CN111916525A - 锗波导探测器侧壁浅结离子注入工艺 - Google Patents

锗波导探测器侧壁浅结离子注入工艺 Download PDF

Info

Publication number
CN111916525A
CN111916525A CN202010812875.7A CN202010812875A CN111916525A CN 111916525 A CN111916525 A CN 111916525A CN 202010812875 A CN202010812875 A CN 202010812875A CN 111916525 A CN111916525 A CN 111916525A
Authority
CN
China
Prior art keywords
germanium waveguide
side wall
injection
germanium
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010812875.7A
Other languages
English (en)
Other versions
CN111916525B (zh
Inventor
江海波
李睿智
姜华男
刘钟远
但伟
何建强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 44 Research Institute
Original Assignee
CETC 44 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 44 Research Institute filed Critical CETC 44 Research Institute
Priority to CN202010812875.7A priority Critical patent/CN111916525B/zh
Publication of CN111916525A publication Critical patent/CN111916525A/zh
Application granted granted Critical
Publication of CN111916525B publication Critical patent/CN111916525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Element Separation (AREA)

Abstract

本发明公开了一种锗波导探测器侧壁浅结离子注入工艺,先在锗波导上光刻出N型侧壁注入区和第一接触区,然后采用固定靶盘倾角的大束流离子注入设备分别对N型侧壁和第一接触区进行N型注入,之后在锗波导上光刻出P型侧壁注入区和第一接触区,再采用固定靶盘倾角的大束流离子注入设备分别对P型侧壁和第一接触区进行P型注入。本发明中,通过调整注入设备的注入倾角和旋转角,分别对侧壁和接触区进行小偏角注入,从而大大降低了对设备的注入剂量要求,使用普通的固定靶盘倾角的大束流离子注入设备即可完成侧壁浅结离子注入工艺,降低了工艺设备的成本,且注入效果和大偏角一体注入的效果相当。

Description

锗波导探测器侧壁浅结离子注入工艺
技术领域
本发明涉及锗波导探测器领域,特别涉及一种锗波导探测器侧壁浅结离子注入工艺。
背景技术
根据GeSi调制器和Ge探测器设计要求,需要在Ge脊波导侧壁注入形成PIN探测器,在台面离子注入形成欧姆接触实现电极连接。因波导宽度仅有0.8μm,因此对侧壁注入结深提出很高的要求,需要浅结离子注入以减少杂质对光的吸收,同时离子注入必须陡峭,以避免对本征层的掺杂;台面注入浓度要足够高以形成好的欧姆接触,因此侧壁浅结离子注入技术是高性能GeSi调制器和Ge探测器研制的关键。对于硅基光子集成,常用的方法是调整注入倾角Tilt实现大偏角(≥45°)侧壁注入。
如图1所示,为现有技术中对锗波导进行大偏角侧壁浅结离子的示意图。如图2所示,为现有技术锗波导探测器大偏角侧壁浅结离子注入工艺的流程图,先在锗表面淀积有二氧化硅掩膜的锗波导上光刻形成P型侧壁注入区域;然后调整注入设备的倾角实现侧壁和接触区45°P型大剂量注入;接着在锗硅波导上光刻形成N型侧壁注入区域;再调整注入设备的倾角实现侧壁和接触区45°N型大剂量注入;最后进行激光退火激活杂质。该制作流程对工艺平台制作能力要求较高,必须采用可以调整倾角至45°,且低能量大剂量注入设备,才能进行该类工艺制作。
发明内容
本发明要解决的技术问题是提供了一种可采用固定靶盘倾角的大束流离子注入设备进行制作的锗波导探测器侧壁浅结离子注入工艺。
本发明的技术方案如下:
一种锗波导探测器侧壁浅结离子注入工艺,包括以下步骤:
取制作有锗波导的硅晶圆,所述锗波导的锗表面淀积有二氧化硅掩膜;
在锗波导上涂履光刻胶,并光刻出N型侧壁注入区和第一接触区;
将硅晶圆放置在固定靶盘倾角的大束流离子注入设备的靶盘上,并使锗波导的N型侧壁朝向靶盘旋转的中心点;靶盘装载硅晶圆位置的倾角tilt为5~10°;
采用固定靶盘倾角的大束流离子注入设备在锗波导N型侧壁注入杂质;
将硅晶圆顺时针旋转90°或逆时针旋转90°,采用固定靶盘倾角的大束流离子注入设备在锗波导的第一接触区注入杂质,同时对N型侧壁浅结进行叠加注入;
在锗波导上涂履光刻胶,并光刻出P型侧壁注入区和第二接触区;
将硅晶圆放置在固定靶盘倾角的大束流离子注入设备的靶盘上,使锗波导的P型侧壁朝向靶盘旋转的中心点;
采用固定靶盘倾角的大束流离子注入设备在锗波导P型侧壁注入杂质;
将硅晶圆顺时针旋转90°或逆时针旋转90°,采用固定靶盘倾角的大束流离子注入设备在锗波导的第二接触区注入杂质,同时对P型侧壁浅结进行叠加注入;
激光退火激活注入的杂质。
进一步的,所述锗波导的锗表面淀积的二氧化硅掩膜的厚度为200~400nm。
进一步的,所述硅晶圆的一侧设有平边,该硅晶圆上锗波导的传输方向与其平边相互平行,且锗波导的N型侧壁朝向平边。
进一步的,在注入杂质的过程中,所述靶盘围绕靶盘中心旋转,旋转速度为900rpm。
进一步的,在锗波导的N型侧壁注入的杂质为磷离子,注入能量为30~50kev,剂量为2×1015Atoms/cm2
进一步的,在锗波导的第一接触区注入的杂质为磷离子,注入能量为70~90keV,剂量为2×1015Atoms/cm2
进一步的,在锗波导的P型侧壁注入的杂质为二氟化硼离子,注入能量为30~50kev,剂量为2×1015Atoms/cm2
进一步的,在锗波导的第二接触区注入的杂质为二氟化硼离子,注入能量为70~90keV,剂量为2×1015Atoms/cm2
有益效果:本发明中,通过调整注入设备的注入倾角和旋转角,并将侧壁和对应接触区的大偏角一体注入更改为分别对侧壁和接触区进行小偏角注入,从而大大降低了对设备的注入剂量要求,无需采用大偏角注入设备,使用普通的固定靶盘倾角的大束流离子注入设备即可完成侧壁浅结离子注入工艺,降低了工艺设备的成本,且注入效果和大偏角一体注入的效果相当。另外,固定靶盘上可同时放置八个硅晶圆,从而可以同时对八个硅晶圆上的锗波导进行注入,提升了注入效率。
附图说明
图1为现有技术锗波导探测器大偏角侧壁浅结离子注入工艺的流程图;
图2为现有技术中对锗波导进行大偏角侧壁浅结离子注入的示意图;
图3为本发明的实施例1中锗波导探测器侧壁浅结离子注入工艺的流程图;
图4为将锗波导放置在硅晶圆上的示意图;
图5为对N型侧壁进行注入时,硅晶圆放置在靶盘上的示意图;
图6为本发明的优选实施例中对锗波导进行侧壁浅结离子注入的示意图;
图7为对P型侧壁进行注入时,硅晶圆放置在靶盘上的示意图;
图8为本发明的实施例2中锗波导探测器侧壁浅结离子注入工艺的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中技术方案作进一步详细的说明。
在本发明的描述中,除非另有规定和限定,需要说明的是,术语“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
实施例1
如图3所示,本发明锗波导探测器侧壁浅结离子注入工艺的一个优选实施例包括以下步骤:
步骤S1、取制作有锗波导的硅晶圆,所述锗波导的锗表面淀积有二氧化硅掩膜,所述二氧化硅掩膜的厚度为200~400nm。如图4所示,为便于定位,可在硅晶圆的一侧设置平边,将制作锗波导时,使锗波导的传输方向与平边相互平行,且锗波导的N型侧壁朝向平边。
步骤S2、在锗波导上涂履光刻胶,并光刻出N型侧壁注入区和第一接触区,从而在注入过程中利用光刻胶对其余区域进行保护。
步骤S3、如图5所示,将硅晶圆放置在固定靶盘倾角的大束流离子注入设备的靶盘上,并使硅晶圆的平边朝向靶盘旋转的中心点,定义此时硅晶圆的旋转角twist=180°,并定义旋转角twist增大表示硅晶圆沿顺时针方向旋转,旋转角twist减小表示硅晶圆沿逆时针方向旋转。靶盘装载硅晶圆位置的倾角tilt(即硅晶圆与水平面的夹角)为5~10°,优选为tilt=7°。
步骤S4、如图6所示,采用固定靶盘倾角的大束流离子注入设备在锗波导N型侧壁注入杂质,注入的杂质优选为P31+(磷离子);注入杂质的过程中,所述靶盘围绕靶盘中心旋转,旋转速度为900rpm(转/分),注入能量为30~50kev(千电子伏特),剂量为2×1015Atoms/cm2(表示每平方厘米含有的特定原子个数)。由于锗波导的侧壁有83~90°的倾角,因此锗波导侧壁与注入离子束夹角为7~14°,在N型侧壁注入过程中也会在第一接触区注入部分P31+。
步骤S5、调整硅晶圆的旋转角twist为270°或90°(即将硅晶圆顺时针旋转90°或逆时针旋转90°),优选为twist=270°,采用固定靶盘倾角的大束流离子注入设备在锗波导的第一接触区注入杂质,注入的杂质与N型侧壁相同;注入杂质的过程中,靶盘旋转速度为900rpm,注入能量为70~90keV,剂量为2×1015Atoms/cm2,该注入实现欧姆接触;此时锗波导的注入倾角约为2°~7°,可同时对N型侧壁浅结进行叠加注入。
步骤S6、在锗波导上涂履光刻胶,并光刻出P型侧壁注入区和第二接触区,在注入过程中光刻胶对其余区域形成保护。
步骤S7、如图7所示,将硅晶圆放置在固定靶盘倾角的大束流离子注入设备的靶盘上,调整硅晶圆的旋转角twist为0°(即硅晶圆的平边朝向靶盘的外沿)。
步骤S8、采用固定靶盘倾角的大束流离子注入设备在锗波导P型侧壁注入杂质,注入的杂质优选为BF2(49)(二氟化硼离子);注入杂质的过程中,靶盘旋转速度为900rpm,注入能量为30~50kev,剂量为2×1015Atoms/cm2。由于锗波导的P型侧壁有83~90°的倾角,因此锗波导P型侧壁与注入离子束夹角为7~14°,在P型侧壁注入过程中也会在第二接触区注入部分BF2(49)。
步骤S9、调整硅晶圆的旋转角twist为90°或270°,优选为twist=90°,采用固定靶盘倾角的大束流离子注入设备在锗波导的第二接触区注入杂质,注入的杂质与P型侧壁相同;注入杂质的过程中,靶盘旋转速度为900rpm,注入能量为70~90keV,剂量为2×1015Atoms/cm2,该注入实现欧姆接触;此时锗波导的注入倾角约为2°~7°,可同时对P型侧壁浅结进行叠加注入。
步骤S10、激光退火激活注入的杂质,即可进行后续制作过程。
通过调整注入设备的注入倾角和旋转角,并将侧壁和对应接触区的大偏角一体注入更改为分别对侧壁和接触区进行小偏角注入,从而大大降低了对设备的注入剂量要求,无需采用大偏角注入设备,使用普通的固定靶盘倾角的大束流离子注入设备即可完成侧壁浅结离子注入工艺,降低了工艺设备的成本,且注入效果和大偏角一体注入的效果相当。另外,固定靶盘上可同时放置八个硅晶圆,从而可以同时对八个硅晶圆上的锗波导进行注入,提升了注入效率。
实施例2
如图8所示,本实施例与实施例1的区别在于,在执行完实施例1的步骤S1后,先依次执行实施例1的步骤S6、步骤S7、步骤S8、步骤S9,再依次执行实施例1的步骤S2、步骤S3、步骤S4、步骤S5,最后执行实施例1的步骤S10,其工作原理及每一步骤的内容均与实施例1相同。
本发明未描述部分与现有技术一致,在此不做赘述。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明的专利保护范围之内。

Claims (8)

1.一种锗波导探测器侧壁浅结离子注入工艺,其特征在于,包括以下步骤:
取制作有锗波导的硅晶圆,所述锗波导的锗表面淀积有二氧化硅掩膜;
在锗波导上涂履光刻胶,并光刻出N型侧壁注入区和第一接触区;
将硅晶圆放置在固定靶盘倾角的大束流离子注入设备的靶盘上,并使锗波导的N型侧壁朝向靶盘旋转的中心点;靶盘装载硅晶圆位置的倾角tilt为5~10°;
采用固定靶盘倾角的大束流离子注入设备在锗波导N型侧壁注入杂质;
将硅晶圆顺时针旋转90°或逆时针旋转90°,采用固定靶盘倾角的大束流离子注入设备在锗波导的第一接触区注入杂质,同时对N型侧壁浅结进行叠加注入;
在锗波导上涂履光刻胶,并光刻出P型侧壁注入区和第二接触区;
将硅晶圆放置在固定靶盘倾角的大束流离子注入设备的靶盘上,使锗波导的P型侧壁朝向靶盘旋转的中心点;
采用固定靶盘倾角的大束流离子注入设备在锗波导P型侧壁注入杂质;
将硅晶圆顺时针旋转90°或逆时针旋转90°,采用固定靶盘倾角的大束流离子注入设备在锗波导的第二接触区注入杂质,同时对P型侧壁浅结进行叠加注入;
激光退火激活注入的杂质。
2.根据权利要求1所述的锗波导探测器侧壁浅结离子注入工艺,其特征在于,所述锗波导的锗表面淀积的二氧化硅掩膜的厚度为200~400nm。
3.根据权利要求1所述的锗波导探测器侧壁浅结离子注入工艺,其特征在于,所述硅晶圆的一侧设有平边,该硅晶圆上锗波导的传输方向与其平边相互平行,且锗波导的N型侧壁朝向平边。
4.根据权利要求1所述的锗波导探测器侧壁浅结离子注入工艺,其特征在于,在注入杂质的过程中,所述靶盘围绕靶盘中心旋转,旋转速度为900rpm。
5.根据权利要求1所述的锗波导探测器侧壁浅结离子注入工艺,其特征在于,在锗波导的N型侧壁注入的杂质为磷离子,注入能量为30~50kev,剂量为2×1015Atoms/cm2
6.根据权利要求1所述的锗波导探测器侧壁浅结离子注入工艺,其特征在于,在锗波导的第一接触区注入的杂质为磷离子,注入能量为70~90keV,剂量为2×1015Atoms/cm2
7.根据权利要求1所述的锗波导探测器侧壁浅结离子注入工艺,其特征在于,在锗波导的P型侧壁注入的杂质为二氟化硼离子,注入能量为30~50kev,剂量为2×1015Atoms/cm2
8.根据权利要求1所述的锗波导探测器侧壁浅结离子注入工艺,其特征在于,在锗波导的第二接触区注入的杂质为二氟化硼离子,注入能量为70~90keV,剂量为2×1015Atoms/cm2
CN202010812875.7A 2020-08-13 2020-08-13 锗波导探测器侧壁浅结离子注入工艺 Active CN111916525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010812875.7A CN111916525B (zh) 2020-08-13 2020-08-13 锗波导探测器侧壁浅结离子注入工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010812875.7A CN111916525B (zh) 2020-08-13 2020-08-13 锗波导探测器侧壁浅结离子注入工艺

Publications (2)

Publication Number Publication Date
CN111916525A true CN111916525A (zh) 2020-11-10
CN111916525B CN111916525B (zh) 2022-03-25

Family

ID=73283906

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010812875.7A Active CN111916525B (zh) 2020-08-13 2020-08-13 锗波导探测器侧壁浅结离子注入工艺

Country Status (1)

Country Link
CN (1) CN111916525B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242646A (zh) * 2021-11-19 2022-03-25 浙江光特科技有限公司 一种晶圆或soi晶圆的处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432107A (en) * 1992-11-04 1995-07-11 Matsushita Electric Industrial Co., Ltd. Semiconductor fabricating method forming channel stopper with diagonally implanted ions
CN102024703A (zh) * 2009-09-17 2011-04-20 中芯国际集成电路制造(上海)有限公司 掺杂的方法
CN102332392A (zh) * 2011-10-25 2012-01-25 上海华力微电子有限公司 硅纳米管的制作方法
CN103151257A (zh) * 2013-03-14 2013-06-12 上海华力微电子有限公司 一种σ型硅沟槽的制造方法
CN109564362A (zh) * 2016-11-23 2019-04-02 洛克利光子有限公司 光电装置
US20190331855A1 (en) * 2016-12-02 2019-10-31 Rockley Photonics Limited Waveguide device and method of doping a waveguide device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432107A (en) * 1992-11-04 1995-07-11 Matsushita Electric Industrial Co., Ltd. Semiconductor fabricating method forming channel stopper with diagonally implanted ions
CN102024703A (zh) * 2009-09-17 2011-04-20 中芯国际集成电路制造(上海)有限公司 掺杂的方法
CN102332392A (zh) * 2011-10-25 2012-01-25 上海华力微电子有限公司 硅纳米管的制作方法
CN103151257A (zh) * 2013-03-14 2013-06-12 上海华力微电子有限公司 一种σ型硅沟槽的制造方法
CN109564362A (zh) * 2016-11-23 2019-04-02 洛克利光子有限公司 光电装置
US20190331855A1 (en) * 2016-12-02 2019-10-31 Rockley Photonics Limited Waveguide device and method of doping a waveguide device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242646A (zh) * 2021-11-19 2022-03-25 浙江光特科技有限公司 一种晶圆或soi晶圆的处理方法

Also Published As

Publication number Publication date
CN111916525B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
US6346464B1 (en) Manufacturing method of semiconductor device
US5378641A (en) Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
JPH01125935A (ja) 半導体装置の製造方法
KR102055472B1 (ko) 태양 전지의 공간적으로 위치된 확산 영역을 형성하기 위한 도펀트의 이온 주입
US7598161B2 (en) Method of forming transistor devices with different threshold voltages using halo implant shadowing
JP2019046793A (ja) イオン注入装置及び半導体デバイスの製造方法
CN107710417A (zh) 半导体装置的制造方法
US20130037878A1 (en) Vdmos device and method for fabricating the same
CN111916525B (zh) 锗波导探测器侧壁浅结离子注入工艺
US11036006B2 (en) Waveguide device and method of doping a waveguide device
CN112635326A (zh) 超级结制作方法及超级结
US5858845A (en) Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
JPH10303140A (ja) 絶縁ゲート電界効果トランジスタの製造方法
JPH09162136A (ja) 半導体装置の製造方法
KR100640207B1 (ko) 박막트랜지스터 및 그 제조방법
JPS6398124A (ja) 半導体装置の製造方法
KR100548567B1 (ko) 전계효과 트랜지스터 제조방법
CN115685444B (zh) 硅基电光调制器的补偿掺杂方法及其硅基电光调制器
CN114496760B (zh) 一种mos晶体管的形成方法
Kim et al. Optimizing Collector-Emitter Saturation Voltage at 3000 V Insulated Gate Bipolar Transistors Using Laser Thermal Annealing
JPS62179721A (ja) 半導体基板のド−ピング方法
US10943974B2 (en) Method for producing a semiconductor component having a channel stopper region
JP2980474B2 (ja) 縦型トランジスタおよびその製造方法
KR100217899B1 (ko) 반도체 소자의 트랜지스터 제조 방법
Ryssel Ion Implantation for Very Large Scale Integration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant