CN112094103A - 一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法 - Google Patents

一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法 Download PDF

Info

Publication number
CN112094103A
CN112094103A CN202010976305.1A CN202010976305A CN112094103A CN 112094103 A CN112094103 A CN 112094103A CN 202010976305 A CN202010976305 A CN 202010976305A CN 112094103 A CN112094103 A CN 112094103A
Authority
CN
China
Prior art keywords
indium
aluminum
oxide
neodymium
planar target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010976305.1A
Other languages
English (en)
Inventor
文宏福
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoguan Oulai Hi Tech Material Co ltd
Original Assignee
Shaoguan Oulai Hi Tech Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoguan Oulai Hi Tech Material Co ltd filed Critical Shaoguan Oulai Hi Tech Material Co ltd
Priority to CN202010976305.1A priority Critical patent/CN112094103A/zh
Publication of CN112094103A publication Critical patent/CN112094103A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,包括如下步骤:S1、将氧化钕、氧化铝、氧化铟和氧化锌粉末混合研磨制浆得到混合浆料,用混合浆料进行喷雾造粒得到造粒粉;S2、将步骤S1所得的造粒粉依次进行模压和等静压成型得到靶材素坯;S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;其中,烧结包括:脱脂、烧成和降温三个阶段;S4、将步骤S3得到的烧结坯经机械加工和邦定得到大尺寸钕铝铟锌氧化物平面靶材;本发明还公开了一种大尺寸钕铝铟锌氧化物平面靶材。本发明采用模压和等静压成型工艺得到靶材素坯,采用脱脂、烧成和降温三个阶段烧结工艺,控制合理的烧结条件,提高了靶材均匀度,提高了大尺寸靶材的成品率。

Description

一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法
技术领域
本发明属于磁控溅射技术领域,尤其涉及一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法。
背景技术
薄膜晶体管(Thin Film Transistor,简称TFT),是一种用途广泛的半导体器件,其最重要的用途是在显示器中用于驱动液晶排列变化、以及驱动OLED像素发光,从而实现图形的显示和快速响应。相对于目前主流的a-Si TFT(非晶硅)、LTPS TFT(低温多晶硅)工艺,近年来,金属氧化物TFT(简称,MOS TFT)具有迁移率高、均匀性好、透明度佳、工艺简单等优点,得到了广泛的研究和快速的发展,并已开始市场应用。目前,研究用于MOS TFT有源层的材料大多为基于氧化铟或氧化锌(In2O3、ZnO或IZO)掺杂的氧化物半导体材料。In2O3、ZnO或IZO都具有较高的载流子浓度,因而具备较强的电荷传输能力,可以有效驱动TFT器件工作,有利于以低温或室温工艺实现高性能的MOS TFT。但是,其过高的载流子浓度也会带来器件稳定性差和关态电流难以抑制的问题。针对此问题,行业中最主流的方式是通过稀土元素的掺杂实现对载流子浓度的抑制,目前应用较为广泛并已实现市场应用的是镓(Ga)元素掺杂工艺,即IGZO TFT。然而,Ga元素的掺入也使载流子的迁移率大幅降低,在仅采用低温或室温工艺的情况下难以制造出更高性能的MOS TFT,制约了在工艺温度有限的柔性显示器件方面的应用和发展。
发明内容
基于背景技术所述技术问题,本发明提供了一种大尺寸钕铝铟锌氧化物平面靶材制备方法,以氧化钕、氧化铝、氧化铟和氧化锌粉末为原料,采用模压和等静压成型工艺得到靶材素坯,采用脱脂、烧成和降温三个阶段烧结工艺,控制合理的烧结条件,提高了靶材均匀度,提高了大尺寸靶材的成品率。
本发明提出的一种大尺寸钕铝铟锌氧化物平面靶材制备方法,包括如下步骤:
S1、将氧化钕、氧化铝、氧化铟和氧化锌混合研磨制浆得到混合浆料,用混合浆料进行喷雾造粒得到造粒粉;
S2、将步骤S1所得的造粒粉依次进行模压和等静压成型得到靶材素坯;
S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;其中,烧结包括:脱脂、烧成和降温三个阶段;
S4、将步骤S3得到的烧结坯经机械加工和邦定得到大尺寸钕铝铟锌氧化物平面靶材。
优选地,步骤S1中,氧化钕、氧化铝、氧化铟和氧化锌的质量比0.1-5:0-5:50-95:5-50。
优选地,步骤S1中,氧化钕、氧化铝、氧化铟和氧化锌的纯度为99.99%及以上。
优选地,步骤S1中,混合浆料的粒径D50为0.1-1μm。
优选地,步骤S1中,造粒粉的粒径D50为5-60μm。
优选地,步骤S2中,模压的压力为20-60MPa,等静压的压力为100-500MPa。
优选地,步骤S2中,模压的时间为30-60s,等静压的时间为120-480s。
优选地,步骤S3中,脱脂阶段为:在空气气氛中,以0.2-0.8℃/min的升温速度升温至500℃,保温6-12小时。
优选地,步骤S3中,烧成阶段为:在氧气气氛中,以0.2-0.8℃/min的升温速度升温至1000℃,保温3-8小时;再以1.5-2.5℃/min的升温速度升温至1450-1550℃,保温5-12小时。
优选地,氧气纯度为99.5%。
优选地,步骤S3中,降温阶段为:在惰性气体气氛中,以1.0-1.5℃/min的降温速度降至500℃;停止通入惰性气体,以1.0-1.5℃/min的降温速度降至室温。
本发明还提供了一种大尺寸钕铝铟锌氧化物平面靶材,采用所述大尺寸钕铝铟锌氧化物平面靶材制备方法制得。
本发明中以氧化钕、氧化铝、氧化铟和氧化锌为原料,先以混合球磨制浆和喷雾造粒获得成分均匀的造粒粉,然后采用模压和等静压成型工艺得到大尺寸、低缺陷的靶材素坯,采用脱脂、烧成和降温三个阶段烧结工艺,控制合理的烧结条件,获得高密度的靶材,并提高了靶材均匀度,提高了大尺寸靶材的成品率。
附图说明
图1为本发明的工艺流程图。
具体实施方式
下面结合具体实例对本发明做出详细说明,应当了解,实施例只用于说明本发明,而不是用于对本发明进行限定,任何在本发明基础上所做的修改、等同替换等均在本发明的保护范围内。
实施例1
一种大尺寸钕铝铟锌氧化物平面靶材制备方法,包括如下步骤:
S1、将18.8g氧化钕、28.2g氧化铝、4183g氧化铟和470g氧化锌混合研磨制浆得到粒径D50为0.56μm的混合浆料,用混合浆料进行喷雾造粒得到粒径D50为21.3μm的造粒粉;其中,氧化钕、氧化铝、氧化铟和氧化锌的纯度均为99.99%,粒径D50分别为0.35μm、0.22μm、0.52μm、0.75μm;
S2、将步骤S1所得的造粒粉在30MPa压力下模压30s,然后在180MPa压力下等静压120s,成型得到靶材素坯;
S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;具体烧结过程包括:
脱脂阶段:在空气气氛中,以0.3℃/min的升温速度升温至500℃,保温6小时;
烧成阶段:在氧气气氛中,以0.5℃/min的升温速度升温至1000℃,保温6小时;再以2.0℃/min的升温速度升温至1480℃,保温8小时;
降温阶段:在惰性气体气氛中,以1.5℃/min的降温速度降至500℃,停止通入惰性气体,以1.5℃/min的降温速度降至室温;
S4、将步骤S3得到的烧结坯经机械加工至目标尺寸,经抛光和清洗后,与靶材背板邦定,获得尺寸为φ300*6mm的钕铝铟锌氧化物平面靶材。
实施例1所得钕铝铟锌氧化物平面靶材的相对密度为99.75%。
实施例2
一种大尺寸钕铝铟锌氧化物平面靶材制备方法,包括如下步骤:
S1、将118g氧化钕、177g氧化铝、26255g氧化铟和2950g氧化锌混合研磨制浆得到粒径D50为0.52μm的混合浆料,用混合浆料进行喷雾造粒得到粒径D50为25.8μm的造粒粉;其中,氧化钕、氧化铝、氧化铟和氧化锌的纯度均为99.996%,粒径D50分别为0.35μm、0.25μm、0.42μm、0.34μm;
S2、将步骤S1所得的造粒粉在45MPa压力下模压60s,然后在450MPa压力下等静压480s,成型得到靶材素坯;
S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;具体烧结过程包括:
脱脂阶段:在空气气氛中,以0.25℃/min的升温速度升温至500℃,保温8小时;
烧成阶段:在氧气气氛中,以0.4℃/min的升温速度升温至1000℃,保温8小时;再1.2℃/min的升温速度升温至1525℃,保温12小时;
降温阶段:在惰性气体气氛中,以1.0℃/min的降温速度降至500℃,停止通入惰性气体,以1.0℃/min的降温速度降至室温;
S4、将步骤S3得到的烧结坯经机械加工得到840*360*10mm尺寸,经抛光和清洗后,与靶材背板邦定,获得大尺寸钕铝铟锌氧化物平面靶材。
实施例2所得钕铝铟锌氧化物平面靶材的相对密度为99.85%,可满足G5.5TFT平面靶材要求。
实施例3
一种大尺寸钕铟锌氧化物平面靶材制备方法,包括如下步骤:
S1、将172g氧化钕、10750氧化铟和6278g氧化锌混合研磨制浆得到粒径D50为0.45μm的混合浆料,用混合浆料进行喷雾造粒得到粒径D50为18.3μm的造粒粉;其中,氧化钕、氧化铟和氧化锌的纯度均为99.998%,粒径D50分别为0.25μm、0.35μm、0.65μm;
S2、将步骤S1所得的造粒粉在40MPa压力下模压30s,然后在350MPa压力下等静压300s,成型得到靶材素坯;
S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;具体烧结过程包括:
脱脂阶段:在空气气氛中,以0.3℃/min的升温速度升温至500℃,保温10小时;
烧成阶段:在氧气气氛中,以0.5℃/min的升温速度升温至1000℃,保温8小时;再1.5℃/min的升温速度升温至1520℃,保温10小时;
降温阶段:在惰性气体气氛中,以1.2℃/min的降温速度降至500℃,停止通入惰性气体,以1.2℃/min的降温速度降至室温;
S4、将步骤S3得到的烧结坯经机械加工得到1002*212*8mm尺寸,经抛光和清洗后,与靶材背板邦定,获得大尺寸钕铟锌氧化物平面靶材。
实施例3所得大尺寸钕铟锌氧化物平面靶材的相对密度99.75%,可满足G8.5 TFT平面靶材要求。
对照例1
一种大尺寸钕铝铟锌氧化物平面靶材制备方法,包括如下步骤:
S1、将118g氧化钕、177g氧化铝、26255g氧化铟和2950g氧化锌混合研磨制浆得到粒径D50为0.35μm的混合浆料,用混合浆料进行喷雾造粒得到粒径D50为25.8μm的造粒粉;其中,氧化钕、氧化铝、氧化铟和氧化锌的纯度均为99.996%,粒径D50分别为0.35μm、0.25μm、0.42μm、0.34μm;
S2、将步骤S1所得的造粒粉在20MPa压力下模压60s,然后在160MPa压力下等静压480s,成型得到靶材素坯;
S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;具体烧结过程包括:
脱脂阶段:在空气气氛中,以0.25℃/min的升温速度升温至500℃,保温6小时;
烧成阶段:在氧气气氛中,以1.0℃/min的升温速度升温至1000℃,保温8小时;再0.8℃/min的升温速度升温至1525℃,保温12小时;
降温阶段:在惰性气体气氛中,以1.0℃/min的降温速度降至500℃,停止通入惰性气体,以1.0℃/min的降温速度降至室温;
S4、将步骤S3得到的烧结坯经机械加工得到840*360*10mm尺寸,并检测靶材指标。
对照例1所得钕铝铟锌氧化物平面靶材的相对密度为98.62%,不能满足TFT平面靶材要求。
对照例2
一种大尺寸钕铝铟锌氧化物平面靶材制备方法,包括如下步骤:
S1、将118g氧化钕、177g氧化铝、26255g氧化铟和2950g氧化锌混合研磨制浆得到粒径D50为0.35μm的混合浆料,用混合浆料进行喷雾造粒得到粒径D50为25.8μm的造粒粉;其中,氧化钕、氧化铝、氧化铟和氧化锌的纯度均为99.996%,粒径D50分别为0.35μm、0.25μm、0.42μm、0.34μm;
S2、将步骤S1所得的造粒粉在45MPa压力下模压60s,然后在450MPa压力下等静压480s,成型得到靶材素坯;
S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;具体烧结过程包括:
脱脂阶段:在空气气氛中,以0.25℃/min的升温速度升温至500℃,保温6小时;
烧成阶段:在氧气气氛中,以1.0℃/min的升温速度升温至1000℃,保温8小时;再0.8℃/min的升温速度升温至1525℃,保温12小时;
降温阶段:停止通气,以1.0℃/min的降温速度降至室温;
S4、将步骤S3得到的烧结坯经机械加工得到840*360*10mm尺寸,并检测靶材指标。
对照例2所得钕铝铟锌氧化物平面靶材的相对密度为98.86%,不能满足TFT平面靶材要求。
本发明具体实施例中,氧气气氛中氧气的纯度为99.5%。
本发明中相对密度的是指阿基米德排水法测算密度与其确定组分的理论密度之比的百分值。某确定组分的理论密度则是根据组分中四种氧化物的质量比以及其各自的理论密度计算得出。具体而言,In2O3的理论密度为7.18g/cm3、ZnO的理论密度为5.61g/cm3、Al2O3的单体密度为3.97g/cm3、Nd2O3的单体密度为7.24g/cm3,假若In2O3所占质量比为MIn2O3、ZnO所占质量比为MZnO、Al2O3所占质量比为MAl2O3、Nd2O3所占质量比为MNd2O3,则该特定组分的理论密度=(7.18*MIn2O3+5.61*MZnO+3.97*MAl2O3+7.24*MNd2O3)/100,单位为g/cm3
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之。

Claims (10)

1.一种大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,包括如下步骤:
S1、将氧化钕、氧化铝、氧化铟和氧化锌混合研磨制浆得到混合浆料,用混合浆料进行喷雾造粒得到造粒粉;
S2、将步骤S1所得的造粒粉依次进行模压和等静压成型得到靶材素坯;
S3、将步骤S2得到的靶材素坯进行烧结得到烧结坯;其中,烧结包括:脱脂、烧成和降温三个阶段;
S4、将步骤S3得到的烧结坯经机械加工和邦定得到大尺寸钕铝铟锌氧化物平面靶材。
2.根据权利要求1所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,步骤S1中,氧化钕、氧化铝、氧化铟和氧化锌的质量比0.1-5:0-5:50-95:5-50。
3.根据权利要求1或2所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,步骤S1中,混合浆料的粒径D50为0.1-1μm。
4.根据权利要求1-3中任一项所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,优选地,步骤S1中,造粒粉的粒径D50为5-60μm。
5.根据权利要求1-4中任一项所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,步骤S2中,模压的压力为25-60MPa,等静压的压力为180-450MPa。
6.根据权利要求1-5中任一项所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,步骤S2中,模压的时间为30-60s,等静压的时间为120-480s。
7.根据权利要求1-6中任一项所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,脱脂阶段为:在空气气氛中,以0.2-0.8℃/min的升温速度升温至500℃,保温6-12小时。
8.根据权利要求1-7中任一项所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,烧成阶段为:在氧气气氛中,以0.2-0.8℃/min的升温速度升温至1000℃,保温3-8小时;再以1.5-2.5℃/min的升温速度升温至1450-1550℃,保温5-12小时。
9.根据权利要求1-8中任一项所述的大尺寸钕铝铟锌氧化物平面靶材制备方法,其特征在于,降温阶段为:在惰性气体气氛中,以1.0-1.5℃/min的降温速度降至500℃;停止通入惰性气体,以1.0-1.5℃/min的降温速度降至室温。
10.一种大尺寸钕铝铟锌氧化物平面靶材,其特征在于,采用权利要求1-9中任一项所述的大尺寸钕铝铟锌氧化物平面靶材制备方法制得。
CN202010976305.1A 2020-09-16 2020-09-16 一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法 Pending CN112094103A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010976305.1A CN112094103A (zh) 2020-09-16 2020-09-16 一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010976305.1A CN112094103A (zh) 2020-09-16 2020-09-16 一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法

Publications (1)

Publication Number Publication Date
CN112094103A true CN112094103A (zh) 2020-12-18

Family

ID=73759974

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010976305.1A Pending CN112094103A (zh) 2020-09-16 2020-09-16 一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法

Country Status (1)

Country Link
CN (1) CN112094103A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723863A (zh) * 2021-02-01 2021-04-30 韶关市欧莱高纯材料技术有限公司 一种高世代tft级细晶粒ito靶材的制造方法
CN113735567A (zh) * 2021-09-15 2021-12-03 先导薄膜材料(广东)有限公司 一种氧化物平面靶及其制备方法
CN115304359A (zh) * 2022-05-27 2022-11-08 先导薄膜材料(广东)有限公司 一种无添加剂高迁移率氧化物靶材及其制备方法
CN116444263A (zh) * 2023-03-15 2023-07-18 先导薄膜材料(安徽)有限公司 一种氧化铟锡靶材的烧结工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139862A1 (en) * 2006-06-02 2009-06-04 Bekaert Advanced Coatings Rotatable sputter target
CN102110718A (zh) * 2010-10-20 2011-06-29 华南理工大学 用于薄膜晶体管的氧化物半导体薄膜及其制备方法
CN102134702A (zh) * 2010-10-22 2011-07-27 迟伟光 一种以喷雾干燥工艺制备azo粉末及平面和旋转靶材的方法
US20120152728A1 (en) * 2010-12-17 2012-06-21 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, and method for manufacturing semiconductor device
CN105906338A (zh) * 2016-04-19 2016-08-31 北京冶科纳米科技有限公司 一种高密度igzo旋转靶材的制造方法
CN106631049A (zh) * 2016-09-28 2017-05-10 广西晶联光电材料有限责任公司 一种常压烧结用于触摸屏和太阳能电池领域的ito旋转靶材的方法
CN108623298A (zh) * 2018-07-04 2018-10-09 郑州大学 一种高密度氧化铟锡管状靶材的脱脂烧结一体化制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139862A1 (en) * 2006-06-02 2009-06-04 Bekaert Advanced Coatings Rotatable sputter target
CN102110718A (zh) * 2010-10-20 2011-06-29 华南理工大学 用于薄膜晶体管的氧化物半导体薄膜及其制备方法
CN102134702A (zh) * 2010-10-22 2011-07-27 迟伟光 一种以喷雾干燥工艺制备azo粉末及平面和旋转靶材的方法
US20120152728A1 (en) * 2010-12-17 2012-06-21 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, and method for manufacturing semiconductor device
CN105906338A (zh) * 2016-04-19 2016-08-31 北京冶科纳米科技有限公司 一种高密度igzo旋转靶材的制造方法
CN106631049A (zh) * 2016-09-28 2017-05-10 广西晶联光电材料有限责任公司 一种常压烧结用于触摸屏和太阳能电池领域的ito旋转靶材的方法
CN108623298A (zh) * 2018-07-04 2018-10-09 郑州大学 一种高密度氧化铟锡管状靶材的脱脂烧结一体化制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋二龙等: "热压烧结靶材制备氧化铟锌薄膜晶体管", 《物理化学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723863A (zh) * 2021-02-01 2021-04-30 韶关市欧莱高纯材料技术有限公司 一种高世代tft级细晶粒ito靶材的制造方法
CN113735567A (zh) * 2021-09-15 2021-12-03 先导薄膜材料(广东)有限公司 一种氧化物平面靶及其制备方法
CN115304359A (zh) * 2022-05-27 2022-11-08 先导薄膜材料(广东)有限公司 一种无添加剂高迁移率氧化物靶材及其制备方法
CN115304359B (zh) * 2022-05-27 2023-04-07 先导薄膜材料(广东)有限公司 一种无添加剂高迁移率氧化物靶材及其制备方法
CN116444263A (zh) * 2023-03-15 2023-07-18 先导薄膜材料(安徽)有限公司 一种氧化铟锡靶材的烧结工艺
CN116444263B (zh) * 2023-03-15 2024-02-27 先导薄膜材料(安徽)有限公司 一种氧化铟锡靶材的烧结工艺

Similar Documents

Publication Publication Date Title
CN112094103A (zh) 一种大尺寸钕铝铟锌氧化物平面靶材及其制备方法
TWI410509B (zh) A-IGZO oxide film
JP6314198B2 (ja) 複合酸化物焼結体及びそれからなるスパッタリングターゲット
US8795554B2 (en) Sputtering target for oxide semiconductor, comprising InGaO3(ZnO) crystal phase and process for producing the sputtering target
JP5096250B2 (ja) 酸化物焼結体の製造方法、酸化物焼結体、スパッタリングタ−ゲット、酸化物薄膜、薄膜トランジスタの製造方法及び半導体装置
JP5288142B2 (ja) 酸化物薄膜用スパッタリングターゲットおよびその製造法
JP2010045263A (ja) 酸化物半導体、スパッタリングターゲット、及び薄膜トランジスタ
JPWO2009157535A6 (ja) InGaO3(ZnO)結晶相からなる酸化物半導体用スパッタリングターゲット及びその製造方法
WO2012118150A1 (ja) 酸化物焼結体およびスパッタリングターゲット
CN112079626A (zh) 一种铝钕铟锌氧化物旋转靶及其制备方法
JP2013080929A (ja) 酸化物半導体電界効果型トランジスタ及びその製造方法
JP5750063B2 (ja) 酸化物焼結体およびスパッタリングターゲット
JP2010070409A (ja) 酸化物焼結体の製造方法
TW201406981A (zh) 濺鍍靶材
JP2012114367A (ja) 錫を含む非晶質酸化物薄膜、及び薄膜トランジスタ
TW201833062A (zh) 氧化物半導體膜、薄膜電晶體、氧化物燒結體及濺鍍靶
JP2014241409A (ja) 半導体装置、半導体装置の作製方法、及び半導体装置の製造装置
CN105906338A (zh) 一种高密度igzo旋转靶材的制造方法
CN112299823A (zh) 一种氧化物靶材及其制备方法
TW201841865A (zh) 石榴石化合物、氧化物燒結體、氧化物半導體薄膜、薄膜電晶體、電子機器、及影像感測器
TW201706230A (zh) 濺鍍靶及氧化物半導體膜以及其製備方法
CN112652575B (zh) 一种薄膜晶体管阵列基板的制造方法
CN104876587A (zh) 一种替代蓝宝石用防紫晕透明陶瓷面板的制备方法
CN108336135B (zh) 一种钕铟锌氧化物薄膜晶体管及其制备方法
US9670577B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using sputtering target

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201218

RJ01 Rejection of invention patent application after publication