CN112007680A - 一种二维纳米片结构过渡金属-n-c材料的制备方法及其在锂硫电池上的应用 - Google Patents

一种二维纳米片结构过渡金属-n-c材料的制备方法及其在锂硫电池上的应用 Download PDF

Info

Publication number
CN112007680A
CN112007680A CN202010841558.8A CN202010841558A CN112007680A CN 112007680 A CN112007680 A CN 112007680A CN 202010841558 A CN202010841558 A CN 202010841558A CN 112007680 A CN112007680 A CN 112007680A
Authority
CN
China
Prior art keywords
nanosheet structure
dimensional nanosheet
transition metal
preparation
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010841558.8A
Other languages
English (en)
Other versions
CN112007680B (zh
Inventor
张旭
曲宁
杨仕轩
雷达
米盼盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010841558.8A priority Critical patent/CN112007680B/zh
Publication of CN112007680A publication Critical patent/CN112007680A/zh
Application granted granted Critical
Publication of CN112007680B publication Critical patent/CN112007680B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种二维纳米片结构过渡金属(M)‑N‑C材料的制备方法及其在锂硫电池上的应用,属于电极材料制备技术领域。制备方法为:将氯化钠、氨基葡萄糖盐酸盐和过渡金属源,溶于去离子水中,搅拌反应,并冷冻干燥,得到炭化前驱体;将炭化前驱体在惰性气体保护下高温处理后用稀盐酸溶液酸洗,洗掉盐模板和负载的过渡金属纳米颗粒,得到二维纳米片结构M‑N‑C材料。本发明采用“盐模板”以及冷冻过程中的“冰模板”法实现了二维纳米片结构,提供大面积固硫和转化硫的活性位点,促进电荷转移,导电性增强;采用水系可溶的氨基葡萄糖盐酸盐,实现均匀掺氮,可以有效吸附多硫化物;经过高温炭化,生成的M‑N键,可以作为催化活性中心能有效的催化多硫化物的转化,进而获得优异的锂硫电池性能。

Description

一种二维纳米片结构过渡金属-N-C材料的制备方法及其在锂 硫电池上的应用
技术领域
本发明涉及一种二维纳米片结构过渡金属-N-C材料的制备方法及其在锂硫电池上的应用,属于电极材料制备技术领域。
背景技术
锂硫电池由于理论能量密度高,资源丰富,正极活性物质硫的无毒性,对环境友好,廉价易得等特点,被认为是最有前途的下一代二次电池之一。然而,要实现锂硫电池的实际应用和最终商业化,还面临一定的挑战。例如,导电性差,反应过程中,多硫化物动力学转化慢,发生穿梭效应,正极产生的多硫化物(Li2Sx)中间体溶解到电解液中,穿过隔膜,向负极扩散,与负极的金属锂直接发生反应,最终造成了电池中有效物质的不可逆损失、电池寿命的衰减、低库伦效率等问题。因此选择合适的正极硫载体增强电极材料的导电性,实现固硫和快速转化硫是至关重要的。
碳材料是目前最常见的硫载体。然而,碳材料对多硫化物是物理吸附,吸附力较弱,无法有效的抑制多硫化物的穿梭。因此,可以通过构筑二维结构增加固硫和转化硫的活性位点以及引入氮掺杂的方式与多硫化物实现极性与极性之间的化学吸附,提升穿梭效应的抑制效果。与此同时,为了加速多硫化物的转化,可以引入过渡金属元素,增加活性位点,通过催化作用提升多硫化物的转化效率。目前,金属(M)-N-C材料在制备过程通常仅是将原料进行机械研磨后进行炭化。外加的氮源尿素、三聚氰胺等难以均匀的与原材料进行混合(Kim Nangyeong et al.Nanotechnology2020,31,415401),影响氮掺杂的效率。与此同时,二维结构的构筑也是其中一个难点。因此,如何制备二维的M-N-C材料并作为正极硫载体提升多硫化物的催化性能,还面临着巨大的挑战。
发明内容
针对现有技术存在的问题,本发明提供一种可作为锂硫电池电极的二维纳米片结构M-N-C材料及其制备方法,制备方法简单,可以获得优异的锂硫电池性能。
为了达到上述技术目的,本发明采用的技术方案为:
一种二维纳米片结构M-N-C材料的制备方法,将一定量的氯化钠,氨基葡萄糖盐酸盐和过渡金属源,溶于一定量的去离子水中,搅拌冷冻干燥,得到的样品再在惰性气体保护下高温处理一段时间,随后用稀盐酸溶液酸洗,洗掉盐模板和负载的过渡金属纳米颗粒,得到二维纳米片结构M-N-C材料。具体包括以下步骤:
第一步,制备炭化前驱体
将氯化钠、氨基葡萄糖盐酸盐、过渡金属源溶于去离子水中,每20~40mL的去离子水中加入3~7g氯化钠,所述的氯化钠与氨基葡萄糖盐酸盐的质量比为3.5:1~10:1,氯化钠与过渡金属的质量比为14:1~120:1。搅拌20~80min,使其完全溶解后,在零下24~12℃条件下冷冻6~24h形成冰晶模板,并冷冻干燥12h,得到炭化前驱体,备用。
所述的过渡金属源为硝酸铁、硝酸钴、氯化钴、硝酸镍和氯化镍。
第二步,制备二维纳米片结构M-N-C材料
将第一步制备的炭化前驱体放入管式炉中,惰性气体下以2℃/min的速率升温至800~1000℃,炭化1~3h,随后酸洗,洗掉盐模板和负载的过渡金属纳米颗粒,得到产物二维纳米片结构M-N-C材料。
以上述方法制备的二维纳米片结构M-N-C材料用于制作锂硫电池的电极材料。
本发明的有益效果我:1)采用“盐模板”以及冷冻过程中的“冰模板”法实现了二维纳米片结构,提供大面积固硫和转化硫的活性位点,促进电荷转移,导电性增强;2)采用水系可溶的氨基葡萄糖盐酸盐,实现均匀掺氮,可以有效吸附多硫化物;3)经过高温炭化,生成的M-N键,可以作为催化活性中心能有效的催化多硫化物的转化。
附图说明
图1是实施例3中二维纳米片结构Co-N-C材料的SEM图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1
称取3g氯化钠,0.7g氨基葡萄糖盐酸盐和0.1g硝酸铁,溶于20mL去离子水中,搅拌反应40min,在-12℃条件下冷冻24h形成冰晶模板,并冷冻干燥12h,得到炭化前驱体。
在管式加热炉中,将炭化前驱体在氩气气氛中以2℃/min的升温速率升温至800℃处理3h,冷却至室温后用1mol/L HCl溶液酸洗,洗掉盐模板和负载的铁纳米颗粒,冷冻干燥,最终得到二维纳米片结构Fe-N-C材料。经组装电池测试,在0.1C的测试条件下性能可达到805mAh g-1
实施例2
称取5g氯化钠,1g氨基葡萄糖盐酸盐和0.3g氯化钴,溶于30mL去离子水中,搅拌反应30min,在-18℃条件下冷冻12h,并冷冻干燥12h形成冰晶模板,得到炭化前驱体。
在管式加热炉中,将炭化前驱体在氩气气氛中以2℃/min的升温速率升温至900℃处理3h,冷却至室温后用1mol/L HCl溶液酸洗,洗掉盐模板和负载的钴纳米颗粒,冷冻干燥,最终得到二维纳米片结构Co-N-C材料。经组装电池测试,在0.1C的测试条件下性能可达到974mAh g-1
实施例3
称取5g氯化钠,0.5g氨基葡萄糖盐酸盐和0.1g硝酸钴,溶于25mL去离子水中,搅拌反应30min,在-18℃条件下冷冻12h,并冷冻干燥12h形成冰晶模板,得到炭化前驱体。
在管式加热炉中,将炭化前驱体在氩气气氛中以2℃/min的升温速率升温至900℃处理2h,冷却至室温后用1mol/L HCl溶液酸洗,洗掉盐模板和负载的钴纳米颗粒,冷冻干燥,最终得到分布均匀的超薄二维纳米片结构Co-N-C材料。经组装电池测试,在0.1C的测试条件下性能可达到1100mAh g-1
实施例4
称取6g氯化钠,1g氨基葡萄糖盐酸盐和0.05g硝酸镍,溶于25mL去离子水中,搅拌反应80min,在-24℃条件下冷冻6h,并冷冻干燥12h形成冰晶模板,得到炭化前驱体。
在管式加热炉中,将炭化前驱体在氩气气氛中以2℃/min的升温速率升温至800℃处理2h,冷却至室温后用1mol/L HCl溶液酸洗,洗掉盐模板和负载的镍纳米颗粒,冷冻干燥,最终得到二维纳米片结构Ni-N-C材料。经组装电池测试,在0.1C的测试条件下性能可达到950mAh g-1
实施例5
称取7g氯化钠,2g氨基葡萄糖盐酸盐和0.5g氯化镍,溶于40mL去离子水中,搅拌反应20min,在-20℃条件下冷冻18h,并冷冻干燥12h形成冰晶模板,得到炭化前驱体。
在管式加热炉中,将炭化前驱体在氩气气氛中以2℃/min的升温速率升温至1000℃处理1h,冷却至室温后用1mol/L HCl溶液酸洗,洗掉盐模板和负载的镍纳米颗粒,冷冻干燥,最终得到二维纳米片结构Ni-N-C材料。经组装电池测试,在0.1C的测试条件下性能可达到876mAh g-1
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (6)

1.一种二维纳米片结构M-N-C材料的制备方法,其特征在于,包括以下步骤:
第一步,制备炭化前驱体
将氯化钠、氨基葡萄糖盐酸盐、过渡金属源溶于去离子水中,每20~40mL的去离子水中加入3~7g氯化钠,所述的氯化钠与氨基葡萄糖盐酸盐的质量比为3.5:1~10:1,氯化钠与过渡金属的质量比为14:1~120:1;搅拌使其完全溶解后,在零下24~12℃条件下冷冻6~24h形成冰晶模板,并冷冻干燥12h,得到炭化前驱体,备用;
第二步,制备二维纳米片结构M-N-C材料
将第一步制备的炭化前驱体放入管式炉中,惰性气体氛围下,升温至800~1000℃,炭化1~3h,随后酸洗,洗掉盐模板和负载的过渡金属纳米颗粒,得到产物二维纳米片结构M-N-C材料。
2.根据权利要求1所述的一种二维纳米片结构M-N-C材料的制备方法,其特征在于,所述第一步中,搅拌时间为20~80min。
3.根据权利要求1所述的一种二维纳米片结构M-N-C材料的制备方法,其特征在于,所述第一步中,过渡金属源为硝酸铁、硝酸钴、氯化钴、硝酸镍和氯化镍。
4.根据权利要求1所述的一种二维纳米片结构M-N-C材料的制备方法,其特征在于,所述第二步中,升温速率为2℃/min。
5.一种二维纳米片结构M-N-C材料,其特征在于,二维纳米片结构M-N-C材料是由权利要求1-4任一所述的制备方法制备得到的。
6.一种权利要求5所述的二维纳米片结构M-N-C材料的应用,其特征在于,所述二维纳米片结构M-N-C材料用于制作锂硫电池的电极材料。
CN202010841558.8A 2020-08-20 2020-08-20 一种二维纳米片结构过渡金属-n-c材料的制备方法及其在锂硫电池上的应用 Expired - Fee Related CN112007680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010841558.8A CN112007680B (zh) 2020-08-20 2020-08-20 一种二维纳米片结构过渡金属-n-c材料的制备方法及其在锂硫电池上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010841558.8A CN112007680B (zh) 2020-08-20 2020-08-20 一种二维纳米片结构过渡金属-n-c材料的制备方法及其在锂硫电池上的应用

Publications (2)

Publication Number Publication Date
CN112007680A true CN112007680A (zh) 2020-12-01
CN112007680B CN112007680B (zh) 2021-10-15

Family

ID=73505208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010841558.8A Expired - Fee Related CN112007680B (zh) 2020-08-20 2020-08-20 一种二维纳米片结构过渡金属-n-c材料的制备方法及其在锂硫电池上的应用

Country Status (1)

Country Link
CN (1) CN112007680B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113798503A (zh) * 2021-09-18 2021-12-17 赣南医学院 一种制备金属钴纳米片的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837969A (zh) * 2010-05-10 2010-09-22 北京科技大学 一种制备超级电容器电极材料用含氮多孔炭材料的方法
CN104733188A (zh) * 2013-12-24 2015-06-24 于桂菊 一种高导电电极材料的制备方法
CN110148719A (zh) * 2019-05-10 2019-08-20 浙江大学 用于锂硫电池的改性薄壁多级孔碳的制备方法及其应用
CN110176604A (zh) * 2019-05-10 2019-08-27 浙江大学 用于锂电极和硫电极材料的亲水改性空心碳的制备方法
CN110336034A (zh) * 2019-07-11 2019-10-15 安徽师范大学 一种氮掺杂锂硫电池正极材料、制备方法及其应用
US20200152965A1 (en) * 2018-11-12 2020-05-14 Zhejiang A & F University Nanosheet composite for cathode of lithium-sulfur battery, preparation method thereof and electrode and battery comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837969A (zh) * 2010-05-10 2010-09-22 北京科技大学 一种制备超级电容器电极材料用含氮多孔炭材料的方法
CN104733188A (zh) * 2013-12-24 2015-06-24 于桂菊 一种高导电电极材料的制备方法
US20200152965A1 (en) * 2018-11-12 2020-05-14 Zhejiang A & F University Nanosheet composite for cathode of lithium-sulfur battery, preparation method thereof and electrode and battery comprising the same
CN110148719A (zh) * 2019-05-10 2019-08-20 浙江大学 用于锂硫电池的改性薄壁多级孔碳的制备方法及其应用
CN110176604A (zh) * 2019-05-10 2019-08-27 浙江大学 用于锂电极和硫电极材料的亲水改性空心碳的制备方法
CN110336034A (zh) * 2019-07-11 2019-10-15 安徽师范大学 一种氮掺杂锂硫电池正极材料、制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARTA SEVILLA等: "One-Pot Synthesis of Biomass-Based Hierarchical Porous Carbons with a Large Porosity Development", 《CHEM. MATER.》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113798503A (zh) * 2021-09-18 2021-12-17 赣南医学院 一种制备金属钴纳米片的方法

Also Published As

Publication number Publication date
CN112007680B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN108598390B (zh) 一种锂硫电池用正极材料的制备方法及锂硫电池
CN107017395B (zh) 一种具有三明治结构的碳包覆焦磷酸锰钠@还原氧化石墨烯复合材料及其制备方法和应用
CN111211300A (zh) 金属镍/氮掺杂碳纳米管及其锂硫电池复合正极材料
CN108455562B (zh) 一种薄壁型局域石墨化多孔碳球材料及其制备方法和在锂硫电池中的应用
CN102544516B (zh) 一种石墨烯包覆磷酸铁锂的制备方法
KR20170003646A (ko) 질소 도핑 그래핀 코팅 나노 황 양극 복합재료, 그 제조 방법 및 응용
CN108666537A (zh) 一种锂硫电池复合正极材料及其制备方法及锂硫电池应用
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN102347476B (zh) 一种催化石墨化法制备的磷酸铁锂/碳复合正极材料及其制备方法
CN111129456B (zh) 一种Co掺杂FeNCN/C和其制备方法及应用
CN110957490A (zh) 一种中空结构的碳包覆磷酸铁钠电极材料的制备方法
CN105428618A (zh) 一种壳核型碳包覆金属硫化物纳米复合粒子的制备方法及其应用
CN113921762B (zh) 一种纳米铋复合材料及其制备方法与应用
CN109950487A (zh) 一种锂硫电池正极材料及其制备方法
CN113659143A (zh) 钠离子电池负极材料的制备方法及负极材料,钠离子电池
CN110600719B (zh) 一种高倍率性能的多孔硅碳锂离子电池负极材料及其制备方法
CN107946548B (zh) 储锂铁氧化物与碳复合的锂离子电池负极材料的制备方法
CN112007680B (zh) 一种二维纳米片结构过渡金属-n-c材料的制备方法及其在锂硫电池上的应用
CN113644269B (zh) 氮掺杂硬碳材料的制备方法及其产品和应用
CN109273703B (zh) 一种锂硫电池正极用石墨烯/硫/氢氧化镍自支撑复合材料及其制备方法
CN111048753B (zh) 一种氧化铁掺杂磷原子复合材料及其制备方法和应用
CN112897509A (zh) 一种过渡金属Ni催化原位生长出管壁坍缩的碳纳米管的方法
CN116169290A (zh) 补钠添加剂在制备钠离子电池正极材料中的应用、钠离子电池正极材料及其制备方法和应用
CN116207222A (zh) 一种用作搭载硫化锂的气凝胶微球材料及制备方法
CN112142060B (zh) 一种煤基硅碳复合负极材料其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211015