CN106699169B - 一种高电阻率多铁性复合陶瓷及其制备方法 - Google Patents

一种高电阻率多铁性复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN106699169B
CN106699169B CN201611262680.XA CN201611262680A CN106699169B CN 106699169 B CN106699169 B CN 106699169B CN 201611262680 A CN201611262680 A CN 201611262680A CN 106699169 B CN106699169 B CN 106699169B
Authority
CN
China
Prior art keywords
composite ceramic
heating
heating rate
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611262680.XA
Other languages
English (en)
Other versions
CN106699169A (zh
Inventor
蒲永平
高子岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Wanzhida Technology Co ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201611262680.XA priority Critical patent/CN106699169B/zh
Publication of CN106699169A publication Critical patent/CN106699169A/zh
Application granted granted Critical
Publication of CN106699169B publication Critical patent/CN106699169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种高电阻率多铁性复合陶瓷及其制备方法,属于材料制备技术领域。该复合陶瓷的化学组成表达为:BaTiO3‑BaFe12‑ xMnxO19,0≤x≤1.0。本发明以BaTiO3‑BaFe12O19为基体,通过掺杂Mn2+极大的提高了其电阻率,进而提高介电性能。为多铁性复合陶瓷的实际应用提供了一种切实可行的方法。并且微波烧结法不同于一般的传统烧结,烧结时间很短,烧结过程中不存在温度梯度,此方法结合微波水热法制备的纳米粉体烧结的陶瓷具有晶粒尺寸小,致密度高等诸多优点。

Description

一种高电阻率多铁性复合陶瓷及其制备方法
技术领域
本发明属于材料制备技术领域,涉及多铁性材料的制备方法,具体涉及一种高电阻率多铁性复合陶瓷及其制备方法。
背景技术
多铁性材料又称磁电材料,它是指同时具有两种或两种以上基本铁性(铁电性、铁磁性和铁弹性)的材料,多铁性材料的研究与磁电耦合效应的研究是密不可分的,同一材料中磁性和铁电性共存使得多铁性材料不仅仅可以作为单一的磁性材料和铁电性材料来使用,同时,多铁性材料中磁与电的耦合效应,即外加电场导致物质磁化或外加的磁场导致物质内部出现电极化,使得该材料在应用中具有更高的自由度,为器件的小型化和多功能化提供了可能。
一般由铁电相和铁磁相两相构成的磁电多铁性复合陶瓷具有可设计性,可调控性,在室温下比单相多铁性材料具有更强磁电效应等优点。然而,多铁性复合陶瓷的性能取决于材料合适的组成相,两相的连通性,体积分数,晶粒尺寸和形状等等因素。因为BaTiO3是典型的铁电相,BaFe12O19是典型的铁磁相,所以BaTiO3-BaFe12O19是最重要的多铁性复合陶瓷的研究体系之一([1]Zijing Dong,et al.Fabrication,structure and propertiesof BaTiO3–BaFe12O19composites with core–shell heterostructure[J].Journal of theEuropean Ceramic Society,2015,35:3513-3520)。一般具有高的电阻率是磁电复合材料获得优异磁电性能的前提条件。BaTiO3-BaFe12O19复合陶瓷体系中BaFe12O19的电阻率比BaTiO3低几个数量级,复合后在两相界面必然会存在电荷的移动。导致材料的漏导增加,损耗增大,介电性能恶化。因此,本研究通过掺杂Mn2+离子,通过Verwey hopping mechanism改善BaFe12O19的性能,从而在不影响材料铁磁性能的前提下,提高BaTiO3-BaFe12O19复合陶瓷的铁电性能,使其多铁性能近一步满足实际应用。
发明内容
本发明的目的在于提供一种高电阻率多铁性复合陶瓷及其制备方法,该方法操作简单,重复性好,经该方法制得的复合陶瓷介电常数高,损耗小,电阻率较高。
本发明是通过以下技术方案来实现:
本发明公开了一种高电阻率多铁性复合陶瓷,该复合陶瓷的化学组成表达为:BaTiO3-BaFe12-xMnxO19,0.2≤x≤0.8。
本发明还公开了一种高电阻率多铁性复合陶瓷的制备方法,包括以下步骤:
1)取TiCl4和BaCl2·2H2O,先后溶解于30ml-50ml蒸馏水中;
2)称取KOH,并溶解于步骤1)所得溶液中;
3)将步骤2)制得的前驱液在180~220℃下,微波水热反应25~35min,制得反应产物,将反应产物水洗至中性;
4)按BaFe12-xMnxO19中Ba2+,Mn2+,Fe3+的摩尔比,称取Ba(NO3)2,MnCl2·4H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH值至≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应物,将反应物水洗至中性;
5)将步骤3)和步骤4)制得的产物混合后烘干,得到混合粉体,再加入体积浓度为5%的PVA粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体在600℃排胶1.5h-2.5h,得到陶瓷生坯,然后将陶瓷生坯在1000℃~1100℃下微波烧结3min-6min,制得复合陶瓷。
步骤1)和步骤2)中所用的原料摩尔比TiCl4:BaCl2·2H2O:KOH=1:2:10。
步骤6)制得复合陶瓷后,再对其进行表面抛光,被银电极,在600℃保温10min,烧渗银电极,制得得到复合陶瓷样品。
烧渗银电极的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述排胶的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述微波烧结的输出功率为1500W,升温速率为25℃/min,且在30min内从室温升温到1000℃~1100℃,降温时,随炉冷却。
步骤3)和步骤4)水洗用水为蒸馏水,水洗5~6次。
原料TiCl4、BaCl2·2H2O、MnCl2·4H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供的一种高电阻率多铁性复合陶瓷及其制备方法,采用Mn2+掺杂BaTiO3-BaFe12O19多铁性复合陶瓷的方法,具有以下优点:
1)采用微波水热法制备粉体,具有晶粒小,尺寸均匀,结晶度高,反应时间短等优点;
2)采用微波烧结法烧结陶瓷,不同于一般的传统烧结,烧结时间短,烧结过程中不存在温度梯度,此方法结合微波水热法制备的纳米粉体烧结的陶瓷具有晶粒尺寸小,致密度高等诸多优点;
3)以TiCl4、BaCl2·2H2O、MnCl2·4H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2为原料,原料简单,价格低廉。
经本发明方法制备的高电阻率多铁性复合陶瓷提高了多铁性BaTiO3-BaFe12O19的铁电性能,具有晶粒小,尺寸均匀,结晶度高,介电常数高,损耗小,磁滞回线磁化强度高等优点,为多铁性BaTiO3-BaFe12O19复合陶瓷的实际应用提供了一种切实可行的方法。
附图说明
图1是一种高电阻率多铁性复合陶瓷材料的XRD图谱;
图2(a)、图2(b)、图2(c)、图2(d)、图2(e)、图2(f)分别为x=0、0.2、0.4、0.6、0.8、1.0的高电阻率多铁性复合陶瓷的SEM照片;
图3是一种高电阻率多铁性复合陶瓷的电阻率的变化图谱;
图4是一种高电阻率多铁性复合陶瓷的介电常数和损耗随频率的变化图谱;
图5是一种高电阻率多铁性复合陶瓷材料的电滞回线;
图6是一种高电阻率多铁性复合陶瓷材料的磁滞回线。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
实施例1
本实施例中复合陶瓷BaTiO3-BaFe12-xMnxO19中x=0.2,制备方法包括以下步骤:
1)取TiCl4和BaCl2·2H2O,先后溶解于40ml蒸馏水中;
2)称取KOH,并溶解于步骤1)所得溶液中;
3)将步骤2)制得的前驱液在180~220℃下,微波水热反应25~35min,制得反应产物,将反应产物水洗至中性;
4)按BaFe12-xMnxO19中Ba2+,Mn2+,Fe3+的摩尔比,称取Ba(NO3)2,MnCl2·4H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH值至≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应物,将反应物水洗至中性;
5)将步骤3)和步骤4)制得的产物混合后烘干,得到混合粉体,再加入体积浓度为5%的PVA粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体在600℃排胶2h,得到陶瓷生坯,然后将陶瓷生坯在1000℃~1100℃下微波烧结5min,制得复合陶瓷。
步骤1)和步骤2)中所用的原料摩尔比TiCl4:BaCl2·2H2O:KOH=1:2:10。
步骤6)制得复合陶瓷后,再对其进行表面抛光,被银电极,在600℃保温10min,烧渗银电极,制得得到复合陶瓷样品。
烧渗银电极的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述排胶的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述微波烧结的输出功率为1500W,升温速率为25℃/min,且在30min内从室温升温到1000℃~1100℃,降温时,随炉冷却。
步骤3)和步骤4)水洗用水为蒸馏水,水洗5~6次。
原料TiCl4、BaCl2·2H2O、MnCl2·4H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
实施例2
本实施例中复合陶瓷BaTiO3-BaFe12-xMnxO19中x=0.4,制备方法包括以下步骤:
1)取TiCl4和BaCl2·2H2O,先后溶解于40ml蒸馏水中;
2)称取KOH,并溶解于步骤1)所得溶液中;
3)将步骤2)制得的前驱液在180~220℃下,微波水热反应25~35min,制得反应产物,将反应产物水洗至中性;
4)按BaFe12-xMnxO19中Ba2+,Mn2+,Fe3+的摩尔比,称取Ba(NO3)2,MnCl2·4H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH值至≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应物,将反应物水洗至中性;
5)将步骤3)和步骤4)制得的产物混合后烘干,得到混合粉体,再加入体积浓度为5%的PVA粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体在600℃排胶2h,得到陶瓷生坯,然后将陶瓷生坯在1000℃~1100℃下微波烧结5min,制得复合陶瓷。
步骤1)和步骤2)中所用的原料摩尔比TiCl4:BaCl2·2H2O:KOH=1:2:10。
步骤6)制得复合陶瓷后,再对其进行表面抛光,被银电极,在600℃保温10min,烧渗银电极,制得得到复合陶瓷样品。
烧渗银电极的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述排胶的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述微波烧结的输出功率为1500W,升温速率为25℃/min,且在30min内从室温升温到1000℃~1100℃,降温时,随炉冷却。
步骤3)和步骤4)水洗用水为蒸馏水,水洗5~6次。
原料TiCl4、BaCl2·2H2O、MnCl2·4H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
实施例3
本实例中复合陶瓷BaTiO3-BaFe12-xMnxO19中x=0.6,制备方法包括以下步骤:
1)取TiCl4和BaCl2·2H2O,先后溶解于40ml蒸馏水中;
2)称取KOH,并溶解于步骤1)所得溶液中;
3)将步骤2)制得的前驱液在180~220℃下,微波水热反应25~35min,制得反应产物,将反应产物水洗至中性;
4)按BaFe12-xMnxO19中Ba2+,Mn2+,Fe3+的摩尔比,称取Ba(NO3)2,MnCl2·4H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH值至≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应物,将反应物水洗至中性;
5)将步骤3)和步骤4)制得的产物混合后烘干,得到混合粉体,再加入体积浓度为5%的PVA粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体在600℃排胶2h,得到陶瓷生坯,然后将陶瓷生坯在1000℃~1100℃下微波烧结5min,制得复合陶瓷。
步骤1)和步骤2)中所用的原料摩尔比TiCl4:BaCl2·2H2O:KOH=1:2:10。
步骤6)制得复合陶瓷后,再对其进行表面抛光,被银电极,在600℃保温10min,烧渗银电极,制得得到复合陶瓷样品。
烧渗银电极的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述排胶的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述微波烧结的输出功率为1500W,升温速率为25℃/min,且在30min内从室温升温到1000℃~1100℃,降温时,随炉冷却。
步骤3)和步骤4)水洗用水为蒸馏水,水洗5~6次。
原料TiCl4、BaCl2·2H2O、MnCl2·4H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
实施例4
本实例中复合陶瓷BaTiO3-BaFe12-xMnxO19中x=0.8,制备方法包括以下步骤:
1)取TiCl4和BaCl2·2H2O,先后溶解于40ml蒸馏水中;
2)称取KOH,并溶解于步骤1)所得溶液中;
3)将步骤2)制得的前驱液在180~220℃下,微波水热反应25~35min,制得反应产物,将反应产物水洗至中性;
4)按BaFe12-xMnxO19中Ba2+,Mn2+,Fe3+的摩尔比,称取Ba(NO3)2,MnCl2·H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH值至≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应物,将反应物水洗至中性;
5)将步骤3)和步骤4)制得的产物混合后烘干,得到混合粉体,再加入体积浓度为5%的PVA粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体在600℃排胶2h,得到陶瓷生坯,然后将陶瓷生坯在1000℃~1100℃下微波烧结5min,制得复合陶瓷。
步骤1)和步骤2)中所用的原料摩尔比TiCl4:BaCl2·2H2O:KOH=1:2:10。
步骤6)制得复合陶瓷后,再对其进行表面抛光,被银电极,在600℃保温10min,烧渗银电极,制得得到复合陶瓷样品。
烧渗银电极的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述排胶的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
步骤6)所述微波烧结的输出功率为1500W,升温速率为25℃/min,且在30min内从室温升温到1000℃~1100℃,降温时,随炉冷却。
步骤3)和步骤4)水洗用水为蒸馏水,水洗5~6次。
原料TiCl4、BaCl2·2H2O、MnCl2·4H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
请参见图1及图2,实施以上实例所制备的BaTiO3-BaFe12-xMnxO19复合陶瓷材料的XRD图谱和SEM照片中可以看出,以上实施例中已经合成了BaTiO3和BaFe12-xMnxO19相共存的复合陶瓷。同时,可以看出没有其他杂相存在,且这两相结晶度较高,没有互相反应,化学相容性较好。参见图3,可以看出电阻率随着组分的增加,逐渐增大。参见图4,可以看出介电常数达到10000以上,介电性能优良。参见图5,复合陶瓷具有较饱和的电滞回线,在x=0.6时获得了最优的铁电性。参见图6,可以看出通过掺杂Mn2+,复合陶瓷的饱和磁化强度仍然保持在较高水平。
综上所述,本发明通过微波水热法和微波烧结法制备了BaTiO3-BaFe12-xMnxO19复合陶瓷。以BaTiO3-BaFe12-xMnxO19为基体,通过掺杂Mn2+极大的提高了其电阻率,进而提高介电性能。并且微波烧结法不同于一般的传统烧结,烧结时间很短,烧结过程中不存在温度梯度,此方法结合微波水热法制备的纳米粉体烧结的陶瓷具有晶粒尺寸小,致密度高等诸多优点,为多铁性复合材料的实际应用提供了一种切实可行的方法。
本发明公开的采用BaTiO3-BaFe12-xMnxO19复合陶瓷及其制备方法有可能成为制备多铁性复合材料在技术上和经济上兼优的新配方。

Claims (4)

1.一种高电阻率多铁性复合陶瓷,其特征在于,复合陶瓷的化学组成表达为:BaTiO3-BaFe12-xMnxO19,x=0.6。
2.一种基于权利要求1所述的高电阻率多铁性复合陶瓷的制备方法,其特征在于,包括以下步骤:
1)取TiCl4和BaCl2·2H2O,先后溶解于蒸馏水中;
2)称取KOH,并溶解于步骤1)所得溶液中,所用TiCl4、BaCl2·2H2O和KOH的摩尔比为1:2:10;
3)将步骤2)制得的前驱液在180℃~220℃下,微波水热反应25~35min,制得反应产物,将反应产物用蒸馏水洗5~6次至中性;
4)按BaFe12-xMnxO19中Ba2+,Fe3+,Mn2+的摩尔比,称取Ba(NO3)2,MnCl2·4H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH值至≥13,制得碱性溶液,将碱性溶液在170~190℃下,微波水热25~30min,制得反应物,将反应物用蒸馏水洗5~6次至中性;
5)将步骤3)和步骤4)制得的产物混合后烘干,得到混合粉体,再加入体积浓度为5%的PVA粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体在550℃-600℃排胶1.5h-2.5h,排胶的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却;得到陶瓷生坯,然后将陶瓷生坯在1000℃~1100℃下微波烧结3min-6min,微波烧结的输出功率为1500W,升温速率为25℃/min,且在30min内从室温升温到1000℃~1100℃,降温时,随炉冷却,制得复合陶瓷;
原料TiCl4、BaCl2·2H2O、MnCl2·4H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
3.根据权利要求2所述的高电阻率多铁性复合陶瓷的制备方法,其特征在于,步骤6)制得复合陶瓷后,再对其进行表面抛光,被银电极,在600℃保温10min,烧渗银电极,制得复合陶瓷样品。
4.根据权利要求3所述的高电阻率多铁性复合陶瓷的制备方法,其特征在于,烧渗银电极的升温制度为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃,降温时,随炉冷却。
CN201611262680.XA 2016-12-30 2016-12-30 一种高电阻率多铁性复合陶瓷及其制备方法 Active CN106699169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611262680.XA CN106699169B (zh) 2016-12-30 2016-12-30 一种高电阻率多铁性复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611262680.XA CN106699169B (zh) 2016-12-30 2016-12-30 一种高电阻率多铁性复合陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN106699169A CN106699169A (zh) 2017-05-24
CN106699169B true CN106699169B (zh) 2020-02-28

Family

ID=58906341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611262680.XA Active CN106699169B (zh) 2016-12-30 2016-12-30 一种高电阻率多铁性复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106699169B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979956A (zh) * 2014-05-30 2014-08-13 陕西科技大学 一种微波辅助法制备无粘结剂BaTiO3陶瓷的方法
CN105645944A (zh) * 2015-12-30 2016-06-08 陕西科技大学 一种Bi2Fe4O9/BaFe12O19复合陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070152195A1 (en) * 2005-12-30 2007-07-05 Saint-Gobain Performance Plastics Corporation Electrostatic dissipative composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979956A (zh) * 2014-05-30 2014-08-13 陕西科技大学 一种微波辅助法制备无粘结剂BaTiO3陶瓷的方法
CN105645944A (zh) * 2015-12-30 2016-06-08 陕西科技大学 一种Bi2Fe4O9/BaFe12O19复合陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BaFe12O19、BaTiO3及其复合体系的制备与微波性能研究;罗道源;《中国优秀硕士学位论文全文数据库 工程科技Ι辑》;20130215;第B020-262页 *
Structural and magnetic studies on mechanosynthesized BaFe12-xMnxO19;Puneet Sharma et al.;《Journal of Magnetism and Magnetic Materials》;20070411;第316卷;第29-33页 *

Also Published As

Publication number Publication date
CN106699169A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
Ullah et al. Influence of Pb doping on structural, electrical and magnetic properties of Sr-hexaferrites
CN104609859B (zh) 自蔓燃引入纳米烧结助剂低温烧结制备0-3磁电复合陶瓷的方法
Zhang et al. Microstructure characterization and properties of chemically synthesized Co2Z hexaferrite
CN106904956B (zh) 一种高介高磁的镍掺杂钡铁氧体陶瓷材料及其制备方法
CN106630992B (zh) 一种高性能SrFe12O19/CoFe2O4复合铁氧体材料及制备方法
CN104003701B (zh) 一种不含稀土永磁铁氧体材料的制备方法
CN109516796B (zh) 一种多铁性固溶体陶瓷及其制备方法
Zhang et al. Fine-grained multiferroic BaTiO3/(Ni0. 5Zn0. 5) Fe2O4 composite ceramics synthesized by novel powder-in-sol precursor hybrid processing route
Islam et al. Influence of Mg substitution on structural, magnetic and electrical properties of Zn-Cu ferrites
Zhang et al. Microstructure and magnetic characteristics of low-temperature-fired modified Z-type hexaferrite with Bi/sub 2/O/sub 3/additive
CN105645944B (zh) 一种Bi2Fe4O9/BaFe12O19复合陶瓷及其制备方法
Singh et al. Holmium induced structural transformation and improved dielectric and magnetic properties in Bi0. 80La0. 20FeO3 multiferroics
Lamastra et al. High density Gd-substituted yttrium iron garnets by coprecipitation
CN106699169B (zh) 一种高电阻率多铁性复合陶瓷及其制备方法
CN106278252A (zh) 一种钛酸铋Bi4‑XPrXTi3‑XCoXO12陶瓷材料及其制备方法
CN110330326A (zh) 一种多元素永磁铁氧体及其制备方法和应用
Yuping et al. Enhanced coercivity of La–Co substituted Sr–Ca hexaferrite fabricated by improved ceramics process
CN106565233B (zh) 一种高介电常数低损耗束腰状磁滞回线多铁性复合陶瓷及其制备方法
Rashad et al. Magnetic properties of La 3+-ion-doped polycrystalline Z-type hexaferrite powders synthesized via the co-precipitation method
Lavado et al. Room-temperature multiferroic behavior in the three-layer Aurivillius compound Bi3. 25La0. 75Ti2Nb0. 5 (Fe1-x Cox) 0.5 O12
CN106587971A (zh) 一种软化磁滞回线多铁性复合陶瓷及其制备方法
KR20050103164A (ko) 염화나트륨+염화칼륨의 혼합염을 이용한 스트론튬 페라이트자석의 제조
CN104557028A (zh) 一种层状磁电复合材料及其制备方法
CN106316390A (zh) 一种兼具高铁电性铁磁性及磁电耦合性钛酸铋陶瓷材料及其制备方法
KR20150073759A (ko) 소결자석 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240219

Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Wanzhida Technology Co.,Ltd.

Country or region after: China

Address before: No. 1, Weiyang District university garden, Xi'an, Shaanxi Province, Shaanxi

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right