CN111908910A - 一种暖白光照明用高显指透明陶瓷及其制备方法 - Google Patents

一种暖白光照明用高显指透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN111908910A
CN111908910A CN202010829635.8A CN202010829635A CN111908910A CN 111908910 A CN111908910 A CN 111908910A CN 202010829635 A CN202010829635 A CN 202010829635A CN 111908910 A CN111908910 A CN 111908910A
Authority
CN
China
Prior art keywords
transparent ceramic
color
warm white
rendering
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010829635.8A
Other languages
English (en)
Other versions
CN111908910B (zh
Inventor
王蕊
张乐
甄方正
杨顺顺
黄今
李涛
王湛然
朱晓雯
胡芷铨
孙炳恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Original Assignee
Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd filed Critical Xinyi Xiyi High Tech Material Industry Technology Research Institute Co Ltd
Priority to CN202010829635.8A priority Critical patent/CN111908910B/zh
Publication of CN111908910A publication Critical patent/CN111908910A/zh
Application granted granted Critical
Publication of CN111908910B publication Critical patent/CN111908910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/443Nitrates or nitrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

本发明提供了一种暖白光照明用高显指透明陶瓷及其制备方法,采用共沉淀法制备了具有强结构刚性的透明陶瓷,掺杂Ce3+取代Sr2+和Lu3+时,在410 nm的激发下显示出较低的色温,实现了光谱展宽,提高了显指,非常适合用于适用于室内暖白光照明。

Description

一种暖白光照明用高显指透明陶瓷及其制备方法
技术领域
本发明属于透明陶瓷应用技术领域,本发明提供一种暖白光照明用高显指透明陶瓷及其制备方法。
背景技术
近年来,随着发光材料及其制备技术的发展,以半导体发光二极管为基础的白光LED照明受到人们的广泛关注。实现白光LED照明的方式有多种,其中,“蓝色LED芯片+黄色荧光粉”的组合方式是目前实现白光LED照明的重要方式之一。然而,高分子材料容易老化,且耐高温性差,从而会对白光LED的颜色品质和流明效率产生影响。
而且,由于缺少红色成分,导致色温(CCT)高,显色指数(CRI)低,在室内照明时不能给人带来温暖和舒适。此外,460 nm左右的强蓝色发射带太窄,导致出现富蓝色。为了获得热白光LED,近紫外LED芯片复合三色(红、绿、蓝)荧光粉成为人们研究的热点。这种方法可以有效地提高显色指数,调节色温,但不同荧光粉的制作复杂度和重吸收应是明显的,尤其是红色荧光粉对蓝光的吸收,这会降低荧光粉的发光效率。为了解决这一问题,人们采用掺Ce3+的YAG荧光陶瓷代替传统的荧光粉来封装白光LED。荧光陶瓷较传统的荧光粉具有较高的吸收系数和折射率,且其透明性好、硬度高、耐腐蚀、耐高温、制作工艺简单、生产成本低,可以大批量生产,且掺杂浓度易于控制,Ce3+掺杂在陶瓷中的分布也比较均匀。而采用蓝色InGaN芯片配以绿色和红色荧光粉来解决这一缺陷,虽然可以满足高CRI和低CCT的要求,但是绿色的缺失使其并不不适用于高质量的暖白光LED照明。因此,探索获得高CRI、低CCT的高效暖白光的新途径是一项迫切的工作。
近年来人们在荧光陶瓷的研究上花费了大量的精力和时间,合成了多种不同颜色的稀土和过渡元素掺杂的荧光陶瓷。但是Ce3+掺杂的石榴石结构的透明陶瓷很少能发出有效的青绿色光。虽然有些绿色发光的荧光粉如BaSi2O2N2:Eu2+,(Lu2M) (Al4Si) O12:Ce3+ (M=Mg、Ca、Sr和Ba), Ca2LuHf2 (AlO4)3:Ce3+等等,他们的缺点也是不可忽视的,如发射光谱较窄,热稳定性差,限制了其应用于高质量的暖白光LED。因此,探索在具有宽光谱发射的高效绿色荧光透明陶瓷对高质量的暖白光LED具有重要意义。
发明内容
1.为了解决上述问题,本发明提供了一种暖白光照明用高显指透明陶瓷及其制备方法,采用共沉淀法制备了具有强结构刚性的透明陶瓷,掺杂Ce3+取代Sr2+和Lu3+时,在410nm的激发下显示出较低的色温,实现了光谱展宽,提高了显指,非常适合用于适用于室内暖白光照明。
2.本发明的技术方案如下:
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至8~10,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为0.05~5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05-10mol/L,碳酸氢铵与氨水的摩尔浓度比为1: (0.5~5);
所述复合沉淀剂溶液以5~10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300~600 r/min,静置陈化时间为0.5~48h,抽滤速度为50~80 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 (1~2):1,次数分别为3~5次;抽滤后得到的前驱体在50~80°C的烘箱中干燥12~48 h;然后在900~1300°C煅烧2-6 h。
所述冷等静压的压力为200~240 MPa,保压3~6 min;真空烧结的温度为1700~1900oC,升温速率为2~5 oC/min,保温时间为5~10 h;退火时,所述氮气与氢气的体积之比为1:(0.2~1),退火温度为1100 oC~1400 oC。
有益效果
1.本发明提供的一种暖白光照明用高显指透明陶瓷材料,具有更高的结构刚性,在410nm的激发下,具有430~750 nm的宽发射光谱,色温低于3800K,显指达到90~91.6,所制成的LED器件可得到优异的暖白光。
2.本发明提供的方法在制备透明陶瓷的过程中,选用高纯的原料粉体,并严格控制共沉淀过程中杂质的引入,制备出的透明陶瓷前驱体纯度高,具有更好的热稳定性,非常适合用于高质量透明陶瓷的制备。
3.本发明提供的用于暖白光照明的高显指透明陶瓷,制备方法简便,陈化时间可在大范围内调整,有利于工业化生产。
附图说明
图1实施例1制备的透明陶瓷与400nmLED芯片和CaAlSiN3:Eu3+组合的发光装置电致发光光谱与点亮照片
具体实施方式
下面结合具体实例对本发明做进一步的说明,但不应以此限制本发明的保护范围。
实施例1:Ce0.02(Sr2Lu)0.98Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至9,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05mol/L,碳酸氢铵与氨水的摩尔浓度比为1: 0.5;
所述复合沉淀剂溶液以10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300 r/min,静置陈化时间为48h,抽滤速度为50 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 2:1,次数分别为5次;抽滤后得到的前驱体在50°C的烘箱中干燥48 h;然后在900°C煅烧6 h。
所述冷等静压的压力为200MPa,保压3 min;真空烧结的温度为1900 oC,升温速率为2 oC/min,保温时间为10 h;退火时,所述氮气与氢气的体积之比为1:0.2,退火温度为1400 oC。
如图1,在410 nm的激发下,具有430~750 nm的宽发射光谱,色温为3780K,显指达到91.6。
实施例2: Ce0.05(Sr2Lu)0.95Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至8,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为0.05mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05-10mol/L,碳酸氢铵与氨水的摩尔浓度比为1:5;
所述复合沉淀剂溶液以5 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为600 r/min,静置陈化时间为0.5h,抽滤速度为80 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 1:1,次数分别为4次;抽滤后得到的前驱体在80°C的烘箱中干燥12 h;然后在1300°C煅烧2 h。
所述冷等静压的压力为240 MPa,保压6 min;真空烧结的温度为1700 oC,升温速率为5 oC/min,保温时间为5 h;退火时,所述氮气与氢气的体积之比为1:1,退火温度为1100 oC。
在410 nm的激发下,具有430~750 nm的宽发射光谱,色温为3702K,显指达到90.2。
实施例3:Ce0.03(Sr2Lu)0.97Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至10,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为1.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为2mol/L,碳酸氢铵与氨水的摩尔浓度比为1:1;
所述复合沉淀剂溶液以8 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为400 r/min,静置陈化时间为12h,抽滤速度为70 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 1.5:1,次数分别为3次;抽滤后得到的前驱体在75°C的烘箱中干燥24 h;然后在1000°C煅烧5 h。
所述冷等静压的压力为220 MPa,保压4 min;真空烧结的温度为1750 oC,升温速率为4 oC/min,保温时间为8 h;退火时,所述氮气与氢气的体积之比为1:0.5,退火温度为1200 oC。
在410 nm的激发下,具有430~750 nm的宽发射光谱,色温为3750K,显指达到90。
实施例4:Ce0.02(Sr2Lu)0.98Hf2(AlO4)3透明陶瓷
首先,按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;然后,共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至7,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;最后,将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
进一步的,所述金属离子的硝酸盐溶液的溶度为5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05mol/L,碳酸氢铵与氨水的摩尔浓度比为1: 0.5;
所述复合沉淀剂溶液以10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300 r/min,静置陈化时间为48h,抽滤速度为50 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 2:1,次数分别为5次;抽滤后得到的前驱体在50°C的烘箱中干燥48 h;然后在900°C煅烧1 h。
所述冷等静压的压力为200MPa,保压3 min;真空烧结的温度为1900 oC,升温速率为2 oC/min,保温时间为10 h;退火时,所述氮气与氢气的体积之比为1:0.2,退火温度为1400 oC。
与实施例1相比,在较低的pH下进行共沉淀且素烧时间较短,在点亮时出现了陶瓷样品断裂的情况,热稳定性差,不适合应用。

Claims (6)

1. 一种暖白光照明用高显指透明陶瓷的制备方法,其特征在于,所制备的透明陶瓷粉体满足下式组分:
Cex(Sr2Lu)1-xHf2(AlO4)3
其中0<x≤0.05,具体步骤如下:
步骤一:按照化学计量比配置包括Ce3+、Lu3+、Sr2+、Hf4+和Al3+的硝酸盐溶液及氨水和碳酸氢铵的复合沉淀剂溶液;
步骤二:共沉淀过程,将复合沉淀剂溶液滴入至金属离子的硝酸盐溶液中并搅拌,并调整pH至8~10,然后常温下静置陈化,陈化后再依次加入去离子和无水乙醇抽滤、烘干、煅烧、过筛,得到前驱体粉体;
步骤三:将得到的前驱体粉体进行冷等静压成型,得到素坯;将素坯置于真空烧结炉中烧结,然后置于管式炉中在氮中氢气氛下进行退火,抛光后得到所述透明陶瓷。
2.按权利要求1所述的暖白光照明用高显指透明陶瓷的制备方法,其特征在于,步骤一中,金属离子的硝酸盐溶液的溶度为0.05~5.0mol/L;氨水和碳酸氢铵的复合沉淀剂溶液的浓度为0.05-10mol/L,碳酸氢铵与氨水的摩尔浓度比为1: (0.5~5)。
3.按权利要求1所述的暖白光照明用高显指透明陶瓷的制备方法,其特征在于,步骤二中,复合沉淀剂溶液以5~10 ml/min的速率滴入到金属离子的硝酸盐溶液中,并不断搅拌;混合沉淀溶液搅拌速率为300~600 r/min,静置陈化时间为0.5~48h,抽滤速度为50~80 ml/min,加入的去离子水或无水乙醇与沉淀溶液的体积比为 (1~2):1,次数分别为3~5次;抽滤后得到的前驱体在50~80°C的烘箱中干燥12~48 h;然后在900~1300°C煅烧2-6 h。
4. 按权利要求1所述的暖白光照明用高显指透明陶瓷的制备方法,其特征在于,步骤三中,冷等静压的压力为200~240 MPa,保压3~6 min;真空烧结的温度为1700~1900 oC,升温速率为2~5 oC/min,保温时间为5~10 h;退火时,所述氮气与氢气的体积之比为1:(0.2~1),退火温度为1100 oC~1400 oC。
5. 按权利要求1所述的暖白光照明用高显指透明陶瓷的制备方法,其特征在于,最终制备得到的暖白光照明用高显指透明陶瓷在410 nm的激发下,具有430~750 nm的宽发射光谱,色温低于3800K,显指达到90~91.6。
6.一种暖白光照明用高显指透明陶瓷,其特征在于,按权利要求1-5任一项所述的暖白光照明用高显指透明陶瓷的制备方法制备而成。
CN202010829635.8A 2020-08-18 2020-08-18 一种暖白光照明用高显指透明陶瓷及其制备方法 Active CN111908910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010829635.8A CN111908910B (zh) 2020-08-18 2020-08-18 一种暖白光照明用高显指透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010829635.8A CN111908910B (zh) 2020-08-18 2020-08-18 一种暖白光照明用高显指透明陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111908910A true CN111908910A (zh) 2020-11-10
CN111908910B CN111908910B (zh) 2022-04-22

Family

ID=73279047

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010829635.8A Active CN111908910B (zh) 2020-08-18 2020-08-18 一种暖白光照明用高显指透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111908910B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500163A (zh) * 2020-12-24 2021-03-16 中红外激光研究院(江苏)有限公司 一种高可见光透过率氧化钇透明陶瓷的制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101333441A (zh) * 2008-07-16 2008-12-31 上海大学 Ce3+掺杂的镥铝石榴石纳米陶瓷发光粉体的制备方法
US20100084962A1 (en) * 2007-03-06 2010-04-08 Merck Patent Gesellschaft Luminophores made of doped garnet for pcleds
CN102690113A (zh) * 2012-06-06 2012-09-26 上海大学 镥铝石榴石透明闪烁陶瓷的低温真空烧结制备方法
US20140152173A1 (en) * 2011-07-05 2014-06-05 Panasonic Corporation Rare earth aluminum garnet type phosphor and light-emitting device using the same
CN104030693A (zh) * 2014-06-16 2014-09-10 上海应用技术学院 一种三元阳离子Ce:LuAG陶瓷荧光粉的制备方法
CN104496474A (zh) * 2014-11-24 2015-04-08 南京工业大学 一种紫外转换白光led透明陶瓷材料及其制备方法
CN104557012A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种Pr:LuAG闪烁陶瓷的制备方法
CN106459758A (zh) * 2014-05-01 2017-02-22 东北泰克诺亚奇股份有限公司 发光体及辐射探测器
CN106520119A (zh) * 2016-10-24 2017-03-22 兰州大学 一种可发出青色光的荧光粉及其制备方法
US20170315433A1 (en) * 2014-11-11 2017-11-02 Koninklijke Philips N.V. Lighting device with ceramic garnet
CN108218417A (zh) * 2016-12-14 2018-06-29 中国科学院上海硅酸盐研究所 一种低价态离子掺杂的LuAG:Ce,Me闪烁陶瓷及其制备方法
CN108410452A (zh) * 2017-02-09 2018-08-17 有研稀土新材料股份有限公司 发光材料组合物以及发光装置
CN108863340A (zh) * 2017-05-16 2018-11-23 中国科学院上海硅酸盐研究所 一种复合结构透明闪烁陶瓷及其制备方法
CN109205654A (zh) * 2018-10-29 2019-01-15 山东力诺瑞特新能源有限公司 一种Ce、Sm共掺杂Lu3Al5O12纳米荧光粉的微波制备方法
CN109417841A (zh) * 2016-01-28 2019-03-01 生态照明公司 用于led光转化的组合物
WO2019053242A1 (de) * 2017-09-18 2019-03-21 Merck Patent Gmbh Mehrkomponentenleuchtstoffe als farbkonverter für festkörperlichtquellen
CN109592978A (zh) * 2018-12-03 2019-04-09 江苏师范大学 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
CN111205081A (zh) * 2020-01-21 2020-05-29 徐州凹凸光电科技有限公司 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100084962A1 (en) * 2007-03-06 2010-04-08 Merck Patent Gesellschaft Luminophores made of doped garnet for pcleds
CN101333441A (zh) * 2008-07-16 2008-12-31 上海大学 Ce3+掺杂的镥铝石榴石纳米陶瓷发光粉体的制备方法
US20140152173A1 (en) * 2011-07-05 2014-06-05 Panasonic Corporation Rare earth aluminum garnet type phosphor and light-emitting device using the same
CN102690113A (zh) * 2012-06-06 2012-09-26 上海大学 镥铝石榴石透明闪烁陶瓷的低温真空烧结制备方法
CN106459758A (zh) * 2014-05-01 2017-02-22 东北泰克诺亚奇股份有限公司 发光体及辐射探测器
CN104030693A (zh) * 2014-06-16 2014-09-10 上海应用技术学院 一种三元阳离子Ce:LuAG陶瓷荧光粉的制备方法
US20170315433A1 (en) * 2014-11-11 2017-11-02 Koninklijke Philips N.V. Lighting device with ceramic garnet
CN104496474A (zh) * 2014-11-24 2015-04-08 南京工业大学 一种紫外转换白光led透明陶瓷材料及其制备方法
CN104557012A (zh) * 2014-12-18 2015-04-29 徐州市江苏师范大学激光科技有限公司 一种Pr:LuAG闪烁陶瓷的制备方法
CN109417841A (zh) * 2016-01-28 2019-03-01 生态照明公司 用于led光转化的组合物
CN106520119A (zh) * 2016-10-24 2017-03-22 兰州大学 一种可发出青色光的荧光粉及其制备方法
CN108218417A (zh) * 2016-12-14 2018-06-29 中国科学院上海硅酸盐研究所 一种低价态离子掺杂的LuAG:Ce,Me闪烁陶瓷及其制备方法
CN108410452A (zh) * 2017-02-09 2018-08-17 有研稀土新材料股份有限公司 发光材料组合物以及发光装置
CN108863340A (zh) * 2017-05-16 2018-11-23 中国科学院上海硅酸盐研究所 一种复合结构透明闪烁陶瓷及其制备方法
WO2019053242A1 (de) * 2017-09-18 2019-03-21 Merck Patent Gmbh Mehrkomponentenleuchtstoffe als farbkonverter für festkörperlichtquellen
CN109205654A (zh) * 2018-10-29 2019-01-15 山东力诺瑞特新能源有限公司 一种Ce、Sm共掺杂Lu3Al5O12纳米荧光粉的微波制备方法
CN109592978A (zh) * 2018-12-03 2019-04-09 江苏师范大学 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
CN111205081A (zh) * 2020-01-21 2020-05-29 徐州凹凸光电科技有限公司 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HUI-LI LI ET AL.: "Fabrication of transparent cerium-doped lutetium aluminum garnet ceramics by co-precipitation routes", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
JIAN XU ET AL.: "Scintillation and luminescent properties of cerium doped lutetium aluminum garnet(Ce:LuAG) powders and transparent ceramics", 《IEEE TRANSACTIONS ON NUCLEAR SCIENCE》 *
KEI KAMADA ET AL.: "Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator", 《NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH A》 *
LIANGLING SUN ET AL.: "A broadband cyan-emitting Ca2LuZr2(AlO4)3:Ce3+ garnet phosphor for near-ultraviolet-pumped warm-white light-emitting diodes with an improved color rendering index", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
XICHENG WANG ET AL.: "Synthesis,structure and photoluminescence properties of Ca2LuHf2(AlO4)3:Ce3+, a novel garnet-based cyan light-emitting phosphor", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
谢建军 等: "共沉淀法制备Lu3Al5O12:Ce陶瓷发光粉体的研究", 《中国稀土学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500163A (zh) * 2020-12-24 2021-03-16 中红外激光研究院(江苏)有限公司 一种高可见光透过率氧化钇透明陶瓷的制备方法

Also Published As

Publication number Publication date
CN111908910B (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN104087292B (zh) 一种Mn4+掺杂的红色发光材料、制备方法及新型照明光源
CN115287068B (zh) 一种钠钇镓锗石榴石基近红外光荧光粉及其制备方法
CN108753296B (zh) 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
WO2020228066A1 (zh) 一种绿色荧光透明陶瓷的制备方法和应用
CN113249125B (zh) Ce3+掺杂的硅酸盐基绿色荧光粉及其制备方法和应用
CN108998025B (zh) 一种led用硅酸盐基红色荧光粉及其制备方法
JP2014503605A (ja) 窒素化合物発光材料及びその調製方法並びにそれによって製造された照明光源
CN111908910B (zh) 一种暖白光照明用高显指透明陶瓷及其制备方法
CN110041921A (zh) 一种锰离子激活的绿色荧光粉及其制备方法
TWI432555B (zh) 鋁酸鹽類化合物螢光粉
CN107384383A (zh) 一种uv激发白光led用复合型荧光粉
CN111187622A (zh) 白光led用单一基质磷酸盐荧光粉及其制备方法
CN109370588B (zh) 半导体发光用的氮化物荧光粉及其制备方法和发光装置
CN113999671B (zh) 一种照明显示白光led用荧光粉及其制备和应用
CN110527508A (zh) 一种白光led用氮化物红色荧光粉及其制备方法
CN110205120A (zh) 一种近紫外激发的混合物红色荧光粉、制备方法及应用
CN109536169A (zh) 一种白光led用单基质硅酸盐白光荧光粉及其制备方法
CN106590657B (zh) 一种镥铝酸盐绿色荧光粉及其制备方法和应用
CN115305088A (zh) 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN112310263B (zh) 一种全光谱led光源
CN110283588B (zh) 一种照明显示用白光led用荧光粉及其制备和应用
CN102321478A (zh) 一种氮氧化物荧光粉及其制备方法和应用
CN106433623B (zh) 一种硅基氮氧化物荧光粉及其制备方法和应用
CN105238401B (zh) 基于紫外光或近紫外光激发的白光荧光粉及其制备方法
CN116814264B (zh) 铕、铒单掺及铕铒共掺铟酸锶钇多晶荧光粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant