CN112018999B - 电源系统 - Google Patents

电源系统 Download PDF

Info

Publication number
CN112018999B
CN112018999B CN202010455204.XA CN202010455204A CN112018999B CN 112018999 B CN112018999 B CN 112018999B CN 202010455204 A CN202010455204 A CN 202010455204A CN 112018999 B CN112018999 B CN 112018999B
Authority
CN
China
Prior art keywords
value
voltage
circuit
duty ratio
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010455204.XA
Other languages
English (en)
Other versions
CN112018999A (zh
Inventor
大岩久也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of CN112018999A publication Critical patent/CN112018999A/zh
Application granted granted Critical
Publication of CN112018999B publication Critical patent/CN112018999B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/529Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本发明所要解决的问题在于提供一种电源系统,所述电源系统可以抑制通过电流的紊乱,并启动电压转换器。为了解决上述问题,提供一种电源系统,具备:第一电源电路,其具有第一电池;第二电源电路,其具有第二电池;电压转换器,其在两电路之间转换电压;电压传感器,其获取第一电路电压值V1和第二电路电压值V2;电流传感器,其获取电压转换器的通过电流值Iact;及,通过电力控制部,其利用PWM控制对电压转换器进行操作。通过电力控制部,在电压转换器启动时,在基于第一及第二电路电压值V1,V2所规定的基本占空比下,开始PWM控制后,当通过电流值Iact与启动时目标值Itrg的电流偏差的值超出容许范围时,在将基于电流偏差变化率所算出的校正占空比与基本占空比相加而获得的控制占空比下,进行PWM控制。

Description

电源系统
技术领域
本发明涉及一种电源系统。更详细来说,涉及一种电源系统,具备:第一电路,其具有第一电源;第二电路,其具有第二电源;及,电压转换器,其在这些第一及第二电路之间转换电压。
背景技术
近年来,作为动力产生源具备驱动电机的电动运输设备、及作为动力产生源具备驱动电机和内燃机的混合动力车辆等电动车辆的开发非常活跃。在这种电动车辆上,还安装有用于向驱动电机提供电能的蓄电器(电池和电容器等)及燃料电池等电源装置。另外,近年来,还开发了一种电动车辆,在电动车辆上安装有不同特性的多个电源装置。
在专利文献1中,示出一种电动车辆的电源系统,具备:电源电路,其将由驱动电机或逆变器等构成的驱动部与第一蓄电器连接起来;第二蓄电器,其经由电压转换器而与此电源电路连接;及,控制装置,其切换控制此电压转换器。控制装置,根据驾驶员的要求,相对于通过电压转换器的电流(即通过电流)来设定目标电流,并利用PWM(pulse widthmodulation,脉宽调制)控制来操作电压转换器的开关组件以使通过电流成为目标电流,且将由第一蓄电器输出的电力与由第二蓄电器输出的电力合成,并供给至驱动电机。
另外,在像专利文献1的电源系统那样,利用电压转换器来连接各自设置有蓄电器的两个电路的情况下,当电压转换器启动时,会发生因两个电路的电位差而导致从其中一个电路向另一个电路发生浪涌电流。因此,这种具备两个蓄电器的电源系统大多具备过电流保护功能(例如,参照专利文献2),所述过电流保护功能是在电压转换器启动时,在产生超过规定阈值的浪涌电流的情况下,停止电压转换器的PWM控制,保护设置于电路上的电气设备。
[先行技术文献]
(专利文献)
专利文献1:日本特开2017-169311号公报
专利文献2:日本特开2018-57244号公报。
发明内容
[发明所要解决的问题]
另外,电压转换器启动时的占空比,是基于设置在两电路上的电压传感器的检测值而定。但是,这些电压传感器存在误差,由此,因为这些误差,会导致在电压转换器启动时出现通过电流紊乱的情况。这种误差引起的通过电流的紊乱的大小会导致上述过电流保护功能不起作用,但电压转换器的电抗器中流过大电流而产生噪音,或者在蓄电器流过大电流而导致发生能量损失,商品性可能会降低,因此,优选为尽可能进行抑制。
本发明的目的在于提供一种电源系统,利用电压转换器将设置有第一电源的第一电路与设置有第二电源的第二电路连接起来,可以抑制通过电流的紊乱,并启动电压转换器。
[解决问题的技术手段]
(1)本发明的电源系统(例如,后述的电源系统1),具备:第一电路(例如,后述的第一电源电路2),其具有第一电源(例如,后述的第一电池B1);第二电路(例如,后述的第二电源电路3),其具有第二电源(例如,后述的第二电池B2);电压转换器(例如,后述的电压转换器5),其在前述第一电路与前述第二电路之间转换电压;电力转换器(例如,后述的电力转换器43),其在前述第一电路与驱动电机之间转换电力;第一电路电压获取手段(例如,后述的第一电路电压传感器24),其获取前述第一电路的电压值也就是第一电路电压值;第二电路电压获取手段(例如,后述的第二电路电压传感器34),其获取前述第二电路的电压值也就是第二电路电压值;通过电流获取手段(例如,后述的电流传感器33),其获取前述电压转换器的电流值也就是通过电流值;及,控制手段(例如,后述的通过电力控制部73a,76a),其利用PWM(pulse width modulation,脉宽调制)控制对前述电压转换器进行操作;所述电源系统的特征在于:前述控制手段,在前述电压转换器启动时,以前述通过电流值成为规定目标值的方式,在基于前述第一及第二电路电压值所规定的基本占空比下,开始PWM控制后,当前述通过电流值与前述目标值的电流偏差的值超出容许范围时,在将基于前述电流偏差的值所算出的校正占空比与前述基本占空比相加而获得的占空比下,进行PWM控制。
(2)此时,优选为,前述控制手段,在执行PWM控制的过程中,当前述通过电流值超出包括前述容许范围的保护范围时,结束执行中的PWM控制。
(3)此时,优选为,前述控制手段,基于在前述基本占空比下从开始前述PWM控制到前述电流偏差的值超出前述容许范围为止的期间的前述电流偏差的值的变化率,计算出前述校正占空比。
(4)此时,优选为,前述电源系统进一步具备模拟手段,所述模拟手段基于在前述基本占空比下从开始PWM控制到前述电流偏差的值超出前述容许范围为止的期间的前述电流偏差的值的时间序列数据,进行模拟,由此,估算前述第一电路电压获取手段及前述第二电路电压获取手段的误差,并且算出最佳校正占空比,所述最佳校正占空比是在该误差下开始PWM控制时,相对于将前述通过电流值与前述目标值的偏差最小化的前述校正占空比的最佳值;并且,前述控制手段,当利用前述模拟手段算出前述第一电路电压获取手段及前述第二电路电压获取手段的误差后启动前述电压转换器时,在将前述基本占空比与前述最佳校正占空比相加而获得的占空比下,开始PWM控制。
(发明的效果)
(1)本发明的电源系统具备:第一电路,其具有第一电源;第二电路,其具有第二电源;电压转换器,其在这些电路之间转换电压;及,控制手段,其利用PWM控制对此电压转换器进行操作。控制手段,在电压转换器启动时,基于利用第一及第二电路电压获取手段获取的第一及第二电路电压值,以通过电流值成为目标值的方式设定基本占空比,在此基本占空比下,开始PWM控制。此时,如果第一及第二电路电压获取手段中存在误差,通过电流值可能会偏离目标值,通过电流值与目标值的电流偏差的值会超出容许范围。因此,控制手段,从在基本占空比下从开始PWM控制到电流偏差的值超出容许范围时,基于电流偏差的值算出校正占空比,并在将此校正占空比与基本占空比相加而获得的占空比下,进行PWM控制。由此,根据本发明,可以抑制通过电流大大超出容许范围而发生紊乱,并启动电压转换器。
(2)在本发明中,控制手段,在PWM控制的执行过程中,当通过电流值超出包括容许范围的保护范围时,也就是发生过电流时,结束执行中的PWM控制。由此,在电压转换器的PWM控制的期间,由于某种理由而有超过保护范围的过电流流过时,可以保护设置于第一电路或第二电路上的各种电气设备。
(3)在本发明中,控制手段,基于在基本占空比下从开始PWM控制到电流偏差的值超出容许范围为止的期间的电流偏差的值的变化率,计算出校正占空比。第一电路电压获取手段和第二电路电压获取手段的误差的大小,与刚开始PWM控制后的电流偏差的值的变化率相关。因此本发明中,基于电流偏差的值的变化率,可以算出合适的校正占空比,以使通过电流值接近目标值。另外,如上所述,容许范围被设定为在过电流保护所需的保护范围中,因此,在基本占空比下从开始PWM控制到电流偏差的值超出容许范围为止耗费的时间非常短。对此,为了算出电流偏差的值的变化率,有以下三个数据即可:从开始PWM控制到判定电流偏差的值超出容许范围为止耗费的时间、PWM控制开始时的电流偏差的值、及判定电流偏差的值超出容许范围时的电流偏差的值。由此,根据本发明,可以用简易的演算来计算出校正占空比,因此,可以在电流偏差的值超出容许范围后,还继续进行PWM控制。
(4)在本发明中,模拟手段,基于电压转换器启动时的电流偏差的值的时间序列数据,进行模拟,由此估算第一及第二电路电压获取手段的误差,并算出在此误差下开始PWM控制时将通过电流值与目标值的偏差最小化的最佳校正占空比。另外,控制手段,利用这种模拟手段估算第一电路电压获取手段及第二电路电压获取手段的误差后的电压转换器启动时,在将基本占空比和最佳校正占空比相加而获得的占空比下,开始PWM控制。由此,根据本发明,利用模拟手段估算第一及第二电路电压获取手段的误差后,在刚开始电压转换器的启动后,可以在考虑了第一及第二电路电压获取手段的误差而得的最佳占空比下,进行PWM控制,因此,可以进一步抑制通过电流的紊乱。
附图说明
图1是示出搭载本发明的第一实施方式的电源系统的车辆的构造的图。
图2是对第一电池及第二电池的使用电压范围进行比较的图。
图3是示出电压转换器的电路构造的一例的图。
图4将利用以往的启动处理来启动电压转换器时的电流、电压、及控制占空比的时间变化,以模拟再现(误差几乎为0)。
图5将利用以往的启动处理来启动电压转换器时的电流、电压、及控制占空比的时间变化,以模拟再现(仅第二电路电压传感器有偏移误差)。
图6将利用以往的启动处理来启动电压转换器时的电流、电压、及控制占空比的时间变化,以模拟再现(第一电路电压传感器及第二电路电压传感器均有偏移误差)。
图7是示出电压转换器的启动处理的具体步骤的流程图。
图8是将利用图7的启动处理来启动电压转换器时的电流、电压、及控制占空比的时间变化,以模拟再现(仅第二电路电压传感器有偏移误差)。
图9是将利用图7的启动处理来启动电压转换器时的电流、电压、及控制占空比的时间变化,以模拟再现(第一电路电压传感器及第二电路电压传感器均有偏移误差)。
图10是示出搭载本发明的第二实施方式的电源系统的车辆的构造的图。
图11是示出电压转换器的启动处理的具体步骤的流程图。
具体实施方式
[第一实施方式]
以下,参照图式对本发明的第一实施方式进行说明。
图1是示出搭载本实施方式的电源系统1的电动车辆V(以下,简称为“车辆”)的构造的图。
车辆V具备:驱动轮W;驱动电机M,其连结于此驱动轮W;及,电源系统1,其在此驱动电机M与后述的第一电池B1和第二电池B2之间进行电力的传输。另外,在本实施方式中,以车辆V主要以驱动电机M产生的动力进行加速减速为例进行了说明,但本发明并不限于此。车辆V也可以是所谓的混合动力车辆,作为动力产生源搭载有驱动电机M与发动机。另外,在本实施方式中,以电源系统1利用将存储在两个电池B1,B2的电力提供至驱动电机M来行驶为例进行说明,但本发明并不限于此。电源系统1具备的两个电池B1,B2中的任一个也可以是燃料电池。
驱动电机M经由未图示的动力传递机构而连结于驱动轮W。由电源系统1向驱动电机M提供三相交流电力而使驱动电机M产生的扭矩,经由未图示的动力传递机构传递给驱动轮W,使驱动轮W旋转,从而使车辆V行驶。另外,驱动电机M在车辆V减速时发挥发电机的作用,产生再生电力,并且对驱动轮W施加与此再生电力的大小对应的再生刹车扭矩。由驱动电机M产生的再生电力,被适当地充电到电源系统1的电池B1,B2中。
电源系统1具备:第一电源电路2,其具有第一电池B1;第二电源电路3,其具有第二电池B2;电压转换器5,其连接这些第一电源电路2和第二电源电路3;负荷电路4,其具有包含驱动电机M的各种电负载;及,电子控制单元组7,其控制这些电路2,3,4及电压转换器5。电子控制单元组7分别具备:计算机也就是管理ECU 71、电机ECU 72、转换器ECU 73、第一电池ECU 74、及第二电池ECU 75。
第一电池B1是一种二次电池,既能够实现将化学能转化成电能的放电,又能够实现将电能转化成化学能的充电。以下,对使用所谓的锂离子电池作为此第一电池B1的情况进行说明,其中所述锂离子电池是锂离子在电极间移动来进行充放电,但本发明并不限于此。
在第一电池B1上设置有第一电池传感器单元81,所述第一电池传感器单元81用于估算第一电池B1的内部状态。第一电池传感器单元81由多个传感器构成,这些传感器在第一电池ECU 74中检测用于获取第一电池B1的充电率(以百分率表示电池的蓄电量)及温度等所需的物理量,并将与检测值对应的信号发送到第一电池ECU 74。更具体来说,第一电池传感器单元81由以下传感器构成:检测第一电池B1的端子电压的电压传感器、检测流经第一电池B1的电流的电流传感器、及检测第一电池B1的温度的温度传感器等。
第二电池B2是一种二次电池,既能够实现将化学能转化成电能的,又能够实现将将电能转化成化学能的充电。以下,对使用所谓锂离子电池作为此第二电池B2的情况进行说明,其中所述锂离子电池是锂离子在电极间移动来进行充放电,但本发明并不限于此。第二电池B2也可以使用例如电容器。
在第二电池B2上设置有第二电池传感器单元82,所述第二电池传感器单元82用于估算第二电池B2的内部状态。第二电池传感器单元82由多个传感器构成,所述多个传感器在第二电池ECU 75中检测用于获取第二电池B2的充电率和温度等所需的物理量,并将与检测值对应的信号发送到第二电池ECU 75。更具体来说,第二电池传感器单元82由以下传感器构成:检测第二电池B2的端子电压的电压传感器、检测流经第二电池B2的电流的电流传感器、及检测第二电池B2的温度的温度传感器等。
此处,对第一电池B1的特性与第二电池B2的特性进行比较。
第一电池B1比第二电池B2的输出重量密度低且能量重量密度高。另外,第一电池B1比第二电池B2的容量大。也就是,第一电池B1在能量重量密度方面比第二电池B2优秀。此外,能量重量密度是指每单位重量的电力量[Wh/kg],输出重量密度是指每单位重量的电力[W/kg]。因此,能量重量密度优秀的第一电池B1是以高容量为主要目标的电容性蓄电器,输出重量密度优异的第二电池B2是以高输出为主要目标的输出型蓄电器。因此,在电源系统1中,使用第一电池B1作为主电源,使用第二电池B2作为辅助此第一电池B1的副电源。
图2是对电源系统1中的第一电池B1及第二电池B2的使用电压范围进行比较的图。在图2中,左侧是示出第一电池B1的使用电压范围的图,右侧是示出第二电池B2的使用电压范围的图。在图2中,横轴表示流经电池的电流,纵轴表示电池的电压。
如图2所示,电池B1,B2的静态电压(也就是,电池中没有电流流动状态下的电压,也称为开路电压)具有充电率越高电压越高的特性。因此,电池B1,B2的相对于静态电压的使用电压范围的上限是充电率为最大值(例如,100%)时的各自的静态电压,下限是充电率为最小值(例如,0%)时的各自的静态电压。如图2所示,第二电池B2的相对于静态电压的使用电压范围的上限,比对于第一电池B1的相对于静态电压的使用电压范围的上限低。因此,在车辆V的行驶过程中,第二电池B2的静态电压基本上维持低于第一电池B1的静态电压。
如图2所示,电池B1,B2的闭路电压(也就是,电池中有电流流动的状态下的电压)也具有充电率越高电压越高的特性。另外,电池B1,B2中存在内阻,其闭路电压具有以下特性:放电电流越大,从静态电压下降;而充电电流越大,从静态电压升高。因此,电池B1,B2的相对于闭路电压的使用电压范围的上限,比相对于各自的静态电压的使用电压范围的上限更高,而下限比相对于各自的静态电压的使用电压范围的下限更低。换句话说,电池B1,B2的相对于闭路电压的使用电压范围,包含相对于各自的静态电压的使用电压范围。如图2所示,第一电池B1的相对于闭路电压的使用电压范围,与第二电池B2的相对于闭路电压的使用电压范围重复。
另外,如果充电电流过大,电池B1,B2的劣化会加剧,因此,这些电池B1,B2的相对于闭路电压的使用电压范围的上限,设定为使这些电池B1,B2不会劣化。以下,将这些电池B1,B2的相对于闭路电压的使用范围的上限也称为劣化上限电压。
另外,如果放电电流过大,由于会加剧电池B1,B2的劣化,因此,这些电池B1,B2的相对于闭路电压的使用电压范围的下限,设定为使这些电池B1,B2不会劣化。以下,将这些电池B1,B2的相对于闭路电压的使用电压范围的下限也称为劣化下限电压。
返回至图1,第一电源电路2具备:第一电池B1;第一电力线21p,21n,其连接此第一电池B1的正负两极与电压转换器5的高压侧的正极端子及负极端子;正极接触器22p及负极接触器22n,其设置在这些第一电力线21p,21n上;及,第一电路电压传感器24,其设置在第一电力线21p,21n上。
接触器22p,22n是常开型,在没有输入来自外部的指令信号的状态下断开,切断第一电池B1的两电极和第一电力线21p,21n的导通,而在输入指令信号的状态下闭合,将第一电池B1与第一电力线21p,21n连接。这些接触器22p,22n根据从第一电池ECU 74发送的指令信号进行开闭。此外,正极接触器22p是预充电接触器,具有预充电电阻,所述预充电电阻用于对突然流入设置在第一电源电路2或负荷电路4等上的多个平滑电容器的电流进行缓和。
第一电路电压传感器24,将与第一电源电路2中的电压,也就是第一电力线21p,21n之间的电位差的值相应的的检测信号,发送到转换器ECU 73。另外,在本实施方式中,将第一电源电路2中的电压也称为第一电路电压。另外,将由第一电路电压传感器24检测的电压值也称为第一电路电压值V1。因此,本实施方式中,第一电路电压获取手段是由第一电路电压传感器24构成。
第二电源电路3具备:第二电池B2;第二电力线31p,31n,其连接此第二电池B2的正负两极与电压转换器5的低压侧的正极端子及负极端子;正极接触器32p及负极接触器32n,其设置在这些第二电力线31p,31n上;及,电流传感器33,其设置在第二电力线31p上;及,第二电路电压传感器34,其设置在第二电力线31p,31n上。
接触器32p,32n是常开型,在没有输入来自外部的指令信号的状态下断开,切断第二电池B2的两电极与第二电力线31p,31n的导通,在输入指令信号的状态下闭合,将第二电池B2与第二电力线31p,31n连接。这些接触器32p,32n根据第二电池ECU 75发送的指令信号进行开闭。此外,正极接触器32p是预充电接触器,具有预充电电阻,所述预充电电阻用于对突然流入设置在第一电源电路2或负荷电路4等上多个平滑电容器的电流进行缓和。
电流传感器33,将与流经第二电力线31p的电流,也就是流经电压转换器5的电流即通过电流的值相应的检测信号,发送到转换器ECU 73。此外,在本实施方式中,通过电流的方向,是以从第二电源电路3侧到第一电源电路2侧为正,从第一电源电路2侧到第二电源电路3侧为负。因此,在本实施方式中,通过电流获取手段是由电流传感器33构成。
第二电路电压传感器34,将与第二电源电路3中的电压,也就是第二电力线31p,31n之间的电位差的值相应的检测信号,发送到转换器ECU 73。此外,在本实施方式中,将第二电源电路3中的电压也称为第二电路电压。此外,将由第二电路电压传感器34检测的电压值也称为第二电路电压值V2。因此,在本实施方式中,第二电路电压获取手段是由第二电路电压传感器34构成。
负荷电路4具备:车辆辅机42;电力转换器43,其连接有驱动电机M;及,负荷电力线41p,41n,其将这些车辆辅机42和电力转换器43与第一电源电路2连接起来。
车辆辅机42由电池加热器、空压机、DCDC转换器、及车载充电器等多个电负载构成。车辆辅机42利用负荷电力线41p,41n连接于第一电源电路2的第一电力线21p,21n,耗费第一电力线21p,21n中的电力而工作。与构成车辆辅机42的各个电负载的工作状态相关的信息,被发送到例如管理ECU 71。
电力转换器43利用负荷电力线41p,41n,与车辆辅机42并列地连接在第一电力线21p,21n上。电力转换器43,在第一电力线21p,21n和驱动电机M之间转换电力。电力转换器43是例如基于脉宽调制的PWM逆变器,它具备将多个开关组件(例如,IGBT)桥接而构成的电桥电路,具备转换直流电力与交流电力的功能。电力转换器43,在其直流输入输出侧连接于第一电力线21p,21n,在其交流入输出侧连接于驱动电机M的U相、V相、W相的各线圈。电力转换器43,按照从电机ECU 72的未图示的栅极驱动电路以预定的时刻生成的栅极驱动信号,对各相的开关组件进行接通/断开驱动,从而,将第一电力线21p,21n中的直流电力转换成三相交流电力并提供至驱动电机M,或者将由驱动电机M提供的三相交流电力转换成直流电力,并提供至第一电力线21p,21n。
电压转换器5,将第一电源电路2与第二电源电路3连接起来,在这些两个电路2,3之间转换电压。此电压转换器5使用已知的升压电路。
图3是示出电压转换器5的电路构造的一例的图。电压转换器5,将连接有第一电池B1的第一电力线21p,21n、与连接有第二电池B2的第二电力线31p,31n连接,并在这些第一电力线21p,21n与第二电力线31p,31n之间转换电压。电压转换器5是一种DCDC转换器,由电抗器L、第一平滑电容器C1、第二平滑电容器C2、高臂组件53H、低臂组件53L、负母线55、低压侧端子56p,56n、及高压侧端子57p,57n组合构成。
低压侧端子56p,56n连接于第二电力线31p,31n,高压侧端子57p,57n连接于第一电力线21p,21n。负母线55是将低压侧端子56n与高压侧端子57n连接起来的配线。
电抗器L,其一端侧连接于低压侧端子56p,另一端侧连接于高臂组件53H与低臂组件53L的连接节点53。第一平滑电容器C1,其一端侧连接于低压侧端子56p,另一端侧连接于低压侧端子56n。第二平滑电容器C2,其一端侧连接于高压侧端子57p,另一端侧连接于高压侧端子57n。
高臂组件53H和低臂组件53L分别具备:IGBT或MOSFET等已知的电源开关组件;及,续流二极管,其连接于此电源开关组件。这些高臂组件53H和低臂组件53L按顺序串联在高压侧端子57p与负母线55之间。
高臂组件53H的电源开关组件的集电极连接于高压侧端子57p,它的发射极连接于低臂组件53L的集电极。低臂组件53L的电源开关组件的发射极连接于负母线55。设置在高臂组件53H上的续流二极管的正向,是从电抗器L朝向高压侧端子57p的方向。另外,设置在低臂组件53L上的续流二极管的正向,是从负母线55朝向电抗器L的方向。
电压转换器5,根据由转换器ECU 73的未图示的栅极驱动电路在预定的时刻生成的栅极驱动信号,将高臂组件53H与低臂组件53L交替地接通/断开驱动,从而,在第一电力线21p,21n与第二电力线31p,31n之间转换电压。
参照图2进行说明,在车辆V的行驶过程中,第二电池B2的静态电压,基本上维持在比第一电池B1的静态电压更低。因此,第一电力线21p,21n的电压,基本上比第二电力线31p,31n的电压更高。因此,当使用由第一电池B1输出的电力与由第二电池B2输出的电力来对驱动电机M进行驱动时,转换器ECU 73对电压转换器5进行操作,以便在电压转换器5中发挥升压功能。升压功能是指对连接有低压侧端子56p,56n的第二电力线31p,31n中的电力进行升压,并向连接有高压侧端子57p,57n的第一电力线21p,21n输出的功能,由此,从第二电力线31p,31n侧向第一电力线21p,21n侧流通正向的通过电流。另外,在抑制第二电池B2的放电,仅使用由第一电池B1输出的电力来对驱动电机M进行驱动时,转换器ECU 73关闭电压转换器5,使得没有电流从第一电力线21p,21n流到第二电力线31p,31n。但是,此时,当第二电力线31p,31n的电压比第一电力线21p,21n的电压更高时,第二电池B2转为放电,有时会经由高臂组件53H的续流二极管,从第二电力线31p,31n向第一电力线21p,21n流通正向的通过电流。
另外,利用在减速时从驱动电机M向第一电力线21p,21n输出的再生电力,对第一电池B1和第二电池B2充电时,转换器ECU 73对电压转换器5进行操作,以便在电压转换器5中发挥降压功能。降压功能是指对连接有高压侧端子57p,57n的第一电力线21p,21n中的电力进行降压,并向连接有低压侧端子56p,56n的第二电力线31p,31n输出的功能,由此,从第一电力线21p,21n侧向第二电力线31p,31n侧流通负向通过电流。
返回至图1,第一电池ECU 74,是主要负责第一电池B1的状态监测及第一电源电路2的接触器22p,22n的开闭操作的计算机。第一电池ECU 74,基于使用从第一电池传感器单元81发送的检测值的已知算法,计算出表示第一电池B1的内部状态的各种参数,更具体来说,计算出第一电池B1的温度、第一电池B1的内阻、第一电池B1的静态电压、第一电池B1的闭路电压、及第一电池B1的充电率等。表示在第一电池ECU 74中获取的第一电池B1的内部状态的参数的相关信息,被发送到例如管理ECU 71。
第二电池ECU 75,是主要负责第二电池B2的状态监测及第二电源电路3的接触器32p,32n的开闭操作计算机。第二电池ECU 75,基于使用从第二电池传感器单元82发送的检测值的已知算法,计算出表示第二电池B2的内部状态的各种参数,更具体来说,计算出第二电池B2的温度、第二电池B2的内阻、第二电池B2的静态电压、第二电池B2的闭路电压、及第二电池B2的充电率等。表示在第二电池ECU 75中获取的第二电池B2的内部状态的参数的相关信息,被发送到例如管理ECU 71。
管理ECU 71,是主要管理电源系统1整体中的电力的流动的计算机。管理ECU 71按以下顺序,生成与驱动电机M产生的扭矩的指令对应的扭矩指令信号、及与通过电压转换器5的电力的指令相对应的通过电力指令信号。
管理ECU 71,基于驾驶员对油门踏板及刹车踏板等踏板类P的操作量,来计算出驾驶员所需的驱动扭矩,并将与该所需驱动扭矩相应的扭矩指令信号发送到电机ECU 72。
管理ECU 71,将车辆辅机42中所需的电力也就是要求辅机电力与驱动电机M中所需的电力也就是要求驱动电力相加,由此,计算出整个负荷电路4中所需的电力也就是总要求电力。此处,要求辅机电力,是基于与从车辆辅机42发送的各种电负载的工作状态有关的信息,在管理ECU 71中被算出。另外,要求驱动电力,是利用上述的要求驱动扭矩换算为电力,在管理ECU 71中被算出。
管理ECU 71,使用与从第一电池ECU 74发送的第一电池B1的内部状态相关的信息、与从第二电池ECU 75发送的第二电池B2的内部状态相关的信息、及上述的要求驱动电力,由此,计算出与从第二电池B2输出的电力相对于总要求电力的比例相当的第二负担率。另外,管理ECU 71,将如上所述计算出的第二负担率与总要求电力相乘,由此,计算出对第二电池B2输出的电力的目标也就是第二目标电力,将此对应于第二目标电力的通过电力指令信号发送到转换器ECU 73。
电机ECU 72,是主要管理从第一电源电路2流向驱动电机M的电力的计算机。电机ECU 72,基于管理ECU 71发送的扭矩指令信号,对电力转换器43进行操作,以在驱动电机M中产生对应于此指令的扭矩。由此,从第一电源电路2向驱动电机M,供给对应于要求驱动电力的电力。
转换器ECU 73,是由负责管理通过电压转换器5的电力的控制模块即通过电力控制部73a所构成的计算机。
通过电力控制部73a,对应于从管理ECU 71发送的通过电力指令信号,以对应于指令的通过电力通过电压转换器5的方式,利用PWM控制对电压转换器5的高臂组件53H及低臂组件53L进行操作。
更具体来说,通过电力控制部73a,对应于电压转换器5的启动要求的产生,在后面按照参照图7说明的步骤来开始电压转换器5的PWM控制,由此启动电压转换器5。另外,电压转换器5的启动完成后,以通过电力控制部73a基于通过电力指令信号,计算出作为目标的相对于于电压转换器5中的通过电流的目标电流,且利用电流传感器33所检测的通过电流成为目标电流的方式,按照已知的反馈控制算法来确定占空比,并将在此占空比下生成的栅极驱动信号输入到电压转换器5的高臂组件53H及低臂组件53L。由此,从第二电池B2向第一电源电路2输出对应于第二目标电力的电力。另外,从总要求电力扣除第二目标电力的不足部分,从第一电池B1输出。
另外,通过电力控制部73a具备过电流保护功能。也就是,通过电力控制部73a,如上所述地电压转换器5的进行PWM控制的期间,利用电流传感器33所检测的通过电流超过预定的保护范围时,为了保护设于电压转换器5、第一电源电路2、第二电源电路3、及负荷电路4的各种电气设备,以避免此过电流,结束执行中的PWM控制,使电流不在第一电源电路2和第二电源电路3之间流动。
此处,对电压转换器5启动时产生的问题,参照图4至图6的模拟结果并进行说明。
图4至图6是将利用以往的启动处理来启动电压转换器5时的电流(最上段)、电压(中段)、及控制占空比(最下段)的时间变化以模拟再现。此处,以往的启动处理,是指以电流传感器33所检测的通过电流值Iact成为启动时目标值Itrg的方式,在基于利用第一电路电压传感器24所检测的第一电路电压值V1及利用第二电路电压传感器34所检测的第二电路电压值V2所规定的控制占空比(更具体来说,后述的基本占空比)下进行PWM控制,由此启动电压转换器5。
图4示出在第一电路电压传感器24的误差及第二电路电压传感器34的误差几乎为0的条件下进行模拟。如图4所示,一旦在时刻t0时开始PWM控制,那么通过电流值Iact会略有紊乱而从启动时目标值Itrg向负侧离开,但过一会几乎就汇合。认为这是由于PWM死区时间、及各电压传感器24,34中存在的轻微误差导致的。另外,如图4中局部放大所示,每当在控制占空比下开关高臂组件53H及低臂组件53L,实际的通过电流会大为振动。
图5示出第一电路电压传感器24的误差几乎为0,但在第二电路电压传感器34中存在朝向正侧的几十[V]程度的偏移误差的条件下进行模拟的情况。一旦在第二电路电压传感器34中存在这种偏移误差,那么基于含有这种偏移误差的第二电路电压值V2而规定的控制占空比,比通过电流值Iact和启动时目标值Itrg的电流偏差的值(Iact-Itrg)变为最小的最佳占空比更小。因此,如图5所示,一旦在时刻t0开始PWM控制,那么通过电流值Iact大为紊乱以从启动时目标值Itrg朝向负侧离开。因此,在以往的启动处理中,刚启动电压转换器5后,相当大的通过电流可能会在极短时间内且不超过上述保护范围地从第一电源电路2侧流向第二电源电路3侧,并且可能会产生噪声和损耗。
另外,图6示出在第一电路电压传感器24中存在朝向正侧的几十[V]程度的偏移误差,在第二电路电压传感器34中存在朝向正侧的几十[V]程度的偏移误差的条件下进行模拟的情况。一旦在第一电路电压传感器24及第二电路电压传感器34中存在这种偏移误差,那么基于含有这种偏移误差的第一电路电压值V1及第二电路电压值V2而规定的控制占空比,比通过电流值Iact和启动时目标值Itrg的电流偏差的值(Iact-Itrg)变为最小的最佳占空比略大。因此,如图6所示,一旦在时刻t0开始PWM控制,那么通过电流值Iact大为紊乱以从启动时目标值Itrg朝向正侧离开。因此,在以往的启动处理中,刚启动电压转换器5后,相当大的通过电流可能会在极短时间内且不超过上述保护范围地从第二电源电路3侧流向第一电源电路2侧,并且可能会产生噪声和损耗。
如上所述地,以往的启动处理中,在电压传感器24,34存在误差的状态下开始PWM控制后,通过电流立刻发生紊乱,商品性可能降低。
图7是示出通过电力控制部73a中的电压转换器5的启动处理的具体步骤的流程图。在电压转换器5停止的状态(高臂组件53H及低臂组件53L都关闭的状态)下,对应于电压转换器5的启动要求的产生,利用通过电力控制部73a在规定的控制周期下,反复执行图7所示的启动处理直至电压转换器5的启动结束。
最初,在步骤S1中,通过电力控制部73a,对应于启动处理的开始,将校正结束标志Fc的值重置为0,然后移至步骤S2。此校正结束标志Fc,是指用于明确表示以下内容的标志:从开始图4的启动处理到停止电压转换器5的期间,已经进行过1次算出后述校正占空比的处理(参照后述的步骤S6)。
在步骤S2中,通过电力控制部73a获取通过电流值Iact,然后移至步骤S3。在步骤S3中,通过电力控制部73a,获取与对于电压转换器5启动时的通过电流值Iact的目标值相当的启动时目标值Itrg,然后移至步骤S4。以下,将启动时目标值Itrg的具体值设为例如0,但本发明并不限于此。
在步骤S4中,通过电力控制部73a,算出通过电流值Iact和启动时目标值Itrg的电流偏差的值(Iact-Itrg),并判定此电流偏差的值是否在规定容许范围外且校正结束标志Fc的值是否为0。此处,容许范围设为包含在用于过电流保护而设定的上述保护范围内,且将启动时目标值Itrg设为中心。
当步骤S4的判定结果为NO(否)时,也就是电流偏差的值(Iact-Itrg)在容许范围内,或已经进行过1次算出校正占空比的处理时,通过电力控制部73a移至步骤S8。
在步骤S8中,通过电力控制部73a,以通过电流值Iact成为启动时目标值Itrg的方式算出基本占空比,然后移至步骤S9。更具体来说,通过电力控制部73a,利用将理论值、及反馈校正值相加,来计算出基本占空比,所述理论值是基于启动时目标值Itrg、利用第一电路电压传感器24所检测的第一电路电压值V1、及利用第二电路电压传感器34所检测的第二电路电压值V2而理论上算出的,所述反馈校正值是利用基于电流偏差的值(Iact-Itrg)的已知的反馈控制法,以此电流偏差的值变成0的方式算出的。在将例如启动时目标值Itrg设为0时,此处,理论值设为以使第二电路电压值V2和利用PWM控制而控制的连接节点53(参照图3)的电压的电位差相等。另外,连接节点53的电压是由第一电路电压值V1和占空比的乘积所表示,由此,理论值成为V2/V1。
在步骤S9中,通过电力控制部73a,利用将基本占空比和后述的校正占空比相加,计算出控制占空比,然后移至步骤S10。在步骤S10中,通过电力控制部73a,以在步骤S9中算出的控制占空比下,进行电压转换器5的PWM控制,交替地接通/断开操作高臂组件53H和低臂组件53L,然后回到步骤S2。
此处,在后述的S6中,初次算出校正占空比。因此校正占空比在启动处理刚开始后为0。因此通过电力控制部73a在从开始图4的启动处理到S4的判定结果为YES(是)为止的期间,在基本占空比下,电压转换器5的PWM控制。
另外当步骤S4的判定结果为YES时,也就是电流偏差的值(Iact-Itrg)超出容许范围且还未进行算出校正占空比的处理时,通过电力控制部73a移至步骤S5。
在步骤S5中,通过电力控制部73a算出电流偏差变化率,所述电流偏差变化率是从开始启动处理后,也就是在基本占空比下从开始PWM控制到电流偏差的值超出容许范围为止的期间的电流偏差的值的变化率。更具体来说,通过电力控制部73a,利用将电流变化幅除以经过的时间来计算出电流偏差变化率,所述电流变化幅是利用从在步骤S4中初次判定电流偏差的值超出容许范围时的电流偏差的值,减去刚开始启动处理后的电流偏差的值而算出,所述经过的时间是从开始启动处理后直至在步骤S4中初次判定电流偏差的值超出容许范围为止的期间。
在步骤S6中,通过电力控制部73a,基于在步骤S5中算出的电流偏差变化率,计算出使电流偏差的值变小的校正占空比,然后移至步骤S7。更具体来说,通过电力控制部73a具备关联手段,所述关联手段将在基本占空比下启动电压转换器5时发生的电流偏差变化率、及使此电流偏差的值变小的校正占空比相关联,利用将在步骤S5中算出的电流偏差变化率输入此关联手段,计算出使电流偏差的值变小的校正占空比。作为关联手段的具体例,可以列举控制图、算术表达式、及神经网络等。
参照图4至图6进行说明,刚开始PWM控制后的电流偏差变化率与第一电路电压传感器24及第二电路电压传感器34的误差的大小相关。但是,仅以此电流偏差变化率,无法估算第一电路电压传感器24和第二电路电压传感器34中具体存在何种程度的大小误差。由此,利用改变误差的发生要因并预先进行多次模拟,上述关联手段被设定为不论误差的发生要因是什么,都平均地输出使电流偏差的值变小的校正占空比。
在步骤S7中,通过电力控制部73a结束1次校正占空比的演算处理,相应于此,为了明示此事,将校正结束标志Fc的值设为“1”,然后移至步骤S8。
相对于以上内容,通过电力控制部73a启动电压转换器5时,在基本占空比下,开始PWM控制后,当电流偏差的值超出容许范围时,在将基于电流偏差变化率所算出的校正占空比和基本占空比相加而获得的占空比下,进行PWM控制。
接下来,参照图8至图9的模拟结果来说明图7的启动处理的效果。
图8至图9将利用图7的启动处理来启动电压转换器5时的电流(最上段)、电压(中段)、及控制占空比(最下段)的时间变化,以模拟再现。
图8示出在和图5相同的误差条件下,也就是第一电路电压传感器24的误差几乎为0,但第二电路电压传感器34上存在朝向正侧的几十[V]程度的偏移误差的条件下,进行模拟的情况。参照图5进行说明,基于包含这种偏移误差的第一电路电压值V1及第二电路电压值V2所规定的基本占空比,比通过电流值Iact和启动时目标值Itrg的电流偏差的值变最小的最佳占空比略小。因此,在时刻t0,在基本占空比下,开始PWM控制后,通过电流值Iact从启动时目标值Itrg朝向负侧离开。其后在时刻t1,通过电力控制部73a判定电流偏差的值(Iact-Itrg)不超出容许范围的下限值(参照S4),与此相应,计算出从时刻t0到t1之间的电流偏差变化率(参照S5),基于此电流偏差变化率算出校正占空比(参照步骤S6)。因此,在时刻t1,控制占空比中仅校正占空比的部分不连续地增加。并且,在此时刻t1以后,通过电力控制部73a在基本占空比和校正占空比相加而获得的控制占空比下,继续并执行PWM控制。由此在时刻t1以后,通过电流值Iact急剧变化以接近启动时目标值Itrg。如上所述,利用在图7的启动处理下启动电压转换器5,可以抑制在图5的例中产生的电流紊乱。
图9示出在和图6相同的误差条件下,也就是第一电路电压传感器24中存在朝向正侧的几十[V]程度的偏移误差,且第二电路电压传感器34中存在朝向负侧的几十[V]程度的偏移误差的条件下,进行模拟的情况。参照图6进行说明,基于包含这种偏移误差的第一电路电压值V1及第二电路电压值V2所规定的基本占空比,比通过电流值Iact和启动时目标值Itrg的电流偏差的值变最小的最佳占空比略大。因此,在时刻t0,在基本占空比下,开始PWM控制后,通过电流值Iact从启动时目标值Itrg朝向正侧离开。其后在时刻t1,通过电力控制部73a判定电流偏差的值(Iact-Itrg)为容许范围的上限值以上(参照步骤S4),相应于此,计算出从时刻t0到t1之间的电流偏差变化率(参照步骤S5),基于此电流偏差变化率算出校正占空比(参照步骤S6)。因此,在时刻t1,控制占空比中仅校正占空比的部分不连续地减少。并且,在此时刻t1以后,通过电力控制部73a在将基本占空比和校正占空比相加而获得的控制占空比下继续并执行PWM控制。由此,在时刻t1以后,通过电流值Iact急剧变化以接近启动时目标值Itrg。如上所述,利用在图7的启动处理下启动电压转换器5,可以抑制在图6的例中产生的电流紊乱。
根据如上所述的本实施方式的电源系统1,达到以下的效果。
(1)电源系统1具备:具有第一电池B1的第一电源电路2、具有第二电池B2的第二电源电路3、在这些电路2,3之间转换电压的电压转换器5、及利用PWM控制对此电压转换器5进行操作的通过电力控制部73a。通过电力控制部73a,在电压转换器5启动时,基于利用第一及第二电路电压传感器24,34获取的第一电路电压值V1及第二电路电压值V2,以通过电流值Iact成为启动时目标值Itrg的方式设定基本占空比,在此基本占空比下,开始PWM控制。此时,如果电压传感器24,34中存在误差,那么通过电流值Iact会从启动时目标值Itrg偏离,通过电流值Iact和启动时目标值Itrg的电流偏差的值会超出容许范围。因此,通过电力控制部73a在基本占空比下,开始PWM控制后,电流偏差的值超出容许范围时,基于电流偏差的值算出校正占空比,并在将此校正占空比和基本占空比相加而获得的控制占空比下,进行PWM控制。由此,根据电源系统1,可以抑制通过电流大大超出容许范围而发生紊乱,并启动电压转换器5。
(2)通过电力控制部73a,在PWM控制的执行过程中,通过电流值超出包括容许范围的保护范围时,也就是发生过电流时,结束执行中的PWM控制。由此,在电压转换器5的PWM控制的期间,由于某种原因而流过超过保护范围的过电流时,可以保护设于第一电源电路2或第二电源电路3中的各种电气设备。
(3)通过电力控制部73a,基于在基本占空比下从开始PWM控制到电流偏差的值超出容许范围为止的期间的电流偏差变化率,计算出校正占空比。第一电路电压传感器24和第二电路电压传感器34的误差的大小,与刚开始PWM控制后的电流偏差变化率相关。因此,在电源系统1中,基于电流偏差变化率,可以算出合适的校正占空比,以使通过电流值Iact接近启动时目标值Itrg。另外,如上所述,容许范围被设定为在过电流保护所需的保护范围中,因此,在基本占空比下从开始PWM控制到电流偏差的值超出容许范围为止耗费的时间非常短。对此,为了算出电流偏差变化率,有以下三个数据即可:从开始PWM控制到判定电流偏差的值超出容许范围为止耗费的时间、PWM控制开始时的电流偏差的值、及判定电流偏差的值超出容许范围时的电流偏差的值。由此,根据电源系统1,可以用简易的演算计算出校正占空比,因此,可以在电流偏差的值超出容许范围后,还继续进行PWM控制。
[第二实施方式]
接下来,参照附图并说明本发明的第二实施方式。
图10是示出搭载本实施方式的电源系统1A的车辆VA的构造的图。本实施方式的电源系统1A中,转换器ECU 76的构成及启动处理的具体步骤,与第一实施方式的电源系统1不同。以下说明中,对与第一实施方式的电源系统1相同的构成及相同的处理,标注相同的符号,并省略其详细说明。
转换器ECU 76是由下述部分构成的计算机:负责管理通过电压转换器5的电力的控制模块也就是通过电力控制部76a、进行模拟演算的控制模块也就是模拟演算部76b。
通过电力控制部76a,对应于管理ECU 71所发送的通过电力指令信号,以对应于指令的通过电力通过电压转换器5的方式,利用PWM控制对电压转换器5的高臂组件53H及低臂组件53L进行操作。通过电力控制部76a与第一实施方式的通过电力控制部73a,仅仅是后面参照图11说明的启动处理的具体步骤不同,其它发明和通过电力控制部73a相同。
模拟演算部76b,获取在利用通过电力控制部76a实施的电压转换器5启动时由电流传感器33所检测的通过电流值Iact、和由电压传感器24,34所检测的电压值V1,V2等的时间序列数据,并进行基于获取的时间序列数据的模拟演算,由此,估算搭载于电源系统1上的电压传感器24,34的误差。更具体来说,模拟演算部76b,在各种误差条件下,反复进行参照图4至图6及图8至图9说明的模拟演算,来执行实际电压转换器5启动时获取的通过电流值Iact和电压值V1,V2的时间序列数据得以再现的误差条件,由此,估算电压传感器24,34的误差。此处,为了提高电压传感器24,34的误差的估算精度,上述时间序列数据优选为,通过电力控制部76a的电压转换器5启动时,含有一种数据,其和在基本占空比下从开始PWM控制到电流偏差的值超出容许范围为止的期间的电流偏差的值的时间变化相关。
另外,模拟演算部76b,在这些电压传感器24,34的误差估算结束后,依据使用这些估算结果,计算出最佳校正占空比,所述最佳校正占空比也就是在所估算的误差下利用通过电力控制部76a开始PWM控制的情况下,相对于将通过电流值Iact和启动时目标值Itrg的电流偏差的值(Iact-Itrg)最小化的校正占空比的最佳值。
图11是示出通过电力控制部76a中的电压转换器5的启动处理的具体步骤的流程图。在电压转换器5停止的状态下,相应于电压转换器5的启动要求的产生,利用通过电力控制部76a在规定控制周期下,反复执行图11所示的启动处理直至电压转换器5的启动结束。另外,图11的启动处理中的步骤S21至S23,S25至S28,S30,S32的处理和图7的启动处理中的步骤S1至S8,S10的处理相同,因此省略详细说明。
在步骤S24中,通过电力控制部76a,判定上述的模拟演算部76b实施的第一电路电压传感器24及第二电路电压传感器34的误差估算是否结束。步骤S24的判定结果是NO时,通过电力控制部76a移至步骤S25。
在步骤S29中,通过电力控制部76a,获取在模拟演算部76b中使用电压传感器24,34的误差的估算结果所算出的最佳校正占空比,然后移至步骤S30。
另外在步骤S31中,通过电力控制部76a,通过将基本占空比、校正占空比及最佳校正占空比相加,计算出控制占空比,然后移至步骤S32。
如上所述,直至模拟演算部76b实施的电压传感器24,34的误差的估算结束为止期间,图11所示的启动处理和参照图7说明的启动处理的步骤相同。也就是,通过电力控制部76a,在电压转换器5启动时,在基本占空比下,开始PWM控制后,电流偏差的值超出容许范围时,在将基于电流偏差变化率所算出的校正占空比和基本占空比相加而获得的占空比下,进行PWM控制。
另外,在图11所示的启动处理中,在模拟演算部76b实施的电压传感器24,34的误差的估算结束后的电压转换器5启动时,通过电力控制部76a,在将基本占空比、及最佳校正占空比相加而获得的占空比下,开始PWM控制,所述最佳校正占空比是在模拟演算部76b中的电压传感器24,34的误差的估算结果下,以通过电流值Iact和启动时目标值Itrg的电流偏差的值(Iact-Itrg)变最小的方式算出。由此,电压传感器24,34的误差的估算结束后,从刚启动电压转换器5后,可以立即在最佳控制占空比下,开始PWM控制,因此,可以进一步抑制通过电流的紊乱。
根据如上所述的本实施方式的电源系统1A,达到以下效果。
(4)模拟演算部76b,利用基于电压转换器5启动时的电流偏差的值的时间序列数据进行模拟,来估算第一及第二电路电压传感器24,34的误差,并算出在此误差下开始PWM控制时通过电流值Iact和目标值Itrg的电流偏差的值变成最小的最佳校正占空比。另外,通过电力控制部76a,在利用这种模拟演算部76b估算出第一及第二电路电压传感器24,34的误差后的电压转换器5启动时,在将基本占空比和最佳校正占空比相加而获得的控制占空比下,开始PWM控制。因此,根据电源系统1A,利用模拟演算部76b估算出第一及第二电路电压传感器24,34的误差后,从刚开始电压转换器5的启动后,可以在考虑第一及第二电路电压传感器24,34的误差的最佳控制占空比下,进行PWM控制,因此,可以进一步抑制通过电流的紊乱。
以上,对本发明的一实施方式进行了说明,但本发明并不限于此。在本发明的主旨范围内,也可以适当变更具体结构。
[符号的说明]
V 车辆
W 驱动轮
M 驱动电机
1 电源系统
2 第一电源电路(第一电路)
B1 第一电池(第一电源)
24 第一电路电压传感器(第一电路电压获取手段)
3 第二电源电路(第二电路)
B2 第二电池(第二电源)
33 电流传感器(通过电流获取手段)
34 第二电路电压传感器(第二电路电压获取手段)
4 负荷电路
43 电力转换器
5 电压转换器
71 管理ECU
72 电机ECU
73,76 转换器ECU
73a,76a 通过电力控制部(控制手段)
76b 模拟演算部(模拟手段)
74 第一电池ECU
75 第二电池ECU

Claims (5)

1.一种电源系统,具备:
第一电路,其具有第一电源;
第二电路,其具有第二电源;
电压转换器,其在前述第一电路与前述第二电路之间转换电压;
电力转换器,其在前述第一电路与驱动电机之间转换电力;
第一电路电压获取手段,其获取前述第一电路的电压值也就是第一电路电压值;
第二电路电压获取手段,其获取前述第二电路的电压值也就是第二电路电压值;
通过电流获取手段,其获取前述电压转换器的电流值也就是通过电流值;及,
控制手段,其利用PWM控制对前述电压转换器进行操作;
所述电源系统的特征在于:
前述控制手段,在前述电压转换器启动时,以前述通过电流值成为规定目标值的方式,在基于前述第一及第二电路电压值所规定的基本占空比下,开始PWM控制后,当前述通过电流值与前述目标值的电流偏差的值超出容许范围时,在将基于前述电流偏差的值所算出的校正占空比与前述基本占空比相加而获得的占空比下,进行PWM控制。
2.根据权利要求1所述的电源系统,其中,前述控制手段,在执行PWM控制的过程中,当前述通过电流值超出包括前述容许范围的保护范围时,结束执行中的PWM控制。
3.根据权利要求1所述的电源系统,其中,前述控制手段,基于在前述基本占空比下从开始前述PWM控制到前述电流偏差的值超出前述容许范围为止的期间的前述电流偏差的值的变化率,计算出前述校正占空比。
4.根据权利要求2所述的电源系统,其中,前述控制手段,基于在前述基本占空比下从开始前述PWM控制到前述电流偏差的值超出前述容许范围为止的期间的前述电流偏差的值的变化率,计算出前述校正占空比。
5.根据权利要求1至4中的任一项所述的电源系统,其中,进一步具备模拟手段,所述模拟手段基于在前述基本占空比下从开始PWM控制到前述电流偏差的值超出前述容许范围为止的期间的前述电流偏差的值的时间序列数据,进行模拟,由此,估算前述第一电路电压获取手段及前述第二电路电压获取手段的误差,并且算出最佳校正占空比,所述最佳校正占空比是在该误差下开始PWM控制时,相对于将前述通过电流值与前述目标值的偏差最小化的前述校正占空比的最佳值;
并且,前述控制手段,当利用前述模拟手段算出前述第一电路电压获取手段及前述第二电路电压获取手段的误差后启动前述电压转换器时,在将前述基本占空比与前述最佳校正占空比相加而获得的占空比下,开始PWM控制。
CN202010455204.XA 2019-05-28 2020-05-26 电源系统 Active CN112018999B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-099674 2019-05-28
JP2019099674A JP7041095B2 (ja) 2019-05-28 2019-05-28 電源システム

Publications (2)

Publication Number Publication Date
CN112018999A CN112018999A (zh) 2020-12-01
CN112018999B true CN112018999B (zh) 2023-11-14

Family

ID=73506885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010455204.XA Active CN112018999B (zh) 2019-05-28 2020-05-26 电源系统

Country Status (3)

Country Link
US (1) US11427179B2 (zh)
JP (1) JP7041095B2 (zh)
CN (1) CN112018999B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220094166A1 (en) * 2019-01-14 2022-03-24 Smardt Chiller Group Inc. Direct current chiller method and system
KR20220023527A (ko) * 2020-08-21 2022-03-02 현대자동차주식회사 배터리 관리 장치, 그를 포함한 차량 시스템 및 그 방법
JP2022149575A (ja) * 2021-03-25 2022-10-07 本田技研工業株式会社 電力供給回路
EP4224689A4 (en) * 2021-09-30 2024-02-21 Contemporary Amperex Technology Co Ltd METHOD AND DEVICE FOR CONTROLLING THE RETURN CURRENT OF A PHASE-SHIFTED FULL BRIDGE CIRCUIT
SE546036C2 (en) * 2022-06-30 2024-04-23 Scania Cv Ab Method, controller and circuit for operating a converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204644B1 (en) * 1998-01-30 2001-03-20 Toko, Inc. Switching power supply for speeding up turn-off operation of a switching element
JP2007215381A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 電圧変換装置
CN107181312A (zh) * 2016-03-10 2017-09-19 丰田自动车株式会社 车辆用电源系统
CN107896052A (zh) * 2016-10-03 2018-04-10 本田技研工业株式会社 转换装置、设备及控制方法
WO2018066441A1 (ja) * 2016-10-07 2018-04-12 株式会社デンソー 回転電機制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6303625B2 (ja) 2014-03-07 2018-04-04 オムロン株式会社 制御装置、電力変換装置、電源システム、およびプログラム
JP6600586B2 (ja) 2016-03-15 2019-10-30 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
JP6399045B2 (ja) 2016-06-16 2018-10-03 トヨタ自動車株式会社 電圧制御システム、燃料電池システムおよび電圧制御システムの制御方法
JP6638616B2 (ja) 2016-09-30 2020-01-29 株式会社デンソー 電源制御装置
JP6495412B1 (ja) 2017-10-19 2019-04-03 本田技研工業株式会社 電源システム
JP6962233B2 (ja) * 2018-02-22 2021-11-05 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ
JP6907986B2 (ja) * 2018-03-29 2021-07-21 株式会社オートネットワーク技術研究所 車載用のdcdcコンバータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204644B1 (en) * 1998-01-30 2001-03-20 Toko, Inc. Switching power supply for speeding up turn-off operation of a switching element
JP2007215381A (ja) * 2006-02-13 2007-08-23 Toyota Motor Corp 電圧変換装置
CN107181312A (zh) * 2016-03-10 2017-09-19 丰田自动车株式会社 车辆用电源系统
CN107896052A (zh) * 2016-10-03 2018-04-10 本田技研工业株式会社 转换装置、设备及控制方法
WO2018066441A1 (ja) * 2016-10-07 2018-04-12 株式会社デンソー 回転電機制御装置

Also Published As

Publication number Publication date
US20200377073A1 (en) 2020-12-03
JP7041095B2 (ja) 2022-03-23
JP2020195221A (ja) 2020-12-03
US11427179B2 (en) 2022-08-30
CN112018999A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN112018999B (zh) 电源系统
JP4541425B2 (ja) Dc/dcコンバータ装置
JP4551942B2 (ja) ハイブリッド直流電源システム、燃料電池車両及び蓄電装置の保護方法
CN109639137B (zh) 电源装置
CN111688492B (zh) 电源系统
KR20090073210A (ko) 전원시스템 및 그것을 구비한 차량, 전원시스템의 제어방법 및 그 제어방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록매체
CN111824044B (zh) 电源系统
CN112019000A (zh) 电源系统
CN115158018A (zh) 电源系统
JP2009189152A (ja) 電源システム、電動車両、電源システムの制御方法、およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
CN112046288B (zh) 电源系统
EP2613959A2 (en) Load driving device, vehicle equipped with load driving device, and method of controlling load driving device
US20220176823A1 (en) Power supply system
CN111204220B (zh) 电动汽车
JP2021164188A (ja) 電源システム及び電動車両
JP7469219B2 (ja) 電源システム
JP2022095364A (ja) 電源システム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant