CN106587971A - 一种软化磁滞回线多铁性复合陶瓷及其制备方法 - Google Patents

一种软化磁滞回线多铁性复合陶瓷及其制备方法 Download PDF

Info

Publication number
CN106587971A
CN106587971A CN201611162388.0A CN201611162388A CN106587971A CN 106587971 A CN106587971 A CN 106587971A CN 201611162388 A CN201611162388 A CN 201611162388A CN 106587971 A CN106587971 A CN 106587971A
Authority
CN
China
Prior art keywords
preparation
hysteresis curve
composite ceramicses
multiferroic composite
multiferroic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611162388.0A
Other languages
English (en)
Inventor
蒲永平
高子岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201611162388.0A priority Critical patent/CN106587971A/zh
Publication of CN106587971A publication Critical patent/CN106587971A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种软化磁滞回线多铁性复合陶瓷及其制备方法,属于材料制备技术领域,该复合陶瓷的化学组成表达为:BaTiO3‑BaFe12‑x(Co0.5Ti0.5)xO19,0<x≤2。本发明以BaTiO3‑BaFe12O19为基体,通过掺杂Co2+和Ti4+极大的提高了其电阻率,进而提高介电性能。为多铁性复合陶瓷的实际应用提供了一种切实可行的方法。并且微波烧结法不同于一般的传统烧结,烧结时间很短,烧结过程中不存在温度梯度,此方法结合微波水热法制备的纳米粉体烧结的陶瓷具有晶粒尺寸小,致密度高等诸多优点。

Description

一种软化磁滞回线多铁性复合陶瓷及其制备方法
技术领域
本发明属于材料制备技术领域,涉及多铁性材料的制备方法,具体涉及一种软化磁滞回线多铁性复合陶瓷及其制备方法。
背景技术
多铁性材料又称磁电材料,它是指同时具有两种或两种以上基本铁性(铁电性、铁磁性和铁弹性)的材料,多铁性材料的研究与磁电耦合效应的研究是密不可分的,同一材料中磁性和铁电性共存使得多铁性材料不仅仅可以作为单一的磁性材料和铁电性材料来使用,同时,多铁性材料中磁与电的耦合效应,即外加电场导致物质磁化或外加的磁场导致物质内部出现电极化,使得该材料在应用中具有更高的自由度,为器件的小型化和多功能化提供了可能。
一般由铁电相和铁磁相两相构成的磁电多铁性复合陶瓷具有可设计性,可调控性,在室温下比单相多铁性材料具有更强磁电效应等优点。然而,多铁性复合陶瓷的性能取决于材料合适的组成相,两相的连通性,体积分数,晶粒尺寸和形状等等因素。因为BaTiO3是典型的铁电相,BaFe12O19是典型的铁磁相,所以BaTiO3-BaFe12O19是最重要的多铁性复合陶瓷的研究体系之一(Zijing Dong,et al.Fabrication,structure and properties ofBaTiO3–BaFe12O19composites with core–shell heterostructure[J].Journal of theEuropean Ceramic Society,2015,35:3513-3520)。一般具有高的电阻率是磁电复合材料获得优异磁电性能的前提条件。BaTiO3-BaFe12O19复合陶瓷体系中BaFe12O19的电阻率比BaTiO3低几个数量级,复合后在两相界面必然会存在电荷的移动。导致材料的漏导增加,损耗增大,介电性能恶化。
发明内容
本发明的目的在于提供一种软化磁滞回线多铁性复合陶瓷及其制备方法,以克服上述现有技术存在的缺陷,本发明操作简单,重复性好,经该方法制得的复合陶瓷介电常数高,损耗小,电阻率较高。
为达到上述目的,本发明采用如下技术方案:
一种软化磁滞回线多铁性复合陶瓷,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:0<x≤2。
一种软化磁滞回线多铁性复合陶瓷的制备方法,所述复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:0<x≤2,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在180~220℃下,微波水热反应25~35min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12-x(Co0.5Ti0.5)xO19中Ba2+,Fe3+,Co2+,Ti4+的摩尔比,称取Ba(NO3)2,TiCl4,Co(NO3)2·6H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,得到陶瓷生坯,然后将陶瓷生坯在微波条件下烧结,制得软化磁滞回线多铁性复合陶瓷。
进一步地,步骤2)中得到的混合溶液中钛离子的溶度为0.3mol/L。
进一步地,步骤5)中的粘结剂为PVA溶液,且PVA溶液的体积溶度为5%。
进一步地,步骤5)中粘结剂的加入量为混合粉体质量的5%~10%。
进一步地,步骤6)中排胶具体为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却。
进一步地,步骤6)中微波功率为1500W。
进一步地,步骤6)中烧结具体为:以25℃/min的升温速率从室温升温到1000℃~1100℃并保温5min,然后随炉冷却。
进一步地,TiCl4、BaCl2·2H2O、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
与现有技术相比,本发明具有以下有益的技术效果:
本发明通过掺杂Co2+和Ti4+离子,提高电阻率,软化磁滞回线,改善BaFe12O19的性能,从而保持材料铁磁性能的前提下,提高BaTiO3-BaFe12O19复合陶瓷的铁电性能,使其多铁性能近一步满足实际应用,另外采用微波水热法制备粉体,具有晶粒小,尺寸均匀,结晶度高,反应时间短等优点,采用微波烧结法烧结陶瓷,不同于一般的传统烧结,烧结时间短,烧结过程中不存在温度梯度,此方法结合微波水热法制备的纳米粉体烧结的陶瓷具有晶粒尺寸小,致密度高等诸多优点,以TiCl4、BaCl2·2H2O、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2为原料,原料简单,价格低廉。
进一步地,本发明通过控制反应条件,制备的高电阻率多铁性复合陶瓷提高了多铁性BaTiO3-BaFe12O19的铁电性能,具有晶粒小,尺寸均匀,结晶度高,介电常数高,损耗小,磁滞回线矫顽场小等优点,为多铁性BaTiO3-BaFe12O19复合陶瓷的实际应用提供了一种切实可行的方法。
附图说明
图1是本发明制备的软化磁滞回线多铁性复合陶瓷材料的XRD图谱;
图2是本发明制备的软化磁滞回线多铁性复合陶瓷的SEM照片;其中,(a)、(b)、(c)、(d)、(e)分别为x=0、0.5、1、1.5、2的复合陶瓷;
图3是本发明制备的软化磁滞回线多铁性复合陶瓷的电阻率的变化图谱;
图4(a)是本发明制备的软化磁滞回线多铁性复合陶瓷的介电常数的变化图谱;
图4(b)是本发明制备的软化磁滞回线多铁性复合陶瓷的损耗随频率的变化图谱;
图5是本发明制备的软化磁滞回线多铁性复合陶瓷材料的电滞回线;
图6是本发明制备的软化磁滞回线多铁性复合陶瓷材料的磁滞回线。
具体实施方式
下面对本发明做进一步详细描述:
一种软化磁滞回线多铁性复合陶瓷,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:0<x≤2。
一种软化磁滞回线多铁性复合陶瓷的制备方法,所述复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:0<x≤2,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,混合溶液中钛离子的溶度为0.3mol/L,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在180~220℃下,微波水热反应25~35min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12-x(Co0.5Ti0.5)xO19中Ba2+,Fe3+,Co2+,Ti4+的摩尔比,称取Ba(NO3)2,TiCl4,Co(NO3)2·6H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,粘结剂的加入量为混合粉体质量的5%~10%,所述粘结剂为PVA溶液,且PVA溶液的体积溶度为5%,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却,得到陶瓷生坯,然后将陶瓷生坯在1500W的微波功率下以25℃/min的升温速率从室温升温到1000℃~1100℃并保温5min,然后随炉冷却,制得软化磁滞回线多铁性复合陶瓷。
其中,所用原料TiCl4、BaCl2·2H2O、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
下面结合实施例对本发明做进一步详细描述:
空白例
一种软化磁滞回线多铁性复合陶瓷,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=0。
一种软化磁滞回线多铁性复合陶瓷的制备方法,所述复合陶瓷的化学式为:BaTiO3-BaFe12O19,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,混合溶液中钛离子的溶度为0.3mol/L,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在200℃下,微波水热反应30min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12O19中Ba2+,Fe3+的摩尔比,称取Ba(NO3)2和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在180℃下,微波水热28min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,粘结剂的加入量为混合粉体质量的5%,所述粘结剂为PVA溶液,且PVA溶液的体积溶度为5%,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却,得到陶瓷生坯,然后将陶瓷生坯在1500W的微波功率下以25℃/min的升温速率从室温升温到1050℃并保温5min,然后随炉冷却,制得软化磁滞回线多铁性复合陶瓷。
实施例1
一种软化磁滞回线多铁性复合陶瓷,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=0.5。
一种软化磁滞回线多铁性复合陶瓷的制备方法,所述复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=0.5,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,混合溶液中钛离子的溶度为0.3mol/L,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在180℃下,微波水热反应35min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12-x(Co0.5Ti0.5)xO19中Ba2+,Fe3+,Co2+,Ti4+的摩尔比,称取Ba(NO3)2,TiCl4,Co(NO3)2·6H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在170℃下,微波水热30min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,粘结剂的加入量为混合粉体质量的10%,所述粘结剂为PVA溶液,且PVA溶液的体积溶度为5%,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却,得到陶瓷生坯,然后将陶瓷生坯在1500W的微波功率下以25℃/min的升温速率从室温升温到1000℃并保温5min,然后随炉冷却,制得软化磁滞回线多铁性复合陶瓷。
实施例2
一种软化磁滞回线多铁性复合陶瓷,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=1.0。
一种软化磁滞回线多铁性复合陶瓷的制备方法,所述复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=1.0,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,混合溶液中钛离子的溶度为0.3mol/L,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在220℃下,微波水热反应25min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12-x(Co0.5Ti0.5)xO19中Ba2+,Fe3+,Co2+,Ti4+的摩尔比,称取Ba(NO3)2,TiCl4,Co(NO3)2·6H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在190℃下,微波水热25min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,粘结剂的加入量为混合粉体质量的8%,所述粘结剂为PVA溶液,且PVA溶液的体积溶度为5%,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却,得到陶瓷生坯,然后将陶瓷生坯在1500W的微波功率下以25℃/min的升温速率从室温升温到1100℃并保温5min,然后随炉冷却,制得软化磁滞回线多铁性复合陶瓷。
实施例3
一种软化磁滞回线多铁性复合陶瓷,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=1.5。
一种软化磁滞回线多铁性复合陶瓷的制备方法,所述复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=1.5,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,混合溶液中钛离子的溶度为0.3mol/L,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在200℃下,微波水热反应30min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12-x(Co0.5Ti0.5)xO19中Ba2+,Fe3+,Co2+,Ti4+的摩尔比,称取Ba(NO3)2,TiCl4,Co(NO3)2·6H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在180℃下,微波水热28min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,粘结剂的加入量为混合粉体质量的5%,所述粘结剂为PVA溶液,且PVA溶液的体积溶度为5%,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却,得到陶瓷生坯,然后将陶瓷生坯在1500W的微波功率下以25℃/min的升温速率从室温升温到1050℃并保温5min,然后随炉冷却,制得软化磁滞回线多铁性复合陶瓷。
实施例4
一种软化磁滞回线多铁性复合陶瓷,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=2.0。
一种软化磁滞回线多铁性复合陶瓷的制备方法,所述复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:x=2.0,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,混合溶液中钛离子的溶度为0.3mol/L,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在180℃下,微波水热反应25min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12-x(Co0.5Ti0.5)xO19中Ba2+,Fe3+,Co2+,Ti4+的摩尔比,称取Ba(NO3)2,TiCl4,Co(NO3)2·6H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在190℃下,微波水热30min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,粘结剂的加入量为混合粉体质量的5%,所述粘结剂为PVA溶液,且PVA溶液的体积溶度为5%,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却,得到陶瓷生坯,然后将陶瓷生坯在1500W的微波功率下以25℃/min的升温速率从室温升温到1100℃并保温5min,然后随炉冷却,制得软化磁滞回线多铁性复合陶瓷。
参见图1及图2,以上实例所制备的BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19复合陶瓷材料的XRD图谱和SEM照片中可以看出,以上实施例中已经合成了BaTiO3和BaFe12-x(Co0.5Ti0.5)xO19相共存的复合陶瓷。同时,可以看出没有其他杂相存在,且这两相结晶度较高,没有互相反应,化学相容性较好。参见图3,可以看出电阻率随着组分的增加,逐渐增大。参见图4,可以看出介电常数达到10000以上,介电性能优良。参见图5,复合陶瓷具有较饱和的电滞回线,在x=1时获得了最优的铁电性。参见图6,可以看出通过掺杂Co2+和Ti4+复合陶瓷的饱和磁化强度仍然保持在较高水平,矫顽场逐渐减小。
综上所述,本发明通过微波水热法和微波烧结法制备了BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19复合陶瓷。以BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19为基体,通过掺杂Co2+,Ti4+极大的提高了其电阻率,进而提高介电性能。并且微波烧结法不同于一般的传统烧结,烧结时间很短,烧结过程中不存在温度梯度,此方法结合微波水热法制备的纳米粉体烧结的陶瓷具有晶粒尺寸小,致密度高等诸多优点,为多铁性复合材料的实际应用提供了一种切实可行的方法。本发明公开的采用BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19复合陶瓷及其制备方法有可能成为制备多铁性复合材料在技术上和经济上兼优的新配方。

Claims (9)

1.一种软化磁滞回线多铁性复合陶瓷,其特征在于,该复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:0<x≤2。
2.一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,所述复合陶瓷的化学式为:BaTiO3-BaFe12-x(Co0.5Ti0.5)xO19,其中:0<x≤2,包括以下步骤:
1)按照TiCl4:BaCl2·2H2O:KOH=1:2:10的摩尔比称取TiCl4、BaCl2·2H2O和KOH;
2)将TiCl4和BaCl2·2H2O溶解于蒸馏水中得到混合溶液,然后将KOH加入混合溶液中得到前驱液;
3)将前驱液在180~220℃下,微波水热反应25~35min,制得反应产物A,将反应产物A水洗至中性;
4)按BaFe12-x(Co0.5Ti0.5)xO19中Ba2+,Fe3+,Co2+,Ti4+的摩尔比,称取Ba(NO3)2,TiCl4,Co(NO3)2·6H2O和Fe(NO3)3·9H2O,溶解于蒸馏水中,调节溶液pH≥13,制得碱性溶液,将该碱性溶液在170~190℃下,微波水热25~30min,制得反应产物B,将反应产物B水洗至中性;
5)将步骤3)制得的反应产物A和步骤4)制得的反应产物B混合后烘干,得到混合粉体,再加入粘结剂,然后进行造粒、压制成型,制得坯体;
6)将坯体排胶,得到陶瓷生坯,然后将陶瓷生坯在微波条件下烧结,制得软化磁滞回线多铁性复合陶瓷。
3.根据权利要求1所述的一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,步骤2)中得到的混合溶液中钛离子的溶度为0.3mol/L。
4.根据权利要求1所述的一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,步骤5)中的粘结剂为PVA溶液,且PVA溶液的体积溶度为5%。
5.根据权利要求1所述的一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,步骤5)中粘结剂的加入量为混合粉体质量的5%~10%。
6.根据权利要求1所述的一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,步骤6)中排胶具体为:以2℃/min的升温速率从室温升温到200℃,然后以3℃/min的升温速率从200℃升温到500℃,最后以5℃/min的升温速度从500℃升温到600℃并保温2h,然后随炉冷却。
7.根据权利要求1所述的一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,步骤6)中微波功率为1500W。
8.根据权利要求1所述的一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,步骤6)中烧结具体为:以25℃/min的升温速率从室温升温到1000℃~1100℃并保温5min,然后随炉冷却。
9.根据权利要求1所述的一种软化磁滞回线多铁性复合陶瓷的制备方法,其特征在于,TiCl4、BaCl2·2H2O、Co(NO3)2·6H2O、Fe(NO3)3·9H2O、KOH和Ba(NO3)2的纯度均为99.0%以上。
CN201611162388.0A 2016-12-15 2016-12-15 一种软化磁滞回线多铁性复合陶瓷及其制备方法 Pending CN106587971A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611162388.0A CN106587971A (zh) 2016-12-15 2016-12-15 一种软化磁滞回线多铁性复合陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611162388.0A CN106587971A (zh) 2016-12-15 2016-12-15 一种软化磁滞回线多铁性复合陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN106587971A true CN106587971A (zh) 2017-04-26

Family

ID=58802803

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611162388.0A Pending CN106587971A (zh) 2016-12-15 2016-12-15 一种软化磁滞回线多铁性复合陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN106587971A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935593A (zh) * 2017-12-20 2018-04-20 西安交通大学 一种具有超低滞回电致应变铁电陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708991A (zh) * 2009-11-11 2010-05-19 沈阳师范大学 一种具有低矫顽力温度系数钡铁氧体的制备方法
CN101921111A (zh) * 2010-07-12 2010-12-22 陕西科技大学 一种利用水热法制备MnNb2O6微波介质陶瓷粉体的方法
CN102491428A (zh) * 2011-11-16 2012-06-13 陕西科技大学 一种微波水热法制备六角BeFe12O19磁性纳米粉体的方法
CN103274677A (zh) * 2013-05-27 2013-09-04 浙江大学 一种钛掺杂钡铁氧体陶瓷材料及其制备方法
CN105645944A (zh) * 2015-12-30 2016-06-08 陕西科技大学 一种Bi2Fe4O9/BaFe12O19复合陶瓷及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101708991A (zh) * 2009-11-11 2010-05-19 沈阳师范大学 一种具有低矫顽力温度系数钡铁氧体的制备方法
CN101921111A (zh) * 2010-07-12 2010-12-22 陕西科技大学 一种利用水热法制备MnNb2O6微波介质陶瓷粉体的方法
CN102491428A (zh) * 2011-11-16 2012-06-13 陕西科技大学 一种微波水热法制备六角BeFe12O19磁性纳米粉体的方法
CN103274677A (zh) * 2013-05-27 2013-09-04 浙江大学 一种钛掺杂钡铁氧体陶瓷材料及其制备方法
CN105645944A (zh) * 2015-12-30 2016-06-08 陕西科技大学 一种Bi2Fe4O9/BaFe12O19复合陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WANT, BD等: "Dielectric, ferroelectric and magnetic behavior of BaTiO3-BaFe12O19 composite", 《JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS》 *
聂海等: "M型钡铁氧体掺杂CO-Ti改性研究", 《材料研究学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935593A (zh) * 2017-12-20 2018-04-20 西安交通大学 一种具有超低滞回电致应变铁电陶瓷材料及其制备方法
CN107935593B (zh) * 2017-12-20 2021-08-13 西安交通大学 一种具有超低滞回电致应变铁电陶瓷材料及其制备方法

Similar Documents

Publication Publication Date Title
Sadhana et al. Effect of Sm 3+ on dielectric and magnetic properties of Y 3 Fe 5 O 12 nanoparticles
CN103449807B (zh) 一种具有交换耦合的双相复合硬磁铁氧体的制备方法
US20110147643A1 (en) Method for producing nickel-manganese-cobalt spinel ferrite having low permeability loss and nickel-manganese-cobalt spinel ferrite produced thereby
CN103274677B (zh) 一种钛掺杂钡铁氧体陶瓷材料及其制备方法
CN107759216A (zh) 一种溶胶‑凝胶法制备锰酸锶镧/钛酸铜钙复合磁电陶瓷材料的方法
CN111848153A (zh) 一种微波介质陶瓷、微波介质陶瓷的制备方法及通信器件
CN104003701B (zh) 一种不含稀土永磁铁氧体材料的制备方法
CN102643082A (zh) 一种w型钡铁氧体的制备方法
CN100398485C (zh) 一种铁电/铁磁复相陶瓷的制备方法
CN104003707B (zh) 一种钡永磁铁氧体材料的制备方法
CN113744991B (zh) 一种Co2Z型铁氧体材料及其制备方法和用途
CN103159469A (zh) 一种高磁导率锰锌铁氧体料粉的制备方法
CN110204326A (zh) 一种具有核壳结构的铁氧体永磁材料及其制备方法
CN105645944B (zh) 一种Bi2Fe4O9/BaFe12O19复合陶瓷及其制备方法
CN106587971A (zh) 一种软化磁滞回线多铁性复合陶瓷及其制备方法
CN105669195A (zh) 低介电常数高q值微波介质陶瓷材料及其制备方法
Bai et al. Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol–gel auto-combustion method
CN106278252A (zh) 一种钛酸铋Bi4‑XPrXTi3‑XCoXO12陶瓷材料及其制备方法
CN108793993B (zh) 一种单相陶瓷靶材及其制备方法和用途
CN104003703B (zh) 一种高性能永磁铁氧体材料的制备方法
CN106565233B (zh) 一种高介电常数低损耗束腰状磁滞回线多铁性复合陶瓷及其制备方法
Zahi et al. Preparation of Ni–Zn–Cu ferrite particles by sol–gel technique
CN102910913B (zh) YMnO3电介质陶瓷的制备工艺及YMnO3电介质陶瓷电容器
CN104556996A (zh) 一种制备 BaFe12O19/CoFe2O4 永磁复合陶瓷材料及其制备方法
CN109111222A (zh) 一种Co掺杂的具有奥里维里斯结构的多铁性陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170426

RJ01 Rejection of invention patent application after publication