CN111916733A - 一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法 - Google Patents

一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法 Download PDF

Info

Publication number
CN111916733A
CN111916733A CN202010580343.5A CN202010580343A CN111916733A CN 111916733 A CN111916733 A CN 111916733A CN 202010580343 A CN202010580343 A CN 202010580343A CN 111916733 A CN111916733 A CN 111916733A
Authority
CN
China
Prior art keywords
transition metal
metal sulfide
mos
electrode material
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010580343.5A
Other languages
English (en)
Inventor
任晶
张发
任瑞鹏
樊泽文
吕永康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202010580343.5A priority Critical patent/CN111916733A/zh
Publication of CN111916733A publication Critical patent/CN111916733A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属新能源技术领域,为解决过渡金属硫化物作为锂电池负极材料时,固有体积膨胀效应和导电性能差的问题。提供一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法。铜盐水浴共沉淀方法合成四面体Cu2O固体前驱体,所得Cu2O固体与硫源混合,利用溶剂热法、得到中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料。所得中空结构过渡金属硫化物,能为其体积膨胀提供缓冲空间,同时保证较高的比容量;在0.2 A/g的初始首圈比容量为1135 mAh/g,首圈库伦效率为101%,循环250次以后,依然保持875 mAh/g的比容量。工艺简单、安全、成本低、可重复性好。

Description

一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制 备方法
技术领域
本发明属于新能源技术领域,具体为一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法。
背景技术
锂离子电池由于其高的能量密度、功率密度、长的使用寿命、环境友好等优点,已被广泛应用于移动电子产品中,并已成为混合电动汽车以及纯电动汽车的动力来源。然而,对于其负极材料,商业石墨表现出非常低的容量(375 mAh/g)。目前的合金化反应(Sn、P、SnO2等)、脱嵌机制(碳材料)和转化反应(ZnO、CoS等)类型的负极材料表现出高容量,但循环和倍率性能差。因此,迫切需要找到具有优异的循环稳定性,长寿命和高倍率性能的负极材料。
在诸多电极材料中,过渡金属硫化物由于其独特的物理化学性质使它们备受关注,具有储能,电催化,太阳能和电子等方面的应用。过渡金属硫化物电极材料因其多种氧化态(多硫化锂)和配位多面体的存在使其能够可逆地嵌入脱出碱金属阳离子,具有比较高的电化学容量,因此被视为极具潜力的锂离子电池负极材料,基于过渡金属硫化物纳米材料的离子电池体系已被广泛研究。
通过设计构筑、结构优化、机理研究等方面已提出一些解决电子电导率低、循环衰减快的方法,然而大部分方法仅仅只是针对电极材料的单一特性,如何全面的提升电极材料的各项指标仍存在很大挑战,进一步探索基于过渡金属硫化物的电极材料意义重大。
发明内容
本发明针对目前过渡金属硫化物电极材料制备中的不足,提供了一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法。该方法合成过程简单可控。
为了实现上述目的,本发明的技术方案如下:一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法,将铜盐通过水浴共沉淀的方法合成四面体Cu2O固体前驱体,将得到的Cu2O固体与硫源混合,采用溶剂热法,反应完成得到中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料。
所述Cu2O固体前驱体的具体合成方法为:0.01mol/L的氯化铜水溶液置于水浴锅中,磁力搅拌下,升温至60℃;然后将2mol/L的氢氧化钠水溶液逐滴加入到氯化铜溶液中,氢氧化钠与氯化铜摩尔比为1:2,溶液由绿色变为黑色;持续反应30min;0.59mol/L的抗坏血酸水溶液20mL加入到上述正在搅拌的反应溶液中,溶液由黑色逐步变为红褐色,反应持续1-3小时;自然冷却至室温,去离子水、乙醇反复清洗、离心,得到沉淀物,真空干燥8h即为四面体Cu2O固体前驱体。
优选:磁力搅拌转速为85r/min。
中空四面体过渡金属硫化物Cu2MoS4的具体制备方法为:0.08g得到的四面体Cu2O固体前驱体超声分散于30 ml乙二醇中,加入3.333g聚乙烯吡咯烷酮PVP超声至溶解,依次放入0.120g钼酸钠、0.240g硫代乙酰胺,至完全溶解后,将所得溶液加入到聚四氟乙烯做内衬的不锈钢反应釜中;高温烘箱中200℃反应24h,自然冷却至室温,用去离子水、乙醇清洗、离心数次,得到的沉淀物,真空干燥8h,得到中空四面体过渡金属硫化物Cu2MoS4
本发明所得中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料进行电极处理性能表征,具体方法为:采用CR2032纽扣式半电池,所采用浆料按质量比为活性材料:导电剂(乙炔黑):粘结剂(聚偏二氟乙烯)=75:15:10,涂敷在铜箔上。以锂片为对电极,电解液为醚类电解液1 M LiPF6(DME:DOL=1:1 V)。本发明采用新威电池测试仪进行恒电流充放电测试,表征电极材料的倍率、循环、充放电平台等性能。采用CHI 760(上海辰华)电化学工作站进行循环伏安曲线(CV)和电化学阻抗测试。
本发明制备的中空四面体Cu2MoS4,通过水热过程后,变为纳米中空结构,进一步提升循环性能。中空四面体Cu2MoS4为金属硫化物在循环过程中出现的体积膨胀,提供了一定的缓冲空间,增加了循环稳定性能。通过在醚类电解液下的电化学性能测试,该类材料在谜类电解液下展现出优异的电化学性能。
附图说明
图1为实施例1中的Cu2O和Cu2MoS4的 XRD图谱;
图2为实施例1中的Cu2O和Cu2MoS4的SEM和TEM图像;
图3为实施例1中的Cu2O和Cu2MoS4的电化学性能(CV、倍率、循环)。
具体实施方式
下面结合附图和实施例对本发明进行具体说明,但本发明的具体实施方式不限于此。
实施例1:一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法,将铜盐通过水浴共沉淀的方法合成四面体Cu2O固体前驱体,将得到的Cu2O固体与硫源混合,利用溶剂热法、反应完成得到中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料。
Cu2O固体前驱体的具体合成方法为:称取0.341g二水合氯化铜,加入200ml高纯水,放于水浴锅中,开启磁力搅拌器,升高温度至60℃;在50ml烧杯中,称取1.6g氢氧化钠,加入20ml高纯水,搅拌均匀,将溶液逐滴加入到正在磁力搅拌的溶液中,溶液由绿色逐步变为黑色,降温至55℃,反应持续30分钟;在50ml烧杯中,称取2.1g抗坏血酸,加入20ml高纯水,加入到正在磁力搅拌的溶液中,溶液由黑色逐步变为红褐色,反应持续3小时。待冷却至室温,用去离子水,乙醇离心,清洗数次,得到的沉淀物,真空干燥8小时,得到四面体氧化亚铜。
中空四面体过渡金属硫化物Cu2MoS4的具体制备方法为:称取0.08g得到的四面体Cu2O固体前驱体超声分散于30 ml乙二醇中,加入3.333g聚乙烯吡咯烷酮PVP超声至溶解,依次放入0.120g钼酸钠、0.240g硫代乙酰胺,至完全溶解后,将所得的均一稳定的溶液加入到聚四氟乙烯做内衬的不锈钢反应釜中。放于高温烘箱中200℃,24小时,待冷却至室温,用去离子水,乙醇离心,清洗数次,得到的沉淀物,真空干燥8小时,得到中空四面体过渡金属硫化物Cu2MoS4
所得中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料进行电极处理性能表征,具体方法为:采用CR2032纽扣式半电池,所采用浆料按质量比为活性材料:导电剂(乙炔黑):粘结剂(聚偏二氟乙烯)=75:15:10,涂敷在铜箔上。以锂片为对电极,聚丙烯膜(celgard 2300)作为隔膜,电解液为1 M LiPF6(DME:DOL=1:1 V)在充满氩气的手套箱内进行电池组装。
对Cu2O、Cu2MoS4进行材料表征:采用了X射线衍射来测试样品组成,如图1所示,与标准卡PDF#77-0199对比发现,所有的衍射峰与标准卡吻合,且无杂峰出现,说明Cu2O纯度较高。扫描电镜(SEM)和透射电镜(TEM)显示样品形貌,如图2、3所示。结果表明材料为粒径均一的,中空四面体的双金属硫化物Cu2MoS4
电化学性能,如图3所示,电池在neware电池测试系统上进行的测试,充放电范围为1-3 V(经过电压区间优化),充放电电流密度为0.1 A/g、0.2 A/g、0.5 A/g、1 A/g、2 A/g、5 A/g,能满足大电流充放电,具有良好的倍率性能。如图所示,在0.2 A/g初始首圈比容量为1135 mAh/g,经过250次循环,比容量为875 mAh/g,具有良好的循环稳定性。
总之,改变金属硫化物形貌,为金属硫化物在从放电过程中的体积膨胀提供一个缓冲空间;优异的电化学性能,表明该合成方法是一种具有潜力的金属硫化物制备方法。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特性,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征或步骤外,均可以任何方式组合。

Claims (4)

1.一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法,其特征在于:将铜盐通过水浴共沉淀的方法合成四面体Cu2O固体前驱体,将得到的Cu2O固体与硫源混合,利用溶剂热法、反应完成得到中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料。
2.根据权利要求1所述的一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法,其特征在于:0.01mol/L的氯化铜水溶液置于水浴锅中,磁力搅拌下,升温至60℃;然后将2mol/L的氢氧化钠水溶液逐滴加入到氯化铜溶液中,氢氧化钠与氯化铜摩尔比为1:2,溶液由绿色变为黑色;降温至55℃,持续反应30min;0.59mol/L的抗坏血酸水溶液20mL加入到上述正在搅拌的反应溶液中,溶液由黑色逐步变为红褐色,反应持续1-3小时;自然冷却至室温,去离子水、乙醇反复清洗、离心,得到沉淀物,真空干燥8h即为四面体Cu2O固体前驱体。
3.根据权利要求2所述的一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法,其特征在于:反应温度为60℃,磁力搅拌转速为85r/min。
4.根据权利要求1或2所述的一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法,其特征在于:0.08g得到的四面体Cu2O固体前驱体超声分散于30 ml乙二醇中,加入3.333g聚乙烯吡咯烷酮PVP超声至溶解,依次放入0.120g钼酸钠、0.240g硫代乙酰胺,至完全溶解后,将所得溶液加入到聚四氟乙烯做内衬的不锈钢反应釜中;高温烘箱中200℃反应24h,自然冷却至室温,用去离子水、乙醇反复清洗、离心,得到的沉淀物,真空干燥8h,得到中空四面体过渡金属硫化物Cu2MoS4
CN202010580343.5A 2020-06-23 2020-06-23 一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法 Pending CN111916733A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010580343.5A CN111916733A (zh) 2020-06-23 2020-06-23 一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010580343.5A CN111916733A (zh) 2020-06-23 2020-06-23 一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN111916733A true CN111916733A (zh) 2020-11-10

Family

ID=73226643

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010580343.5A Pending CN111916733A (zh) 2020-06-23 2020-06-23 一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN111916733A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838201A (zh) * 2021-04-06 2021-05-25 湖南镕锂新材料科技有限公司 一种Cu2MoS4复合负极材料及其制备方法和钠离子电池
CN115196679A (zh) * 2022-07-15 2022-10-18 三峡大学 钠离子电池负极Cu2MoS4空心纳米立方体的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170117547A1 (en) * 2015-06-05 2017-04-27 Robert Bosch Gmbh Cathode material for a lithium/sulfur cell
CN106663789A (zh) * 2014-06-06 2017-05-10 罗伯特·博世有限公司 用于锂‑硫‑电池的阴极材料
US20190233953A1 (en) * 2018-01-30 2019-08-01 The Board Of Trustees Of The Univeristy Of Alabama Composite electrodes and methods for the fabrication and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106663789A (zh) * 2014-06-06 2017-05-10 罗伯特·博世有限公司 用于锂‑硫‑电池的阴极材料
US20170117547A1 (en) * 2015-06-05 2017-04-27 Robert Bosch Gmbh Cathode material for a lithium/sulfur cell
US20190233953A1 (en) * 2018-01-30 2019-08-01 The Board Of Trustees Of The Univeristy Of Alabama Composite electrodes and methods for the fabrication and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONG-FENG ZHANG等: "Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the", 《JOURNAL OF MATERIALS CHEMISTRY》 *
JING REN等: "Hollow I-Cu2MoS4 nanocubes coupled with an ether-based electrolyte for highly reversible lithium storage", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838201A (zh) * 2021-04-06 2021-05-25 湖南镕锂新材料科技有限公司 一种Cu2MoS4复合负极材料及其制备方法和钠离子电池
CN115196679A (zh) * 2022-07-15 2022-10-18 三峡大学 钠离子电池负极Cu2MoS4空心纳米立方体的制备方法

Similar Documents

Publication Publication Date Title
Yi et al. Self-templating growth of Sb 2 Se 3@ C microtube: a convention-alloying-type anode material for enhanced K-ion batteries
CN106450195B (zh) 一种锂硫电池用正极材料及其制备方法和含有该正极材料的锂硫电池
CN108232115B (zh) 锂硫电池正极材料及其制备方法和锂硫电池
TWI614211B (zh) 可高度分散之石墨烯組成物、其製備方法、及包含該可高度分散之石墨烯組成物的用於鋰離子二次電池之電極
US10263253B2 (en) Method of preparing a vanadium oxide compound and use thereof in electrochemical cells
Sen et al. Synthesis of molybdenum oxides and their electrochemical properties against Li
CN108658119A (zh) 一种低温硫化技术用于制备硫化铜纳米片及其复合物的方法和应用
CN109065874B (zh) 一种MoO3/rGO-N纳米复合材料及其制备方法和应用
CN114583302A (zh) Mof基单原子补锂复合材料及其制备方法和正极材料与电池
CN111916733A (zh) 一种中空四面体过渡金属硫化物Cu2MoS4锂电池负极材料的制备方法
Chen et al. Synthesis of K0. 25V2O5 hierarchical microspheres as a high-rate and long-cycle cathode for lithium metal batteries
CN105977487B (zh) 手风琴状vs2材料及其制备方法和应用
CN114725375A (zh) 一种一步溶剂热法制备vs2钠离子电池负极材料的方法
CN113745502B (zh) 一种碳纳米管包覆的氮化三铁及其制备方法和应用
CN114242972A (zh) 富镍高压钠离子电池正极材料及其制备方法和应用
CN112436136B (zh) 含氧空位的钼酸钴纳米棒及其制备方法和应用
CN109473634B (zh) 固相共热合成二硒化钼/氮掺杂碳棒的方法
CN113410459A (zh) 一种内嵌MoSx纳米片的三维有序大孔类石墨烯炭材料、制备与应用
CN108717970B (zh) 一种锂离子电池负极材料的制备方法
CN111244420A (zh) 一种锂电池用NiCo2O4@Ni-B负极材料及其制备方法
Simsir et al. Anode performance of hydrothermally grown carbon nanostructures and their molybdenum chalcogenides for Li-ion batteries
CN114678499B (zh) 一种单层过渡金属硫化物/石墨烯复合材料及其制备方法和应用
CN115939369A (zh) 一种多金属共调控的层状氧化物钠离子电池正极材料及其制备方法和应用
CN115893509A (zh) 用于锂离子电池负极材料的四氧化三钴/氮掺杂碳复合材料的制备方法
CN115084509A (zh) 钾离子电池用硒硫化铟/碳负极材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201110