CN112125341A - 一种双钙钛矿型半金属性质材料及其制备方法 - Google Patents

一种双钙钛矿型半金属性质材料及其制备方法 Download PDF

Info

Publication number
CN112125341A
CN112125341A CN202011007055.7A CN202011007055A CN112125341A CN 112125341 A CN112125341 A CN 112125341A CN 202011007055 A CN202011007055 A CN 202011007055A CN 112125341 A CN112125341 A CN 112125341A
Authority
CN
China
Prior art keywords
metallic material
perovskite type
double perovskite
type semi
nbmno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011007055.7A
Other languages
English (en)
Inventor
祖宁宁
张琪
张韬
罗旺
李建军
李�瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN202011007055.7A priority Critical patent/CN112125341A/zh
Publication of CN112125341A publication Critical patent/CN112125341A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种双钙钛矿型半金属性质材料,分子式为La2NbMnO6。该半金属性质材料的制备方法为,以La2O3,Nb2O5和MnO2为原料,通过固相反应法制备化合物La2NbMnO6。本发明的双钙钛矿型半金属性质材料,通过剖析电子关联和自旋轨道耦合对La2NbMnO6性质的作用,得出其具有半金属性质。利用本发明的双钙钛矿型半金属性质材料可以进行新型的室温自旋电子器件的设计。本发明的双钙钛矿型半金属性质材料的制备方法,利用固相反应方法,通过控制不同烧结次数的烧结温度和烧结时间,实现了La2NbMnO6材料的合成。

Description

一种双钙钛矿型半金属性质材料及其制备方法
技术领域
本发明涉及半金属材料技术领域,特别涉及一种双钙钛矿型半金属性质材料及其制备方法。
背景技术
半金属(HM)材料具有特殊的能带结构,它在一个自旋方向上表现为金属性,而在另一个自旋方向上表现为半导体或绝缘的性质。它们在费米能级上具有100%的自旋极化,有望在使用自旋极化导电载流子的自旋电子学器件中发挥重要作用。
双钙钛矿型氧化物A2BB'O6,由于A位非磁性离子和B位磁性离子可以自由选择,因此在HM化合物的研究中引起了广泛关注。研究发现,电子关联和自旋轨道耦合(SOC)的协同效应可以再现实验观察到的绝缘亚铁磁特性。相比于3d过渡元素,4d过渡元素具有更宽的能带和更小的电子关联作用,以及更明显的SOC效应。因此,如果钙钛矿中的3d元素被4d元素取代,材料的传输性能可能会发生显著变化。
发明内容
本发明要解决现有技术中的技术问题,提供一种双钙钛矿型半金属性质材料及其制备方法。
为了解决上述技术问题,本发明的技术方案具体如下:
一种双钙钛矿型半金属性质材料,分子式为La2NbMnO6
一种双钙钛矿型半金属性质材料的制备方法,以镧、铌、锰的氧化物为原料,制备化合物La2NbMnO6
该制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料研磨成粉体,压制成型;
其次,在780~830℃煅烧11~12小时,煅烧后加酒精研磨3小时,再压制成型;
再其次,在970~1020℃煅烧12~13小时;煅烧后加酒精研磨3小时,再压制成型;
最后在1130~1180℃下烧结15~18小时得到单一相的半金属性质材料。
在上述技术方案中,所述的镧、铌、锰的氧化物分别为:La2O3,Nb2O5和MnO2
在上述技术方案中,所述的原料是分析纯的。
在上述技术方案中,所述的压制成型是在180~250MPa压力下成型。
本发明具有以下的有益效果:
本发明的双钙钛矿型半金属性质材料,通过剖析电子关联和自旋轨道耦合对La2NbMnO6性质的作用,得出其具有半金属性质。利用本发明的双钙钛矿型半金属性质材料可以进行新型的室温自旋电子器件的设计。
本发明的双钙钛矿型半金属性质材料的制备方法,利用固相反应方法,通过控制不同烧结次数的烧结温度和烧结时间,实现了双钙钛矿型半金属性质材料La2NbMnO6的合成。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细说明。
图1为用(a)GGA,(b)GGA+U,(c)GGA+SOC和(d)GGA+U+SOC方法计算La2NbMnO6的分轨道态密度图。垂直线表示费米能级。UNb=3.5eV,
UMn=5.0eV。
具体实施方式
在下面的具体实施方式中,对本发明的双钙钛矿型半金属性质材料La2NbMnO6的电磁性质进行了说明;还给出了双钙钛矿型半金属性质材料La2NbMnO6的制备方法。
下面结合附图对本发明做以详细说明。
本发明的双钙钛矿型半金属性质材料,其分子式为La2NbMnO6
为了剖析电子关联和自旋轨道耦合(SOC)对La2NbMnO6性质的作用,图1给出了用四种方法计算的轨道分解态密度(DOS)。对于GGA方法(图1(a)),在上自旋方向,导电电子主要由部分占据的Nb-t2g轨道贡献,而在下自旋通道中,费米能级仅位于Mn-eg带的顶部。因此,对于GGA方法,La2NbMnO6处于正常金属和半金属的临界点。在考虑电子关联(GGA+U,图1(b))之后,发现Nb 4d的DOS几乎保持原始值(即使Nb的值设置为6.0eV,情况仍然如此)。这表明电子关联对Nb没有影响。相比之下,Mn 3d(t2g和eg)自旋向上和自旋向下轨道分别在加U后被拉向更高和更低的能量区域。交换劈裂从4.0eV相应增加到7.5eV。因此,La2NbMnO6是半金属。
由于d态的更加定域化,Mn的自旋磁矩从3.51μB增加到4.28μB。对于Nb的自旋磁矩,稍微有所降低(从0.30μB到0.21μB),这可能是由于在考虑电子关联后,Nb和Mn t2g上自旋轨道之间在费米能级区域附近杂化减弱的原因。另外,在考虑SOC时,会发生进一步的能量分裂。在立方结构中,t2g分为单态dxy能级和双简并dxz+dyz能级,eg分为单态dx2-y2和dz2能级(GGA+SOC,图1(c))。然而,这些非简并能带彼此重叠,因此DOS与GGA方法相比几乎没有变化。
图1(d)给出了同时考虑电子关联和自旋轨道耦合SOC的结果,可以看出SOC引起的能级分裂仍然是重叠的,其作用只是增加Mn 3d轨道的交换分裂。这意味着电子关联和SOC在GGA+U+SOC中是分开工作的。这里可以得到La2NbMnO6的半金属(HM)性质归因于Mn的电子关联而不是SOC效应。
此外,Nb和Mn的轨道矩都很小(0.04μB和0.00μB),这说明自旋轨道耦合SOC在La2NbMnO6中的作用相当弱。
根据GGA+U(和GGA+U+SOC)中Mn 3d下自旋轨道完全占据的DOS性质,在离子模型中,可以将La2NbMnO6中Mn的价态定为+2,那么Nb则为+4。二者的价态也可以由Nb和Mn的自旋磁矩来得到,尽管这些磁矩由于p-d杂化而有所减少。
本发明的双钙钛矿型半金属性质材料,通过剖析电子关联和自旋轨道耦合对La2NbMnO6性质的作用,得出其具有半金属性质。利用本发明的双钙钛矿型半金属性质材料可以进行新型的室温自旋电子器件的设计。
下面对本发明的双钙钛矿型半金属性质材料La2NbMnO6的制备方法进行详细说明。
本发明的双钙钛矿型半金属性质材料的制备方法,以镧、铌、锰的氧化物La2O3,Nb2O5和MnO2为原料,制备化合物La2NbMnO6;La2O3,Nb2O5和MnO2均通过商业购买得到,纯度为分析纯。购买方式:www.aladdin-e.com;氧化镧,产品编号L103872,纯度99.99%;氧化铌,产品编号N108413,纯度99.95%;二氧化锰,产品编号M101140,纯度99.95%。
本发明的双钙钛矿型半金属性质材料的制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料放入玛瑙研钵中研磨成粉体,然后在180~250MPa压力下压制成型;
其次,将压制成型的块体样品放置于马弗炉中在780~830℃煅烧11~12小时,煅烧后将样品放入研钵中加酒精研磨3小时,然后再在180~250MPa压力下压制成型;
再其次,将压制成型的块体样品放置于马弗炉中在970~1020℃煅烧12~13小时;将样品放入研钵中加酒精研磨3小时,然后再在180~250MPa压力下压制成型;
最后将压制成型的块体样品放置于马弗炉中在1130~1180℃下烧结15~18小时得到单一相的半金属性质材料。
本发明的双钙钛矿型半金属性质材料的制备方法,利用固相反应方法,通过控制不同烧结次数的烧结温度和烧结时间,实现了双钙钛矿型半金属性质材料La2NbMnO6的合成。
在下面的具体实施方式中,对本发明的双钙钛矿型半金属性质材料的合成方法进行了举例说明。
实施例1
本发明的双钙钛矿型半金属性质材料的制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料放入玛瑙研钵中研磨成粉体,然后在180MPa压力下压制成型;
其次,将压制成型的块体样品放置于马弗炉中在780℃煅烧11小时,煅烧后将样品放入研钵中加酒精研磨3小时,然后再在180MPa压力下压制成型;
再其次,将压制成型的块体样品放置于马弗炉中在970℃煅烧12小时;将样品放入研钵中加酒精研磨3小时,然后再在180MPa压力下压制成型;
最后将压制成型的块体样品放置于马弗炉中在1130℃下烧结15小时得到单一相的半金属性质材料。
实施例2
本发明的双钙钛矿型半金属性质材料的制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料放入玛瑙研钵中研磨成粉体,然后在250MPa压力下压制成型;
其次,将压制成型的块体样品放置于马弗炉中在830℃煅烧12小时,煅烧后将样品放入研钵中加酒精研磨3小时,然后再在250MPa压力下压制成型;
再其次,将压制成型的块体样品放置于马弗炉中在1020℃煅烧13小时;将样品放入研钵中加酒精研磨3小时,然后再在250MPa压力下压制成型;
最后将压制成型的块体样品放置于马弗炉中在1180℃下烧结18小时得到单一相的半金属性质材料。
实施例3
本发明的双钙钛矿型半金属性质材料的制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料放入玛瑙研钵中研磨成粉体,然后在210MPa压力下压制成型;
其次,将压制成型的块体样品放置于马弗炉中在800℃煅烧12小时,煅烧后将样品放入研钵中加酒精研磨3小时,然后再在210MPa压力下压制成型;
再其次,将压制成型的块体样品放置于马弗炉中在1000℃煅烧12小时;将样品放入研钵中加酒精研磨3小时,然后再在210MPa压力下压制成型;
最后将压制成型的块体样品放置于马弗炉中在1150℃下烧结16小时得到单一相的半金属性质材料。
上述具体实施方式,分别介绍了三个本发明的双钙钛矿型半金属性质材料的制备方法的具体实例,都可以实现本发明的双钙钛矿型半金属性质材料的制备。经过对材料样品分别进行X射线衍射,分析其衍射图谱,可知三个具体实例得到的材料的结构相同。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (5)

1.一种双钙钛矿型半金属性质材料,其特征在于,分子式为La2NbMnO6
2.一种权利要求1所示的双钙钛矿型半金属性质材料的制备方法,其特征在于,以镧、铌、锰的氧化物为原料,制备化合物La2NbMnO6
该制备方法包括以下步骤:
首先,按照化学计量比称量原料,将原料研磨成粉体,压制成型;
其次,在780~830℃煅烧11~12小时,煅烧后加酒精研磨3小时,再压制成型;
再其次,在970~1020℃煅烧12~13小时;煅烧后加酒精研磨3小时,再压制成型;
最后在1130~1180℃下烧结15~18小时得到单一相的半金属性质材料。
3.根据权利要求2所述的制备方法,其特征在于,所述的镧、铌、锰的氧化物分别为:La2O3,Nb2O5和MnO2
4.根据权利要求2所述的制备方法,其特征在于,所述的原料是分析纯的。
5.根据权利要求2所述的制备方法,其特征在于,所述的压制成型是在180~250MPa压力下成型。
CN202011007055.7A 2020-09-23 2020-09-23 一种双钙钛矿型半金属性质材料及其制备方法 Pending CN112125341A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011007055.7A CN112125341A (zh) 2020-09-23 2020-09-23 一种双钙钛矿型半金属性质材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011007055.7A CN112125341A (zh) 2020-09-23 2020-09-23 一种双钙钛矿型半金属性质材料及其制备方法

Publications (1)

Publication Number Publication Date
CN112125341A true CN112125341A (zh) 2020-12-25

Family

ID=73842676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011007055.7A Pending CN112125341A (zh) 2020-09-23 2020-09-23 一种双钙钛矿型半金属性质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN112125341A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180523A (zh) * 2011-02-01 2011-09-14 吉林大学 中温固体氧化物燃料电池阴极材料及其制备方法
CN102910908A (zh) * 2012-09-26 2013-02-06 河南科技大学 一种双钙钛矿Y2MnCoO6电介质陶瓷的制备工艺
EP3147262A1 (en) * 2015-09-22 2017-03-29 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie A perovskite-based oxide for oxygen storage and a method for preparation thereof
CN107473742A (zh) * 2017-09-08 2017-12-15 河南师范大学 一种高质量单相双钙钛矿Sr2FeMoO6陶瓷的制备方法
CN107742729A (zh) * 2017-10-18 2018-02-27 山东京博石油化工有限公司 一种双钙钛矿阴极材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180523A (zh) * 2011-02-01 2011-09-14 吉林大学 中温固体氧化物燃料电池阴极材料及其制备方法
CN102910908A (zh) * 2012-09-26 2013-02-06 河南科技大学 一种双钙钛矿Y2MnCoO6电介质陶瓷的制备工艺
EP3147262A1 (en) * 2015-09-22 2017-03-29 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie A perovskite-based oxide for oxygen storage and a method for preparation thereof
CN107473742A (zh) * 2017-09-08 2017-12-15 河南师范大学 一种高质量单相双钙钛矿Sr2FeMoO6陶瓷的制备方法
CN107742729A (zh) * 2017-10-18 2018-02-27 山东京博石油化工有限公司 一种双钙钛矿阴极材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NING-NING ZU等: "First-Principles Calculation for the Half Metallic Properties of La2NbMnO6", 《CHIN. PHYS. LETT.》 *
杨小兰等: "双钙钛矿氧化物Sr_2FeMoO_6的结构特征及磁性质", 《遵义师范学院学报》 *

Similar Documents

Publication Publication Date Title
Dann et al. The synthesis and structure of Sr2FeO4
US20160343484A1 (en) Method for improving coercive force of epsilon-type iron oxide, and epsilon-type iron oxide
US6676730B2 (en) Method of producing Nd-Fe-B based nanophase power
Jin Using pressure effects to create new emergent materials by design
CN112125341A (zh) 一种双钙钛矿型半金属性质材料及其制备方法
CN112094104B (zh) 一种双钙钛矿型自旋电子学材料及其制备方法
Li et al. Combustion synthesis and characterization of NiCuZn ferrite powders
CN109166686B (zh) 一种亚铁磁性半导体LaCu3Fe2Os2O12及其制备方法
KR100909702B1 (ko) 산화물 자성재료
CN108675784B (zh) 新型Fe掺杂的SrBi2Nb2O9具有奥里维里斯结构的多铁性陶瓷材料及其制备方法
Carp et al. Nonconventional methods for obtaining hexaferrites: I. Lead hexaferrite
Hou et al. First-principles study of acceptor Li/Ag/Cu doping and Zn vacancy on the magnetic mechanism of ZnO and the universality of itinerant electrons
CN116655365B (zh) 六角稀土铁氧化物高熵单相多铁性材料及其制备和应用
CN116675518B (zh) 单层和双层钙钛矿多铁性多相材料及其制备方法和应用
Hyung et al. New perovskite related-compounds of Ru (V) in K2NiF4 type structure
CN117637275A (zh) 铁磁强绝缘材料及其制备方法
CN106699169B (zh) 一种高电阻率多铁性复合陶瓷及其制备方法
CN110877978B (zh) 氧化物(Na0.5Bi0.5)1-xMexTiO3稀磁铁电半导体陶瓷及其制备方法
JPH0214871A (ja) 酸化銅超電導体の製造方法
Kalanda et al. Degree of phase transformations in the conditions of polythermal synthesis of SrBaFeMoO6–δ
CN117049866A (zh) 一种采用液相掺杂制备六角SrFe12O19铁氧体的方法及添加剂
CN113264758A (zh) 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法
Jiang et al. A new member of “114” family Ca1− xEuxBaZn2+ xGa2− xO7 (x≤ 0.24): Structure and luminescence
Mao et al. Rapid one-powder process to synthesize phase assemblage composed of (Bi, Pb) 2Sr2CaCu2Ox, Ca2CuO3 and CuO
JP2915546B2 (ja) 酸化物超伝導材料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201225

RJ01 Rejection of invention patent application after publication