CN113264758A - 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法 - Google Patents

一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法 Download PDF

Info

Publication number
CN113264758A
CN113264758A CN202110527120.7A CN202110527120A CN113264758A CN 113264758 A CN113264758 A CN 113264758A CN 202110527120 A CN202110527120 A CN 202110527120A CN 113264758 A CN113264758 A CN 113264758A
Authority
CN
China
Prior art keywords
mol
sr2fereo6
sheet
double perovskite
perovskite type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110527120.7A
Other languages
English (en)
Other versions
CN113264758B (zh
Inventor
朱信华
冷楷
汤庆凯
吴志伟
易康
周舜华
朱健民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202110527120.7A priority Critical patent/CN113264758B/zh
Publication of CN113264758A publication Critical patent/CN113264758A/zh
Application granted granted Critical
Publication of CN113264758B publication Critical patent/CN113264758B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,包括第一步,将碳酸锶、九水合硝酸铁、七氧化二铼原材料溶于稀硝酸中,加入络合剂和分散剂并搅拌形成溶胶;将溶胶于60~80℃加热搅拌,直至形成凝胶,100~300℃烘干制成干凝胶;将干凝胶研磨5~20分钟后,用5~15 MPa的压力压制成片,放入刚玉坩埚中在管式炉中于1000~1100℃氩气气氛下烧结24小时,冷却到室温后研磨压片,1000~1100℃氩气气氛烧结24小时,得到双钙钛矿型自旋电子学材料Sr2FeReO6。

Description

一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法
技术领域
本发明涉及一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,属于纳米电子器件材料技术领域。
背景技术
半进入21世纪以来,随着微电子器件特征尺寸不断缩小及其集成化的迅速提高,电子的量子效应使得半导体器件不断接近其物理极限,后摩尔时代的新型微电子器件成为研究的热点。为了提升信息存储和处理能力,发展可替代的高速、低功耗信息技术迫在眉睫。目前,人们已经提出了多种新思路和方法,例如分子电子学、纳米电子学、自旋电子学以及量子信息技术;其中自旋电子学被认为是最具前景的一个,在世界范围内受到广泛研究。在这种新型器件中, 不但电子的电荷, 而且电子的自旋自由度也被用作传递信息的载体。与传统基于电荷自由度的电子学器件相比较, 自旋电子学器件具有以下优点:(1) 响应速度更快(传统半导体器件中电子的运动速度受到能量色散的限制, 而自旋电子器件基于电子自旋方向的改变以及自旋电子之间的耦合, 可以实现更快的逻辑状态变化速度); (2)集成度更高(自旋电子器件的特征尺度在原子尺度, 且输运中只有自旋电流而没有电荷电流, 这就使得热的产生和排放为零, 可显著提高集成密度)。因此,利用和控制自旋极化的电子输运过程为核心的自旋电子学也应运而生并显示出蓬勃的生机。虽然自旋电子学器件具有很多潜在的优势,然而目前自旋电子学器件也面临三大挑战:(1)要求材料具有较高的自旋极化率,能够产生完全自旋极化的载流子和及其注入能力,(2)自旋的长程输运,(3)自旋方向的调控和探测。这些问题的解决不仅依赖于器件制造工艺的优化和发展,而且也需要有针对性地研发新型自旋电子材料。由于在材料中产生自旋极化电流是实现自旋电子器件的首要条件,因而研发高自旋极化率材料是这一切的基础和关键。近年来,物理、信息、材料科学领域大量的研究工作主要集中在自旋极化新材料的探索,人们先后探索了多种新型自旋电子学材料,如铁磁金属、半金属、磁性半导体、拓扑绝缘体等。通常说来,实用型自旋电子学材料应该具有和室温可比或者高于室温的磁有序温度,同时具有较大的电子自旋极化率。
在众多自旋电子学的候选材料中,半金属 (half-metal, HM)材料受到人们的广泛关注。这归因于半金属材料在拥有特殊的电子结构,即一个自旋通道呈金属性,另一个自旋通道呈半导体或绝缘体特性。这种特殊的能带结构使得半金属材料能够提供100%自旋极化率的载流子(远超一般铁磁金属及其合金10% - 40%自旋极化率),被视为理想的自旋电子学材料。高的电子自旋极化率使得半金属材料在自旋阀、隧道结、自旋场效应晶体管、自旋共振隧穿器件等磁电子学器件中呈现出十分诱人的应用前景,因此,半金属材料在自旋电子学领域占有重要的地位。
值得注意的是,双钙钛矿结构氧化物在半金属概念的实现和发展中扮演着重要的角色。它们不仅具有简单的晶体结构而且拥有庞大的家族成员,使其已成为多种自旋电子学材料的摇篮。双钙钛矿结构Sr2FeReO6由于其磁性居里温度高(Tc = ~ 500 K)、电学特性多样化、具有隧穿磁电阻效应和载流子自旋极化等特性而特别引人注目。此外,B位为3d和5d过渡金属离子的Sr2FeReO6双钙钛矿结构氧化物具有丰富的电子结构和复杂的磁性结构,这是因为3d电子的强局域化与非定域的5d电子之间具有很强的相互作用。因此,在Sr2FeReO6体系中存在许多与电荷、自旋和轨道之间的耦合有关的问题,具有丰富的物理内涵,这为揭示多电子系统中的电子强关联相互作用、电子输运和自旋排列等特定属性提供了良好的研究体系。
近年来人们对Sr2FeReO6进行了许多探索和研究,包括化学性质、微观结构、金属-绝缘体转变(MIT)和磁输运特性,在实验和理论方面形成了丰富的文献。例如,Serrate等人研究了Sr2(Fe1-xCrx)ReO6氧化物的磁各向异性和MIT行为,合成的材料磁致伸缩值最高可达1600 μst,Tc为625 K。Karppinen和Yamauchi研究了Sr2FeReO6化学方面的问题,如氧化学计量比、阳离子有序和氧化还原过程[11]。Kato等人利用固相反应法合成了Sr2FeReO6多晶陶瓷,该陶瓷呈现出金属基态,其Tc = 400 K,饱和磁化强度为2.6 μB。为了提高陶瓷样品致密性,Lim等人利用等离子烧结(SPS)方法合成了Sr2FeReO6陶瓷样品,发现多晶Sr2FeReO6具有较大的磁阻。这是由晶界磁化控制的晶粒间隧穿磁阻(ITMR)效应引起的。虽然已有报道纳米尺度的颗粒可显著增强ITMR效应,然而对于还原性铼酸盐(Re5+/Re6+)具有较强的屈光性(refractive nature), 通常很难获得高纯度和均一性的Sr2FeReO6纳米颗粒。最近Fuoco等人报道,利用熔盐法合成了高纯度的Sr2FeReO6纳米晶粉末(50 - 500nm),并研究了NaCl-KCl熔盐体系作为反应介质,不同退火温度、保温时间、冷却速度和熔盐比例对纳米晶粒尺寸及Sr2FeReO6 B位有序度的影响。合成的Sr2FeReO6纳米晶粉末,其Tc和饱和磁化强度分别为400 K和2.17 μB。到目前为止,尚未发现溶胶-凝胶法合成Sr2FeReO6纳米晶粉末的报道,本发明利用该合成工艺可使人们能够深入究Sr2FeReO6纳米粉末的颗粒尺寸对其性能的影响规律。有公开专利通过复杂工艺合成了Sr2MoReO6材料。而Sr2FeReO6材料体系相较于Sr2MoReO6,其中存在更多与电荷、自旋和轨道之间的耦合有关的问题,且具有更丰富的物理内涵。这是由于Fe是3d过渡元素,而Mo是4d过渡元素,因此Fe元素3d电子的局域化程度更高,在B位为3d-5d过渡金属离子的Sr2FeReO6双钙钛矿结构氧化物具有更丰富的电子结构和复杂的磁性结构,这是因为3d电子的强局域化与非定域的5d电子之间具有很强的相互作用。同时,Sr2FeReO6双钙钛矿结构氧化物在室温下是一种亚稳相结构,合成过程中极易出现Re金属或Sr5Re2O12等金属或氧化物杂相。
自从Sr2FeReO6固溶体被报道有较高的居里温度,在室温下能表现出高饱和磁化强度和高磁阻以来,这种半金属性双钙钛矿结构氧化物被视为最有可能室温下实现应用的磁电阻材料而备受关注。目前使用的合成方法主要是固相反应法,并且添加过量的Re元素来调整其在化合物中的化学价态与B位有序度。为了进一步探索Sr2FeReO6的物理性能以及其在磁电子学器件中的应用,使用操作更简单、更易于量产的溶胶-凝胶法合成Sr2FeReO6自旋电子学材料具有很重要的技术及应用价值。
发明内容
发明目的:针对现有技术中存在的问题与不足,本发明旨在提出一种操作简单,设备要求较低,具有量产能力的制备高质量双钙钛矿型自旋电子学材料Sr2FeReO6的新方法。
技术方案:一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,其特征在于,包括以下步骤:
第一步,将碳酸锶、九水合硝酸铁、七氧化二铼三种原材料溶于稀硝酸中,加入络合剂和分散剂并搅拌形成溶胶;
第二步,将溶胶于60~80℃加热搅拌,直至形成凝胶,100~300℃烘干制成干凝胶;
第三步,将干凝胶研磨5~20分钟后,用5~15 MPa的压力压制成片,放入刚玉坩埚中在管式炉中于1000~1100℃氩气气氛下烧结24小时,冷却到室温后取出再次用同样方法研磨压片,1000~1100℃氩气气氛烧结24小时,得到双钙钛矿型自旋电子学材料Sr2FeReO6。
本发明进一步限定的技术方案为:所述络合剂为柠檬酸,分散剂为乙二醇。
进一步的,三种原材料总物质的量:络合剂:分散剂:稀硝酸的摩尔比为2~10:2~10:1~5:20~300;锶离子:铁离子:铼离子的摩尔比为2:1:1。
进一步的,所述碳酸锶为0.02 mol,九水合硝酸铁为0.01 mol,所述七氧化二铼为0.005 mol,柠檬酸为0.02 mol,所述乙二醇为0.015 mol。
进一步的,所述碳酸锶为0.005 mol,九水合硝酸铁为0.0025 mol,七氧化二铼为0.00125 mol,柠檬酸为0.005 mol,乙二醇为0.00375 mol。
进一步的,所述稀硝酸的浓度为1.5%~3%。
有益效果:与现有技术相比,本发明制备方法具有以下优点:
1)本发明利用溶胶-凝胶法合成Sr2FeReO6纳米材料,所得产物具有化学均匀性好、颗粒尺度小、纯度高等特点。
2)本发明制备过程所需反应温度低、反应时间短且制备方法简单。
3)本制备方法是通过了长期工艺探索和改进,成功解决金属与氧化物杂相问题,合成了纯相的Sr2FeReO6材料。
4)本制备方法只需两次高温煅烧过程,中途仅需要短时间研磨和低压力压制成片,非常利于工业化生产。
5)本发明制备的自旋电子学材料Sr2FeReO6具有半金属基态和高于室温的磁有序温度,利用此材料可以进行新型的室温自旋电子器件的设计。
6)通过该方法合成的高纯度的Sr2FeReO6双钙钛矿型自旋电子学材料可以为揭示多电子系统中的电子强关联相互作用、电子输运和自旋排列等特定属性提供更良好的研究体系。
附图说明
下面结合附图对本发明作进一步的说明。
图1是本发明实施例方法制备的Sr2FeReO6纳米颗粒的X射线衍射谱图。
图2是本发明实施例方法制备的Sr2FeReO6纳米颗粒的扫描电子显微镜图像。
图3是本发明实施例方法制备的Sr2FeReO6纳米颗粒的磁滞回线谱图。
图4是本发明实施例方法制备的Sr2FeReO6纳米颗粒的介电常数与介电损耗谱图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明。
实施例1
本实施例提供一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,采用溶胶-凝胶法,具体步骤如下:
第一步,分别取2.9526 g碳酸锶(0.02 mol),4.0400 g九水合硝酸铁(0.01 mol),2.4220 g七氧化二铼(0.005 mol),用200 mL稀硝酸溶解原料,加入4.2028 g柠檬酸(0.02mol)和0.9461 g乙二醇(0.015 mol)搅拌得到溶胶。
第二步,将溶胶于80℃加热搅拌直至形成凝胶。
第三步,将凝胶于200℃下烘干制成干凝胶,将所得干凝胶研磨压片后1000℃氩气气氛下预烧24小时,得到中间产物,主要为锶铁氧化物和铼金属。将中间产物继续研磨压片,于1000℃氩气气氛下烧结24小时,冷却至室温后研磨得到Sr2FeReO6纳米晶体。产物为单相多晶材料,属于四方晶系。
该方法制备的Sr2FeReO6纳米材料的XRD谱图如图1所示,可以看到所有衍射峰都为产物的衍射峰(标注了晶面指数(hkl)),没有杂相生成,可见此方法制备产物的纯度极高。Sr2FeReO6纳米晶体的SEM图像如图2所示,多晶颗粒大小均匀,有利于材料的应用。材料的磁滞回线、介电常数和介电损耗图像如图3、4所示,表明了Sr2FeReO6材料在室温下能表现出高饱和磁化强度和相对较低的介电常数与介电损耗,符合电子器件材料的应用要求。
实施例2
本实施例的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,具体步骤如下:
第一步,分别取0.7382 g碳酸锶(0.005 mol),1.0100 g九水合硝酸铁(0.0025mol),0.6055 g七氧化二铼(0.00125 mol),用100 mL浓度为1.5%~3%的稀硝酸溶解原料,加入1.0507 g柠檬酸(0.005 mol)和0.2366 g乙二醇(0.00375 mol)搅拌得到溶胶。
第二步,将溶胶于60℃加热搅拌直至形成凝胶。
第三步,将凝胶150℃烘干制成干凝胶,将所得干凝胶研磨压片后1100℃氩气气氛下预烧24小时,得到中间产物。将中间产物继续研磨压片,于1100℃氩气气氛下烧结24小时,冷却至室温后研磨得到Sr2FeReO6纳米晶体。产物为单相多晶材料,属于四方晶系。
实施例3
本实施例的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,具体步骤如下:
第一步,分别取1.4763 g碳酸锶(0.01 mol),2.0200 g九水合硝酸铁(0.005mol),1.2110 g七氧化二铼(0.0025 mol),用30 mL浓度为1.5%~3%的稀硝酸溶解原料,加入3.6775 g柠檬酸(0.0175 mol)和2.7593 g乙二醇(0.04375 mol)搅拌得到溶胶。
第二步,将溶胶于70℃加热搅拌直至形成凝胶。
第三步,将凝胶300℃烘干制成干凝胶,将所得干凝胶研磨压片后1050℃氩气气氛下预烧24小时,得到中间产物。将中间产物继续研磨压片,于1050℃氩气气氛下烧结24小时,冷却至室温后研磨得到Sr2FeReO6纳米晶体。产物为单相多晶材料,属于四方晶系。
实施例4
本实施例的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,具体步骤如下:
第一步,分别取4.4289 g碳酸锶(0.03 mol),6.0600 g九水合硝酸铁(0.015mol),3.6330 g七氧化二铼(0.0075 mol),用150 mL浓度为1.5%~3%的稀硝酸溶解原料,加入5.4636 g柠檬酸(0.026 mol)和0.3154 g乙二醇(0.005 mol)搅拌得到溶胶。
第二步,将溶胶于80℃加热搅拌直至形成凝胶。
第三步,将凝胶100℃烘干制成干凝胶,将所得干凝胶研磨压片后1000℃氩气气氛下预烧24小时,得到中间产物。将中间产物继续研磨压片,于1000℃氩气气氛下烧结24小时,冷却至室温后研磨得到Sr2FeReO6纳米晶体。产物为单相多晶材料,属于四方晶系。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (6)

1.一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,其特征在于,包括以下步骤:
第一步,将碳酸锶、九水合硝酸铁、七氧化二铼三种原材料溶于稀硝酸中,加入络合剂和分散剂并搅拌形成溶胶;第二步,将溶胶于60~80℃加热搅拌,直至形成凝胶,100~300℃烘干制成干凝胶;
第三步,将干凝胶研磨5~20分钟后,用5~15 MPa的压力压制成片,放入刚玉坩埚中在管式炉中于1000~1100℃氩气气氛下烧结24小时,冷却到室温后取出再次用同样方法研磨压片,1000~1100℃氩气气氛再次烧结24小时,得到双钙钛矿型自旋电子学材料Sr2FeReO6。
2.根据权利要求1所述的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,其特征在于:所述三种原材料总物质的量:络合剂:分散剂:稀硝酸的摩尔比为2~10:2~10:1~5:20~300;锶离子:铁离子:铼离子的摩尔比固定为2:1:1。
3.根据权利要求2所述的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,其特征在于:所述络合剂为柠檬酸,分散剂为乙二醇。
4.根据权利要求3所述的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,其特征在于,所述碳酸锶为0.02 mol,九水合硝酸铁为0.01 mol,所述七氧化二铼为0.005 mol,柠檬酸为0.02 mol,所述乙二醇为0.015 mol。
5.根据权利要求3所述的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,其特征在于,所述碳酸锶为0.005 mol,九水合硝酸铁为0.0025 mol,七氧化二铼为0.00125 mol,柠檬酸为0.005 mol,乙二醇为0.00375 mol。
6.根据权利要求1所述的双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法,其特征在于,所述稀硝酸的浓度为1.5%~3%。
CN202110527120.7A 2021-05-14 2021-05-14 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法 Active CN113264758B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110527120.7A CN113264758B (zh) 2021-05-14 2021-05-14 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110527120.7A CN113264758B (zh) 2021-05-14 2021-05-14 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法

Publications (2)

Publication Number Publication Date
CN113264758A true CN113264758A (zh) 2021-08-17
CN113264758B CN113264758B (zh) 2022-04-15

Family

ID=77230853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110527120.7A Active CN113264758B (zh) 2021-05-14 2021-05-14 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法

Country Status (1)

Country Link
CN (1) CN113264758B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885445A (zh) * 2006-06-16 2006-12-27 中国科学院长春应用化学研究所 双钙钛矿磁性材料Sr2MWO6(M=Fe或Mn)的制备方法
CN104529443A (zh) * 2014-12-01 2015-04-22 河南师范大学 一种双钙钛矿型Sr2FeMoO6纳米材料的制备方法
CN112094104A (zh) * 2020-09-23 2020-12-18 齐齐哈尔大学 一种双钙钛矿型自旋电子学材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885445A (zh) * 2006-06-16 2006-12-27 中国科学院长春应用化学研究所 双钙钛矿磁性材料Sr2MWO6(M=Fe或Mn)的制备方法
CN104529443A (zh) * 2014-12-01 2015-04-22 河南师范大学 一种双钙钛矿型Sr2FeMoO6纳米材料的制备方法
CN112094104A (zh) * 2020-09-23 2020-12-18 齐齐哈尔大学 一种双钙钛矿型自旋电子学材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
彭文彪等: "双钙钛矿化合物Sr2Mn1−xGaxMoO6 (x=0, 0.1, 0.2, 0.3)的晶体结构与磁性", 《粉末冶金材料科学与工程》 *

Also Published As

Publication number Publication date
CN113264758B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
Sivasamy et al. Structure, electronic structure, optical and magnetic studies of double perovskite Gd2MnFeO6 nanoparticles: first principle and experimental studies
Yousaf et al. Preparations, optical, structural, conductive and magnetic evaluations of RE's (Pr, Y, Gd, Ho, Yb) doped spinel nanoferrites
Tahar et al. Magnetic properties of CoFe1. 9RE0. 1O4 nanoparticles (RE= La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol
US9378876B2 (en) Ferromagnetic particles and process for producing the same, and anisotropic magnet, bonded magnet and compacted magnet
Ozkaya et al. Reflux synthesis of Co3O4 nanoparticles and its magnetic characterization
Hui et al. Preparation and characterization of perovskite REFeO3 nanocrystalline powders
US20140085023A1 (en) Process for producing ferromagnetic particles, anisotropic magnet, bonded magnet and compacted magnet
Ma et al. Preparation of Nd–Fe–B by nitrate–citrate auto-combustion followed by the reduction–diffusion process
Trukhanov et al. Microstructure evolution and magnetoresistance of the A-site ordered Ba-doped manganites
Okada et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique
Wu et al. Preparation and magnetic properties of RFeO 3 nanocrystalline powders
Waqas et al. Low temperature sintering study of nanosized Mn–Zn ferrites synthesized by sol–gel auto combustion process
Alyeksyei et al. The regulation of magnetoelectric coupling and magnetic exchange bias effects in La doped Bi5Ti3FeO15 multiferroic films
Tang et al. Combustion assisted preparation of high coercivity Sm–Co hard magnet with stable single-domain size
Liu et al. Improved magnetic properties of self-composite SrFe12O19 powder prepared by Fe3O4 nanoparticles
Mittova et al. Multiferroic nanocrystals and diluted magnetic semiconductors as a base for designing magnetic materials
Tan et al. Synthesis and reaction mechanism of high (BH) max exchange coupled Nd 2 (Fe, Co) 14 B/α-Fe nanoparticles by a novel one-pot microwave technique
Kanade et al. Nanocrystalline Mn–Zn–ferrite by novel oxalato-hydrazinated complex method
Zhong et al. High coercivity Dy substituted Nd-Fe-Co-B magnetic nanoparticles produced by mechanochemical processing
Lu et al. Structural and magnetic properties of CoFe2O4/CoFe2/SiO2 nanocomposites with exchange coupling behavior
Dhak et al. Hydrothermal synthesis, structural analysis and room-temperature ferromagnetism of Y2O3: Co2+ nanorods
Ozkaya et al. Synthesis of Co3O4 nanoparticles by oxidation-reduction method and its magnetic characterization
CN113264758B (zh) 一种双钙钛矿型自旋电子学材料Sr2FeReO6的制备方法
CN110615691B (zh) 一种多孔状m型锶铁氧体块体及其制备方法
Wahsh et al. Synthesis and magneto-optical properties of cobalt ferrite/silica nanoparticles doped with Cd 2+ ions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant