用量为原料中所有金属阳离子摩尔数总和的2.3~2.8倍;将原料和络合剂一起溶于去离子水中,装有溶液的烧杯放置于磁力搅拌器上加热搅拌,直至形成凝胶;再将凝胶样品置于烘箱中,在温度190~210℃下干燥8.5~9.5小时,形成干凝胶,然后将获得的干凝胶放入玛瑙研钵中研磨成粉体;
其次,将粉体置于马弗炉中依次在580~630℃煅烧5~6小时,在870~920℃煅烧13~14小时;煅烧后放入研钵中加酒精研磨3小时,再在180~250MPa压力下压制成型;
最后在980~1080℃下烧结15~18小时得到单一相的自旋电子学材料。
本发明的双钙钛矿型自旋电子学材料的制备方法,利用湿化学方法,通过控制络合剂的用量以及烧结的温度和时间,实现了双钙钛矿型自旋电子学材料Sr2MoReO6的合成。
在下面的具体实施方式中,对本发明的双钙钛矿型自旋电子学材料的制备方法进行了举例说明。
实施例1
本发明的双钙钛矿型自旋电子学材料Sr2MoReO6的制备方法具体包括以下步骤:
首先,按照化学计量比称量原料,以摩尔比为1∶1的乙二醇与柠檬酸为络合剂;络合剂的用量为原料中所有金属阳离子摩尔数总和的2.3倍;将原料和络合剂一起溶于去离子水中,装有溶液的烧杯放置于磁力搅拌器上加热搅拌,直至形成凝胶;再将凝胶样品置于烘箱中,在温度190℃下干燥9.5小时,形成干凝胶,然后将获得的干凝胶放入玛瑙研钵中研磨成粉体;
其次,将粉体置于马弗炉中依次在580℃煅烧6小时,在870℃煅烧14小时;煅烧后放入研钵中加酒精研磨3小时,再在180MPa压力下压制成型;
最后在980℃下烧结18小时得到单一相的自旋电子学材料。
实施例2
本发明的双钙钛矿型自旋电子学材料Sr2MoReO6的制备方法具体包括以下步骤:
首先,按照化学计量比称量原料,以摩尔比为1∶1的乙二醇与柠檬酸为络合剂;络合剂的用量为原料中所有金属阳离子摩尔数总和的2.8倍;将原料和络合剂一起溶于去离子水中,装有溶液的烧杯放置于磁力搅拌器上加热搅拌,直至形成凝胶;再将凝胶样品置于烘箱中,在温度210℃下干燥8.5小时,形成干凝胶,然后将获得的干凝胶放入玛瑙研钵中研磨成粉体;
其次,将粉体置于马弗炉中依次在630℃煅烧5小时,在920℃煅烧13小时;煅烧后放入研钵中加酒精研磨3小时,再在250MPa压力下压制成型;
最后在1080℃下烧结15小时得到单一相的自旋电子学材料。
实施例3
本发明的双钙钛矿型自旋电子学材料Sr2MoReO6的制备方法具体包括以下步骤:
首先,按照化学计量比称量原料,以摩尔比为1∶1的乙二醇与柠檬酸为络合剂;络合剂的用量为原料中所有金属阳离子摩尔数总和的2.5倍;将原料和络合剂一起溶于去离子水中,装有溶液的烧杯放置于磁力搅拌器上加热搅拌,直至形成凝胶;再将凝胶样品置于烘箱中,在温度200℃下干燥9小时,形成干凝胶,然后将获得的干凝胶放入玛瑙研钵中研磨成粉体;
其次,将粉体置于马弗炉中依次在600℃煅烧5小时,在900℃煅烧13小时;煅烧后放入研钵中加酒精研磨3小时,再在200MPa压力下压制成型;
最后在1000℃下烧结16小时得到单一相的自旋电子学材料。
上述具体实施方式,分别介绍了三个本发明的双钙钛矿型自旋电子学材料的制备方法的具体实例,都可以实现本发明的双钙钛矿型自旋电子学材料的制备。经过对材料样品分别进行X射线衍射,分析其衍射图谱,可知三个具体实例得到的材料的结构相同。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (6)

1.一种双钙钛矿型自旋电子学材料的制备方法,其特征在于,以Sr(NO3)2和Mo(NO3)3以及HReO4为原料,以无水乙二醇和柠檬酸作为络合剂,制备化合物Sr2MoReO6
该制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料和络合剂一起溶于去离子水中,加热搅拌,直至形成凝胶;再将凝胶样品在温度190~210℃下干燥8.5~9.5小时,形成干凝胶,研磨成粉体;
所述的络合剂,乙二醇与柠檬酸的摩尔比为1∶1;络合剂的用量为原料中所有金属阳离子摩尔数总和的2.3~2.8倍;
其次,将粉体依次在580~630℃煅烧5~6小时,在870~920℃煅烧13~14小时;煅烧后加酒精研磨3小时,再压制成型;
最后在980℃下烧结15~18小时得到单一相的自旋电子学材料。
2.根据权利要求1所述的制备方法,其特征在于,作为原料的Mo(NO3)3通过将MoO2溶于30%的硝酸中得到,反应式为:
4MoO2+12HNO3→4Mo(NO3)3+6H2O+O2
3.根据权利要求1所述的制备方法,其特征在于,作为原料的HReO4通过将铼粉溶解在30%的硝酸中得到,反应式为:
3Re+7HNO3→3HReO4+7NO+2H2
4.根据权利要求1所述的制备方法,其特征在于,所述的原料是分析纯的。
5.根据权利要求1所述的制备方法,其特征在于,所述的压制成型是在180~250MPa压力下成型。
6.一种双钙钛矿型自旋电子学材料,其特征在于,分子式为Sr2MoReO6,其制备方法为权利要求1-5中的任意一项。
CN202011005895.XA 2020-09-23 2020-09-23 一种双钙钛矿型自旋电子学材料及其制备方法 Active CN112094104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011005895.XA CN112094104B (zh) 2020-09-23 2020-09-23 一种双钙钛矿型自旋电子学材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011005895.XA CN112094104B (zh) 2020-09-23 2020-09-23 一种双钙钛矿型自旋电子学材料及其制备方法

Publications (2)

Publication Number Publication Date
CN112094104A CN112094104A (zh) 2020-12-18
CN112094104B true CN112094104B (zh) 2023-03-28

Family

ID=73755106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011005895.XA Active CN112094104B (zh) 2020-09-23 2020-09-23 一种双钙钛矿型自旋电子学材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112094104B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113264758B (zh) * 2021-05-14 2022-04-15 南京大学 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137395A (en) * 1998-03-27 2000-10-24 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Magnetoresistor with ordered double perovskite structure and method for the production thereof
WO2002067341A1 (es) * 2001-02-21 2002-08-29 Consejo Superior De Investigaciones Científicas Procedimiento para aumentar la temperatura de curie en óxidos magnetoresistivos con estructura de doble perovskita
CN104900887A (zh) * 2015-06-14 2015-09-09 吉林大学 双钙钛矿型中温固体氧化物燃料电池阴极材料及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7936028B2 (en) * 2007-11-09 2011-05-03 Samsung Electronics Co., Ltd. Spin field effect transistor using half metal and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6137395A (en) * 1998-03-27 2000-10-24 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Magnetoresistor with ordered double perovskite structure and method for the production thereof
WO2002067341A1 (es) * 2001-02-21 2002-08-29 Consejo Superior De Investigaciones Científicas Procedimiento para aumentar la temperatura de curie en óxidos magnetoresistivos con estructura de doble perovskita
CN104900887A (zh) * 2015-06-14 2015-09-09 吉林大学 双钙钛矿型中温固体氧化物燃料电池阴极材料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
异常双钙钛矿A_2BB′O_6氧化物的多铁性;吴枚霞等;《物理学报》;20180711(第15期);171-181 *

Also Published As

Publication number Publication date
CN112094104A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
CN102173764B (zh) 一种铁酸铋基多铁材料及其制备方法
CN106904956B (zh) 一种高介高磁的镍掺杂钡铁氧体陶瓷材料及其制备方法
CN112094104B (zh) 一种双钙钛矿型自旋电子学材料及其制备方法
Zhu et al. Molten Salt Synthesis of Bismuth Ferrite Nano‐and Microcrystals and their Structural Characterization
JP5187654B2 (ja) 複合金属硫化物の製造方法および複合金属硫化物焼結体の製造方法
Pavlova et al. Structural and transport properties of doped LAMOX—Electrolytes for IT SOFC
CN114156405A (zh) 一种磁性半导体材料及其制备方法
Zhang et al. Synthesis and Thermoelectric Properties of Yb-doped Ca 0.9− x Yb x La 0.1 MnO 3 Ceramics
Jin Using pressure effects to create new emergent materials by design
Chettri et al. Oxygen plasma-induced enhancement of structural, electrical properties, and thermopower of La0. 5Sr0. 5MnO3
Rammeh Crystal, magnetic and electronic structures of 3d–5d ordered double perovskite Ba2CoReO6
Soto et al. Synthesis of the off-stoichiometric oxide system Sr2Fe1+ xMo1− xO6 with− 1≤ x≤ 0.25
CN100352789C (zh) 双钙钛矿磁性材料Sr2CoWO6或Sr2NiWO6的制备方法
Dung Structural, optical and magnetic properties of (1− x) Bi0. 5Na0. 5TiO3+ xBaCoO3− δ solid solution systems prepared by the sol–gel method
Demazeau et al. Materials chemistry under high pressures–some recent aspects
JP5647742B2 (ja) プラセオジミウムがドーピングされたカルシウム−マンガン系熱電組成物及びその製造方法
JP2000095523A (ja) フィルドスクッテルダイト構造を有するCoSb3基化合物、および該化合物を含有する熱電変換材料
CN112125341A (zh) 一种双钙钛矿型半金属性质材料及其制备方法
CN114538912B (zh) 一种层状类钙钛矿结构氧化物及其制备方法、应用
KR101802067B1 (ko) 페로브스카이트 구조를 갖는 산화물 분말의 제조 방법 및 이에 의해 제조된 산화물 분말
Pashchenko et al. Structure imperfection and dielectric properties of single-phase multifferoic Bi1-xLaxFeO3-δ
Peshev et al. Preparation of spinel lithium ferrite by thermal treatment of spray-dried formates
CN110877978B (zh) 氧化物(Na0.5Bi0.5)1-xMexTiO3稀磁铁电半导体陶瓷及其制备方法
Palikundwar et al. Effect of Sr doping on structural, magnetic and transport properties of La1-ySryMn0. 5Co0· 5O3±δ
CN113264758B (zh) 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant